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Abstract— This paper introduces GODDeS: a fully dis-
tributed self-organizing decision-theoretic routing algorithm
designed to effectively exploit high quality paths in lossy ad-hoc
wireless environments, typically with a large number of nodes.
The routing problem is modeled as an optimal control problem
for a decentralized Markov Decision Process, with links char-
acterized by locally known packet drop probabilities that either
remain constant on average or change slowly. The equivalence
of this optimization problem to that of performance maximiza-
tion of an explicitly constructed probabilistic automata allows
us to effectively apply the theory of quantitative measures of
probabilistic regular languages, and design a distributed highly
efficient solution approach that attempts to minimize source-
to-sink drop probabilities across the network. Theoretical
results provide rigorous guarantees on global performance,
showing that the algorithm achieves near-global optimality, in
polynomial time. It is also argued that GODDeS is significantly
congestion-aware, and exploits multi-path routes optimally.
Theoretical development is supported by high-fidelity network
simulations.

I. INTRODUCTION & MOTIVATION

The routing problem has been widely studied in the con-
text of ad-hoc wireless networks, and reported algorithms
can be broadly classified as follows. A routing protocol is
pro-active (DBF (e.g. Distributed Bellman-Ford) [1] and
DSDV (Highly Dynamic Destination-Sequenced Distance
Vector routing) [2]), if fresh destination lists and their routes
are maintained by periodically distributing routing tables;
it is reactive (e.g. AODV (Ad-hoc On-demand Distance
Vector) [3] and DSR (Dynamic Source Routing) [4]) if
routes are computed if and when necessary by flooding the
network with Route Request packets. Pro-active protocols
suffer from expensive route maintenance and slow reaction
to topology changes, while reactive methods have high
latency in discovery and induce congestion due to periodic
flooding. Hybrid protocols attempt to combine advantages
of both philosophies e.g. HRPLS (Hybrid Routing Protocol
for Large Scale Mobile Ad Hoc Networks with Mobile
Backbones) [5] and HSLS (Hazy Sighted Link State routing
protocol) [6]. Other approaches use geographic, or power
information, and in the context of sensor networks, query
based routing strategies (e.g. [7]) have been proposed.

Reported ad hoc routing protocols for wireless networks
primarily focus on node mobility, rapidly changing topolo-
gies, overhead, and scalability; with little attention paid to
finding high-quality paths in the face of lossy wireless links.
An implicit assumption is that links either work well or
dont work at all; which is not reasonable in the wireless
case where many links have intermediate loss ratios. This
problem has been partially addressed by designing new
quality-aware metrics such as the expected transmission
count (ETX) [8], where the authors correctly note “minimiz-
ing hop-count maximizes the distance traveled by each hop,
which is likely to minimize signal strength and maximize

the loss ratio”. Even if the best route is one with minimal
hop-count, there may be many routes (particularly in dense
networks) of the same minimum length with widely varying
qualities; arbitrary choice made by most minimum hop-
count metrics is not likely to select the best. The problem
is also crucial in multi-rate networks [9], where the routing
protocol must select from the set of available links. While
in single-rate networks all links are equivalent, in multi-
rate networks each available link may operate at a different
rate. Thus the routing protocol faces a complex trade-off:
Long distance links take fewer hops, but the links operate
slower; short links can operate at high rates, but more hops
are required.

In this paper, we give a theoretical solution to this
potentially large-scale decision problem via formulating
a probabilistic routing policy that very nearly minimizes
the end-to-end packet drop probabilities. In particular, the
routing problem is modeled and solved as an optimal control
problem for a Decentralized Markov Decision Process (D-
MDP). We begin by assuming that the communication links
are imperfect, and are being characterized by locally known
drop probabilities. The mean or expected values of the
link-specific drop probabilities, and the network topology
is assumed to be are either constant or changing over
a time scale which is significantly slower compared to
that of the communication dynamics. We then seek local
routing decisions that maximize throughput in the sense of
minimizing the source-to-sink probability of packet-drops.
The Markov structure emerges, since we assume that the
local link-specific drop probabilities are independent of the
history of sequential link traversal by individual packets.

The results developed in this paper effectively resolve
the issues described above (actually attaining near global
optimality). To the best of the author’s knowledge, such an
approach has not been previously investigated. The reason
for this apparent neglect is as follows: Recent investiga-
tions [10], [11] into the solution complexity of decentralized
Markov decision processes have shown that the problem
is exceptionally hard even for two agents; illustrating a
fundamental divide between centralized and decentralized
control of MDP. In contrast to the centralized approach, the
decentralized case provably does not admit polynomial-time
algorithms, suffering super-exponential worst case complex-
ity. Such negative results do not preclude the possibility of
obtaining near-optimal solutions efficiently. This is what we
achieve in this paper, in the context of the routing problem.
We show that a highly efficient, fully distributed, decision
algorithm can be designed that effectively solves the dis-
tributed MDP such that the control policy, on convergence,
is within an ε bound of the global optimal. Furthermore,
one can freely choose the error bound ε, with the caveat
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that the convergence time increases with decreasing ε.
We call this algorithm GODDeS (Globally ε-

Optimal Routing Via Distributed Decision-theoretic
Self-organization). In place of a standard MDP formulation,
we use a representation based on Probabilistic Finite State
Automata (PFSA), which allows us to set up the decision
problem as that of performance maximization of PFSA,
and obtain solutions using the recently reported quantitative
measures of probabilistic regular languages [12]. This shift
of modeling paradigm allows one to achieve near-global
optimality in polynomial time. Theoretical results also
establish that GODDeS is highly scalable, optimally take
advantage of existing multi-path routes, and is expected
to be significantly congestion-aware. For simplicity of
exposition, a single sink is considered throughout the
paper. This is not a serious restriction, since the results
carry over to the general case with ease. The resulting
algorithm is both pro-active and reactive, but not in the
usual sense of reported hybrid protocols. It uses both
distance-vector (in a generalized sense via the language-
measure construction) and link-state information, and uses
local multi-cast to forward messages; optimally taking
advantage of multi-path routing.

The rest of the paper is organized in four sections.
Section II summarizes the theory of quantitative measures
of probabilistic regular languages, and the approach to
centralized performance maximization of PFSA. Section III
develops the PFSA model of an ad-hoc network, and
Section IV presents the key theoretical development for
decentralized PFSA optimization. The paper is summarized
and concluded in Section V with recommendations for
future work.

II. BACKGROUND: LANGUAGE MEASURE THEORY

This section summarizes the concept of signed real mea-
sure of probabilistic regular languages, and its application
in performance optimization of probabilistic finite state
automata (PFSA) [12]. A string over an alphabet (i.e. a non-
empty finite set) Σ is a finite-length sequence of symbols
from Σ [13]. The Kleene closure of Σ, denoted by Σ∗, is
the set of all finite-length strings of symbols including the
null string ε. The string xy is the concatenation of strings
x and y, and the null string ε is the identity element of the
concatenative monoid.

Definition 1 (PFSA): A PFSA G over an alphabet Σ is a
sextuple (Q,Σ, δ, Π̃, χ,C ), where Q is a set of states, δ : Q×
Σ? → Q is the (possibly partial) transition map; Π̃ : Q×Σ→
[0, 1] is an output mapping, known as the probability morph
function that specifies the state-specific symbol generation
probabilities and satisfies ∀qi ∈ Q,σ ∈ Σ, Π̃(qi, σ) = 0,
and
∑
σ∈Σ Π̃(qi, σ) = 1, the state characteristic function χ :

Q→ [−1, 1] assigns a signed real weight to each state, and
C is the set of controllable transitions that can be disabled
(Definition 2).

Definition 2 (Control Philosophy): If δ(qi, σ) = qk, then
the disabling of σ at qi prevents the state transition from qi
to qk. Thus, disabling a transition σ at a state q replaces the
original transition with a self-loop with identical occurrence
probability, i.e. we now have δ(qi, σ) = qi. Transitions that
can be so disabled are controllable, and belong to the set
C .

Definition 3: The language L(qi) generated by a PFSA
G initialized at the state qi ∈ Q is defined as: L(qi) = {s ∈
Σ∗ | δ(qi, s) ∈ Q} Similarly, for every qj ∈ Q, L(qi, qj)
denotes the set of all strings that, starting from the state qi,
terminate at the state qj, i.e., L(qi, qj) = {s ∈ Σ∗ | δ(qi, s) =
qj ∈ Q}

Definition 4 (State Transition Matrix): The state transi-
tion probability matrix Π ∈ [0, 1]CARD(Q)×CARD(Q), for
a given PFSA is defined as: ∀qi, qj ∈ Q,Πij =∑
σ∈Σ s.t. δ(qi,σ)=qj

Π̃(σ, qi) Note that Π is a square non-
negative stochastic matrix [14], where Πij is the probability
of transitioning from qi to qj.

Notation 1: We use matrix notations interchangeably for
the morph function Π̃. In particular, Π̃ij = Π̃(qi, σj) with
qi ∈ Q,σj ∈ Σ. Note that Π̃ ∈ [0, 1]CARD(Q)×CARD(Σ) is not
necessarily square, but each row sums up to unity.
A signed real measure [15] νi : 2L(qi) → R ≡ (−∞,+∞)
is constructed on the σ-algebra 2L(qi) [12], implying that
every singleton string set {s ∈ L(qi)} is a measurable set.

Definition 5 (Language Measure): Let ω ∈ L(qi, qj) ⊆
2L(qi). The signed real measure νiθ of every singleton string
set {ω} is defined as: νiθ({ω}) , θ(1 − θ)|ω|Π̃(qi,ω)χ(qj).
For every choice of the parameter θ ∈ (0, 1), the signed
real measure of a sublanguage L(qi, qj) ⊆ L(qi) is defined
as: νiθ(L(qi, qj)) ,

∑
ω∈L(qi,qj)

θ(1 − θ)|ω|Π̃(qi,ω)χj.
Similarly, the measure of L(qi), is defined as νiθ(L(qi)) ,∑
qj∈Q ν

i
θ(Li,j).

Notation 2: For a given PFSA, we interpret the set
of measures νiθ(L(qi)) as a real-valued vector of length
CARD(Q) and denote νiθ(L(qi)) as νθ|i.
The language measure can be expressed vectorially:

νθ = θ
[
I − (1− θ)Π

]−1
χ (1)

The inverse exists for θ ∈ (0, 1] [12].
Remark 1 (Physical Interpretation): In the limit of θ →

0+, the language measure of singleton strings can be
interpreted to be product of the conditional generation
probability of the string, and the characteristic weight on
the terminating state. Hence, smaller the characteristic, or
smaller the probability of generating the string, smaller
is its measure. Thus, if the characteristic values represent
the control specification, with more positive weights given
to desirable states, then the measure represents how good
the particular string is w.r.t the given specification, and
the given model. The limiting language measure ν0|i =

limθ→0+ θ
[
I−(1−θ)Π

]−1
χ
∣∣
i

sums up the limiting measures
of each string starting from qi, and thus captures how good
qi is, based on not only its own characteristic, but on how
good are the strings generated in future from qi. It is thus a
quantification of the impact of qi on future dynamics [12].

Definition 6 (Supervisor): A supervisor disables a subset
of the set C of controllable transitions and hence there is a
bijection between the set of all possible supervision policies
and the power set 2C .

Language measure allows a quantitative comparison of
supervision policies.

Definition 7 (Optimal Supervision Problem): Given
a PFSA G = (Q,Σ, δ, Π̃, χ,C ), compute a supervisor
disabling D? ⊆ C , s.t. ν?

0 =(Elementwise) ν
†
0 ∀D† ⊆ C

where ν?
0, ν†0 are the limiting measure vectors of supervised

plants G?, G† under D?, D† respectively.
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Fig. 1: Node centric decision for packet forwarding with
non-zero drop probability for all choices

Remark 2: The solution to the optimal supervision prob-
lem is obtained in [12] by designing an optimal policy using
νθ with θ ∈ (0, 1). To ensure that the computed optimal
policy coincides with the one for θ → 0+, the authors
choose a small, but non-zero value for θ in each iteration
step of the design algorithm. To address numerical issues,
algorithms reported in [12] computes how small a θ is
actually required, i.e., computes the critical lower bound
θ?. Moreover the solution obtained is optimal, unique,
efficiently computable, and maximally permissive among
policies with maximal performance.

Language-measure-theoretic optimization is not a search
based approach. It is an iterative sequence of combinatorial
manipulations, that monotonically improves the measures,
leading to element-wise maximization of νθ (See [12]). It
is shown in [12]:

lim
θ→0+

θ
[
I − (1− θ)Π

]−1
χ = Pχ (2)

where the ith row of P (denoted as ℘i) is the stationary
probability vector for the PFSA initialized at state qi. In
other words, P is the Cesaro limit of the stochastic matrix
Π, satisfying P = limk→∞∑k

j=0 Π
k [14].

Proposition 1 (See [12]): Since the optimization maxi-
mizes the language measure element-wise for θ → 0+, it
follows that for the optimally supervised plant, the standard
inner product 〈℘i, χ〉 is maximized, irrespective of the
starting state qi ∈ Q.

Notation 3: The optimal θ-dependent measure for a
PFSA is denoted as ν?

θ and the limiting measure as ν?.

III. MODELING AD-HOC NETWORKS AS PFSA

We consider an ad-hoc network of communicating nodes
endowed with limited computational resources. For simplic-
ity of exposition, we develop the theoretical results under the
assumption of a single sink. This is not a serious restriction
and can be easily relaxed. The location and identity of the
sink is not known a priori to the individual nodes. Inter-node
communication links are assumed to be imperfect, with the
possibility of packet drop in each transmission attempt. We
assume nodes can efficiently gather the following informa-
tion:

1) (Set of Neighboring Nodes:) Number and unique id.
of nodes to which it can send data via a 1-hop link.

2) (Local Link Properties:) Link-specific probability of
packet drop for one-way communication to a specific
neighbor.

We further assume that the link-specific packet drop proba-
bilities are either constant, or change slowly enough, making
it possible to treat them locally as time-invariant constants
for route optimization. Note that this does not imply that the
network topology is assumed to be static; we only require
that the packet-drop probability for communication from
any given node qi to a particular neighbor qj be more or
less constant, say 0.7. Thus qi may choose not to send data
to qj all the time, but when it does, then, on the average,
70% of the packets get dropped. In practice, the packet
drop probabilities may vary with current network condition,
e.g. congestion leading to buffer overflow at specific nodes
or (in the context of sensor networks) high-traffic nodes
running out of power. We do not consider these effects in
detail; however we briefly describe strategies to handle such
effects via simple modifications of the basic principles laid
out under the assumption of constant drop probabilities.
Specific applications, such as wireless sensor networks,
require routing schemes that in addition to throughput, are
aware of energy and power issues. Also, data-priority need
to be respected to enable context-aware routing.

First we formalize the modeling of an ad-hoc network as
a probabilistic finite state automata.

Definition 8 (Neighbor Map): If Q is the set of all nodes
in the network, then the neighbor map N : Q → 2Q

specifies, for each node qi ∈ Q, the set of nodes N(qi) ⊂ Q
(excluding qi) to which qi can communicate via a single
hop direct link.

Definition 9 (Packet Drop Probability): The link spe-
cific packet drop probability λij ∈ [0, 1] is defined to be
the limiting ratio of the number of packets dropped to the
total number of packets sent, in communicating from node
qi to node qj.

Note that the drop probabilities are not constrained to
be symmetric in general, i.e., λij 6= λji. Also, note that we
assume the node-based estimation of these ratios to converge
fast enough. We visualize the local network around a node
q0 in a manner illustrated in Figure 1(a) (shown for two
neighbors q1 and q2). In particular, any packet transmitted
from q0 for q1 has a drop probability λ01, and the ones
transmitted to q2 have a drop probability λ02. To correctly
represent this information, we require the notion of virtual
nodes (qv01, q

v
02 in Figure 1(b)).
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Definition 10 (Virtual Node): Given a node qi, and a
neighbor qj ∈ N(qi) with a specified drop probability λij,
any transmitted data-packet from qi for qj is assumed to
be first delivered to a virtual node qvij, upon which there
is either an automatic (i.e. uncontrollable) forwarding to qj
with probability 1− λij, or a drop with probability λij. The
set of all virtual nodes in a network of Q nodes is denoted
by Qv in the sequel.
Hence, the total number of virtual nodes is CARD(Qv) =∑
i:qi∈QN(qi), and satisfies: 0 5 CARD(Qv) 5

CARD(Q)2 − CARD(Q). We are ready to model an ad-hoc
network as a PFSA.

Definition 11 (PFSA Model of Network): For a given set
of nodes Q, the function N : Q → 2Q, the link specific
drop probabilities λij for any node qi and a neighbor qj ∈
N(qi), and a specified sink qSINK ∈ Q, the PFSA GN =

(QN, Σ, δ, Π̃, χ,C ) is defined to be a model of the network,
where (denoting CARD(N(qi)) = m):
◦ STATES: QN = Q

⋃
Qv
⋃{

qD
}

where Qv is the set of virtual nodes, and qD is a dump state
which models packet loss. For the alphabet Σ:

◦ ALPHABET: Σ =
⋃

i:qi∈Q

 ⋃
j:qj∈N(qi)

σij

⋃{σD}
σij denotes transmission (attempted or actual) from qi to
qj, and σD denotes transmission to qD (packet loss).

◦ TRANSITION
MAP:

δ(q, σ) =


qvij if q = qi, σ = σij
qj if q = qvij, σ = σij
qD if q = qvij, σ = σD
qD if q = qD, σ = σD
− undefined otherwise

◦ PROBABILITY
MORPH
MATRIX:

Π̃(q, σ) =



1
m if q = qi, σ = σij

1− λij if q = qvij, σ = σij
λij if q = qvij, σ = σD
1 if q = qD, σ = σD
0 otherwise

◦ CHARACTERISTIC
WEIGHTS:

χi =

{
1 if qi = qSINK

0 otherwise

◦ CONTROLLABLE
TRANSITIONS:

∀qi ∈ Q,qj ∈ N(qi), qi
σij−−→ qvij ∈ C

We note that for a network of Q nodes, the PFSA model
almost always has a significantly larger number of states.
This state-explosion will not be a problem for the distributed
approach developed in the sequel, since we use the complete
model GN only for the purpose of deriving theoretical
guarantees. Note, that Definition 11 generates a PFSA
model which can be optimized in a straightforward manner
using the language-measure-theoretic technique described
in Section II (See [12]) for details). This would yield the
optimal routing policy in terms of the disabling decisions
at each node that minimize source-to-sink drop probabilities
(from every node in the network). To see this explicitly, note
that the measure-theoretic approach elementwise maximizes
limθ→0+ θ

[
I−(1−θ)Π

]−1
χ = Pχ, where the ith row of P

(denoted as ℘i) is the stationary probability vector for the
PFSA initialized at state qi (See Proposition 1). Since, the
dump state has characteristic −1, the sink has characteristic
1, and all other nodes have characteristic 0, it follows that

this optimization maximizes the quantity ℘iSINK −℘iDUMP, for
every source state or node qi in the network. Note that
℘iSINK, ℘

i
DUMP are the stationary probabilities of reaching the

sink and incurring a packet loss to dump respectively, from
a given source qi. Thus, maximizing ℘iSINK − ℘iDUMP for
every qi ∈ Q guarantees that the computed routing policy is
indeed optimal in the stated sense. However, the procedure
in [12] requires centralized computations, which is precisely
what we wish to avoid. The key technical contribution in
this paper is to develop a distributed approach to language-
measure-theoretic PFSA optimization. In effect, the theoreti-
cal development in the next section allows us to carry out the
language-measure-theoretic optimization of a given PFSA,
in situations where we do not have access to the complete Π
matrix, or the χ vector at any particular node (i.e. each node
has a limited local view of the network), and are restricted
to communicate only with immediate neighbors. We are
interested in not just computing the measure vector in a
distributed manner, but optimizing the PFSA via selected
disabling of controllable transitions (See Section II). This
is accomplished by Algorithm 1.

The PFSA based modeling framework is somewhat dif-
ferent from the standard MDP architecture. For example, in
contrast to the latter, our actions are ”controllable” transi-
tions, and have probabilities associated with them. Rewards
and penalties are not associated with individual actions, but
with state visitations (and modeled via the characteristic
weights). We maximize the long term or expected reward
by maximizing the probability of reaching the sink, while
simultaneously minimizing the probability of reaching the
dump state, i.e., a drop, from any node in the network. (See
[16] for more details).

IV. DECENTRALIZED PFSA OPTIMIZATION

Notation 4: In the sequel, the current measure value,
for a given θ, at node qi ∈ Q is denoted as ν̂θ|i, and
the measure of the virtual node qvij ∈ QN is denoted as
ν̂θ|(qVij). The parenthesized entry (qVij) denotes the index
of the virtual node qvij in the state set QN. Similarly, the
transition probability from qi to qvij is denoted as Πi(qVij).
The subscript entry i(qVij) denotes the ikth element of Π,
where k = (qVij).

Algorithm 1 establishes a distributed, asynchronous up-
date procedure which achieves the following:

∀qi ∈ Q, ν̂θ|i
global−−−−−−−→

convergence
ν?
θ|i (4)

where ν?
θ|i is the optimal measure for qi ∈ Q that

would be obtained by optimizing the PFSA GN, for a
given θ, in a centralized approach (See Section II). The
optimal routing policy can then be obtained by forwarding
packets to neighboring nodes which have a better or equal
current measure value. If more than a one such neighbor is
available, then one chooses the forwarding node randomly.

Algorithm 1 has four distinct parts, marked as (a1), (a2),
(a3) and (a4). Part (a1) involves internode communication,
to enable a particular node qi ∈ Q to ascertain the current
measure values of neighboring nodes, and the drop proba-
bilities λij on respective links. Recall, that we assume the
probabilities λij to be more or less constant; nevertheless
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input : GN = (Q,Σ, δ, Π̃, χ,C ), θ
begin

Initialize ∀qi ∈ Q, ν̂θ|i = 0

/∗ Begin Infinite Asynchronous Loop ∗/
while true do

for each node qi ∈ Q do
if N(qi) 6= ∅ then

m = CARD(N(qi))
for each node qj ∈ N(qi) do

/∗ (a1) Internode Communication ∗/
Query ν̂θ|j & Drop Prob. λij

/∗ (a2) Control Adaptation ∗/
if ν̂θ|j < ν̂θ|i then

Πii = Πii + Πi(qVij)
Πi(qVij)

= 0; /* Disable */

else
if Πi(qVij)

== 0 then
Πi(qVij)

= 1
m

Πii = Πii − 1
m /∗ Enable ∗/

/∗ (a3) Updating Virtual Nodes ∗/
ν̂θ|(qVij)

= (1− θ)(1− λij)ν̂θ|j

/∗ (a4) Updating Node ∗/

ν̂θ|i =
∑

j:qj∈N(qi)

(1− θ)Πi(qVij)
ν̂θ|(qVij)

+(1− θ)Πiiν̂θ|i + θχ|i

end
Algorithm 1: Distributed Update of Node Measures

nodes estimate these values to adapt to changing (albeit
slowly) network conditions. Part (a2) is the control adapta-
tion, in which the nodes decide, based on local information,
the set of forwarding nodes. Part (a3) is the computation
of the updated measure values for the virtual nodes qvij
where j : qj ∈ N(qi). Finally, part (a4) updates the measure
of the node qi based on the computed current measures
of the virtual nodes. We note that Algorithm 1 only uses
information that is either available locally, or that which
can be queried from neighboring nodes.

Proposition 2 (Convergence): For a network Q modeled
as a PFSA GN = (QN, Σ, δ, Π̃, χ,C ), the distributed proce-
dure in Algorithm 1 has the following properties:

1) Computed measure values for every node qi ∈ Q are
non-negative and bounded above by 1, i.e.,

∀qi ∈ QN, ∀t ∈ [0,∞), ν̂tθ|i ∈ [0, 1] (5)
2) For constant drop probabilities and constant neighbor

map N : Q→ 2Q, Algorithm 1 converges in the sense:
∀qi ∈ QN, lim

t→∞ ν̂tθ|i = ν∞θ |i ∈ [0, 1] (6)
3) Convergent measure values coincide with the optimal

values computed by the centralized approach:
∀qi ∈ QN, ν∞θ |i = ν?

θ|i (7)

Proof: Due to limited space, the interested reader is
referred to the preprint [17].

Proposition 3 (Initialization Independence): For a net-
work Q modeled as a PFSA GN = (QN, Σ, δ, Π̃, χ,C ),
convergence of Algorithm 1 is independent of the initial-
ization of the measure values, i.e., if ν̂tθ,α denotes the
measure vector at time t with arbitrary initialization α ∈
[0, 1]CARD(QN), then:

lim
t→∞ ν̂tθ,α = lim

t→∞ ν̂tθ (8)
where ν̂0θ,α = α and ν̂0θ = [0 · · · 0]T .

Proof: Due to limited space, the interested reader is
referred to the preprint [17].

Next we establish guarantees on global performance
achieved via local decisions dictated by Algorithm 1. Next,
we make rigorous our notion of policy performance, and
near-global or ε-optimality.

Definition 12 (Policy Performance & ε-Optimality):
The performance vector ρS of a given routing policy
S is the vector of node-specific probabilities of power
eventually reaching the sink. A policy U has Utopian
performance if its performance vector (denoted as ρU)
element-wise dominates the one for any arbitrary policy
S, i.e. ∀qi ∈ QN, ρUi = ρSi . A policy P has ε-optimal
performance, if for some given ε > 0, we have:

||ρP − ρU||∞ 5 ε (9)
For a chosen θ, the limiting policy Pθ computed by Al-
gorithm 1 results in element-wise maximization of the
measure vector over all possible supervision policies (where
supervision is to be understood in the sense of the defined
control philosophy). ν̂∞θ is related to the policy performance
vector ρPθ as follows. Selective disabling of the transitions
dictated by the policy Pθ induces a controlled PFSA, which
represents the optimally supervised network, for a given θ.
Let the transition matrix for this optimized PFSA be Π?

θ,
and its Cesaro limit be P?

θ. (Note: Π?
θ, P?

θ are stochastic
matrices.) Then:

∀qi ∈ QN,P?
θχ
∣∣
i,(qSINK)

= ρPθi (10)

Due to limited space, we state the following key results
without proof. The interested reader is referred to the
preprint [17].

Proposition 4 (Global ε-Optimality): Given any ε > 0,
choosing θ = ε/m2 where m = maxq∈Q CARD(N(q))
guarantees that the limiting policy computed by Algorithm 1
is ε-optimal in the sense of Definition 12.

Proposition 5 (Asymptotic Runtime Complexity): With
no communication delays and assuming synchronized
updates, convergence time Tc to ε-optimal operation for a
network of N physical nodes and maximum m neighbors,
satisfies:

Tc = O

(
Nm2

ε(1− γ?)

)
where γ? is a lower bound on drop probabilities

Remote sensing applications necessitate route updates as
nodes die. Each node can regulate incoming traffic by de-
liberately reporting lower values of its current self-measure
to its neighbors:

Reported −→ r
[k]
θ

∣∣
i
= ζ(qi, k)ν

[k]
θ

∣∣
i
← Computed (11)

where ∀qi ∈ Q, k ∈ [0,∞), ζ(qi, k) ∈ [0, 1] is a multiplica-
tive factor which is modulated to have decreasing values
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Fig. 2: Convergence complexity: (a) illus-
trates little dependence of convergence on
network size. (b) captures the O(1/ε) depen-
dence

Fig. 3: Progressive node deaths: Top row: failed regions, Middle row:
packet path signatures to sink from live nodes, Bottom row: level sets
for measure field

as node energy gets depleted, or as local congestion in-
creases. Such modulation forces automatic self-organization
to compute alternate routes that tend to avoid the particular
node. The dynamics of such context-aware modulation
may be non-trivial; while for slowly varying ζ(qi, k), the
convergence results presented here is expected to hold true,
rapid fluctuations in ζ(qi, k) may be problematic.

V. CONCLUSIONS & FUTURE WORK

This paper introduces GODDeS: a new routing algorithm
designed to effectively exploit high quality paths in lossy ad-
hoc wireless environments, typically with a large number of
nodes. The routing problem is modeled as an optimal control
problem for a decentralized Markov Decision Process, with
links characterized by locally known packet drop proba-
bilities that either remain constant on average or change
slowly. Theoretical results provide rigorous guarantees on
global performance, showing that the algorithm achieves
near-global optimality, in polynomial time. It is also argued
that GODDeS is significantly congestion-aware, and ex-
ploits multi-path routes optimally. Theoretical development
is supported by network simulation.

Future work will proceed in the following directions:
1) Design explicit strategies for energy and congestion

awareness within the GODDeS framework. In partic-
ular, investigate the ramifications of various choices
of the measure reduction factor described in Eq. (11).

2) Grossly incorrect estimations of the link-specific drop
probabilitieswill translate to incorrect routing deci-
sions, and decentralized strategies for robust identi-
fication of these parameters need to be investigated.

3) Explicit design of implementation details such as
packet headers, node data structures and pertinent
neighbor-neighbor communication protocols.
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