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Abstract— In this paper, we consider the problem of identify-
ing the exact topology of an interconnected dynamical network
from a limited number of measurements of the individual nodes.
Within the network graph, we assume that interconnected
nodes are coupled by a discrete-time convolution process, and
we explain how, given observations of the node outputs, the
problem of topology identification can be cast as solving a linear
inverse problem. We use the term compressive observations in
the case when there is a limited number of measurements
available and thus the resulting inverse problem is highly
underdetermined. Inspired by the emerging field of Compres-
sive Sensing (CS), we then show that in cases where network
interconnections are suitably sparse (i.e., the network contains
sufficiently few links), it is possible to perfectly identify the
topology from small numbers of node observations, even though
this leaves a highly underdetermined set of linear equations.
This can dramatically reduce the burden of data acquisition for
problems involving network identification. The main technical
novelty of our approach is in casting the identification problem
as the recovery of a block-sparse signal x ∈ R

N from the
measurements b = Ax ∈ R

M with M < N , where the measure-
ment matrix A is a block-concatenation of Toeplitz matrices.
We discuss identification guarantees, introduce the notion of
network coherence for the analysis of interconnected networks,
and support our discussions with illustrative simulations.

I. INTRODUCTION

Many problems of current interest to the controls commu-

nity involve large-scale interconnected dynamical systems.

In this paper, we focus on systems with a large number of

observable variables, where the relationships between these

variables can be described by a signal flow graph with nodes

of low maximum degree. Examples of such systems come

from thermal modeling of buildings [1]–[3], biology [4], and

economics [5]. While there has been quite a bit of work to

date on the analysis and control of networked systems (see

e.g., [6]–[8]), such analysis typically requires knowledge of

the network topology, which is not always available a priori.

Thus, there is a need for effective “topological identification”

procedures [9]–[11] which, given measurements of the nodes

of an interconnected dynamical system over a finite time

interval, can determine the correct interconnection topology.

The topology identification problem has been solved by

Materassi and Innocenti [11] in the case that the interconnec-

tion graph has a tree structure and enough data is available

to form reliable estimates of cross-power spectral densities.

In this paper, we consider a more general setting, allowing
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Fig. 1. Network model of 6 interconnected nodes.

arbitrary interconnections (including trees, loops, and self-

loops) between nodes in the network, but we assume that

the interconnection graph is sparse in the sense that each

node has a relatively low degree. Figure 1 shows one such

example network. Given this constrained structure to the

network graph, we are interested in identifying the network

topology from as few observations of the nodes as possible.

We cast the identification problem in the context of

Compressive Sensing (CS) [12]–[15], which is concerned

with the recovery of sparse signals from limited numbers

of measurements. In particular, we explain how the identifi-

cation problem can be formulated as the recovery of a block-

sparse signal x ∈ R
N from the measurements b = Ax ∈ R

M

with M < N , where the measurement matrix A is a block-

concatenation of Toeplitz matrices.

The connection between CS and network topology iden-

tification has been noted before in [10], where a greedy

algorithm was proposed, although no recovery guarantees

were presented. We propose to perform the identification

using the Block Orthogonal Matching Pursuit (BOMP) algo-

rithm [16]–[18] from CS. Based upon the block-coherence

metrics that guarantee the exact recovery of a block-sparse

signal from its compressive measurements [16]–[18], we

introduce the notion of network coherence for the analysis of

interconnected networks where the interconnections couple

the nodes based on a discrete-time convolution process. We

derive inequality bounds for the network coherence in certain

simple networks, and we show that the coherence metrics are

bounded below by a non-zero value that depends on the link

impulse responses. We also illustrate the performance of the

BOMP identification algorithm on graphs that include loops.
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Fig. 2. Single-node model. Node i sums the signals that terminate upon it
(in this illustration, nodes 3, 7, and 9), plus a node specific input term di.

II. NOTATION

Denote the set of real numbers by R. All signals are

discrete time, defined over a finite non-negative time interval,

and represented equivalently as either the function of integer

time x(t) or grouped into vector form using the boldface x.

Given a finite sequence x, define the following mapping to

a Toeplitz matrix

T (x)ji :=




x(0) 0 · · · 0
x(1) x(0) · · · 0

...
...

. . .
...

x(i− 1) x(i− 2)
... x(i− j)




where zeros are applied if the index goes outside the defined

range of x.

III. PROBLEM SETUP

A. Network Model

Given an interconnected network of P nodes, let node i
be associated with the time series ai(t), t = 1, 2, . . . ,M . An

example network model is illustrated in Fig. 1. Any types of

interconnections between the nodes such as trees, loops, and

self-loops are allowed in the network topology.

An edge in the graph, labeled Lj,i, represents a dynamic

system that filters the output of node j (that is, aj(t)) and

passes the result (which we call yji(t)) as an input to node i.
Let Ni denote the set of nodes whose outputs are processed

and fed to node i. As shown in Fig. 2, we assume that

each node i simply sums the signals that terminate upon

it
{

yji

}
j∈Ni

(with a one sample delay) and adds a node-

specific input term di that may or may not be known. In

other words, the output of node i is given by

ai(t) =
∑

j∈Ni

yji(t− 1) + di(t), (1)

for t = 1, 2, . . . ,M .

In this paper, each system Lj,i is modeled as a causal

Finite Impulse Response (FIR) filter with impulse response

xji ∈ R
n, so that yji = aj ∗ xji. Assuming aj(t) = 0 for

t ≤ 0, the convolution can be written as

yji(t) =

t∑

s=1

xji(s)aj(t− s+ 1), (2)

for t = 1, 2, . . . ,M − 1. Note that according to Eq. (1) we

have assumed no feedthrough term, yji(0) = 0, and xji(s)
is defined for 1 ≤ s ≤ n. Setting xji = 0 for j /∈ Ni, then

according to Eq. (1), the output of each node ai ∈ R
M can

be written as

ai =

P∑

j=1

Ajxji + di, i = 1, 2, · · · , P, (3)

where Aj = T (aj)
n
M is an M ×n Toeplitz matrix, xji ∈ R

n

and di ∈ RM . Equation (3) can be further rewritten as

ai =
[
A1 · · · Aj · · · AP

]
︸ ︷︷ ︸

A




x1i
...

xji

...

xPi




︸ ︷︷ ︸
xi

+ di, (4)

or equivalently as

ai = Axi + di, i = 1, 2, · · · , P, (5)

where ai ∈ R
M , xi ∈ R

Pn, and A ∈ R
M×Pn is a matrix

formed by the concatenation of P Toeplitz matrices.

B. Topology Identification

The problem of identifying the network topology can

be viewed as recovering the set of interconnection impulse

responses {xi}Pi=1 given experimental data. We assume the

inputs are decomposed into di = d̂i + d̃i, where d̂i is

known and d̃i is unknown. Therefore, the measurements

available to us consist of all outputs {ai}
P
i=1 and the known

components {d̂i}
P
i=1 of the inputs. Our goal is to estimate

the impulse responses x̂ji that best match these observations

in an appropriate sense; we then determine that a link exists

whenever ‖x̂ji‖ exceeds some threshold (we set the threshold

to zero when striving for perfect recovery of all x̂ji).

To solve this problem, we will utilize the following

minimization problem:

min
{xi}P

i=1

P∑

i=1

‖Axi − (ai − d̂i)‖
2
2. (6)

Equivalently, the objective function in (6) can be minimized

by solving

min
xi

‖Axi − (ai − d̂i)‖
2
2 (7)

separately for each node in the network. We note that the

same matrix A will be used for recovery of all xi. For

simplicity and without loss of generality, we will suppose

henceforth that ai − d̂i = b and xi = x for each specific

node and focus on the optimization problem

min
x

‖Ax − b‖22, (8)
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where by letting N = Pn, we have b ∈ R
M , x ∈ R

N , and

A ∈ R
M×N is a matrix consisting of a concatenation of P

Toeplitz matrices.

IV. EXPLOITING SPARSE TOPOLOGICAL STRUCTURES

FOR NETWORK IDENTIFICATION

From standard arguments in linear algebra, we know that

if we collect M ≥ N measurements and if A is full rank,

then exact recovery of x when d̃i = 0 is possible from

x⋆ = A†b, (9)

where A† = (ATA)−1AT is the Moore-Penrose pseudoin-

verse of A. Note that N depends on the number of nodes

in the network. Thus, large numbers of measurements are

required for exact recovery of large-scale networks in this

way.

However, we note that under the assumption of sparsity

of the node interconnections (that is, assuming only a few

nodes contribute to the output of each node), there will be

a distinct structure to the solutions x that we are search-

ing for. In particular, a typical vector x under our model

assumptions will have very few non-zero coefficients, and

these non-zero coefficients will be clustered into blocks of

FIR coefficients. In the field of CS, such structure is known

as block-sparsity [16]–[18], and for signals obeying block-

sparse models it is known that we can recover x ∈ R
N

exactly from measurements b = Ax ∈ R
M even when

M ≪ N . Thus, it may be possible to dramatically reduce

the amount of data that must be collected in order to solve

the network identification problem. In this and the following

sections, we will develop these ideas more formally. For

simplicity, we assume d̃i = 0, but it is possible to extend

our arguments from exact recovery in noise-free settings to

robust recovery in noisy settings.

A. CS Notation

First introduced by Candès, Romberg and Tao [12]–[14],

and Donoho [15], CS is a paradigm which enables the

recovery of an unknown vector from its underdetermined

set of measurements under the assumption of sparsity of

the signal and under certain conditions on the measurement

matrix A. The CS recovery problem can be viewed as

recovery of a K-sparse signal x ∈ R
N from its observations

b = Ax ∈ R
M where A ∈ R

M×N is the measurement

matrix with M < N (in many cases M ≪ N ). A K-sparse

signal x ∈ R
N is a signal of length N with K non-zero

(significant) entries where K < N . The notation K := ‖x‖0
denotes the sparsity level of x. Since the null space of A
is non-trivial, there are infinitely many candidate solutions

to the equation b = Ax; however, CS recovery algorithms

exploit the fact that, under certain conditions on A, only one

candidate solution is suitably sparse.

CS recovery algorithms can be classified into two main

types: greedy algorithms such as Orthogonal Matching

Pursuit (OMP) [19] and Compressive Sampling Matching

Pursuit (CoSaMP) [20], and convex optimization algorithms

such as Basis Pursuit (BP) [21]. In this paper, we focus on

using greedy algorithms for recovery of block-sparse signals.

B. The BOMP Recovery Algorithm

Several extensions of the standard CS recovery algorithms

have been proposed to account for additional structure in the

sparse signal to be recovered [18], [22]. Among these, the

BOMP (Block OMP) algorithm [16]–[18] is designed to ex-

ploit block sparsity. We will consider BOMP for the topology

identification problem due to its ease of implementation and

its flexibility in recovering block-sparse signals of different

sparsity levels.

To find a block-sparse solution to the equation b =
Ax, the formal steps of the BOMP algorithm are listed in

Algorithm 1. The basic intuition behind BOMP is as follows.

Due to the block sparsity of x, the vector of observations

b can be written as a succinct linear combination of the

columns of A, with the selections of columns occurring in

clusters due to the block structure of the sparsity pattern

in x. BOMP attempts to identify the participating indices by

correlating the measurements b against the columns of A and

comparing the correlation statistics among different blocks.

Once a significant block has been identified, its influence

is removed from the measurements b via an orthogonal

projection, and the correlation statistics are recomputed for

the remaining blocks. This process repeats until convergence.

Eldar et al. [18] proposed a sufficient condition for BOMP

to recover any sufficiently concise block-sparse signal x from

compressive measurements. This condition depends on the

properties of A, as described in the next section.

C. Block-Sparsity and Block-Coherence

Consider x ∈ R
N as a concatenation of P vector-blocks

xi ∈ R
n where N = Pn, i.e.,

x = [xT
1 · · · xTi · · · xTP ]

T . (10)

Also consider a matrix A ∈ R
M×N as a concatenation of P

matrix-blocks Ai ∈ R
M×n as

A = [A1 · · ·Ai · · ·AP ]. (11)

A signal x is called block K-sparse if it has K < P nonzero

blocks. We also assume that there is a unique block K-sparse

signal x that satisfies b = Ax.
1) Block-Coherence: Assume for the moment that matrix

A has columns of unit norm. The block-coherence [16]–[18]

of A is defined as

µblock(A) := max
i,j 6=i

1

n
‖(AT

i Aj)‖2 (12)

where ‖A‖2 is the spectral norm of matrix A. In the case

where n = 1, this matches the conventional definition of

coherence [19], [23],

µ(A) := max
i,j 6=i

|aT
i aj |, (13)

where {ai}
P
i=1 are the columns of matrix A. While µblock

characterizes the intra-block relationships within matrix A,

the inter-block properties can be quantified by the sub-

coherence [16]–[18] of A as

µsub-block(A) := max
k

max
i,j 6=i

|aTki
akj

| (14)

where aki
, akj

are columns of the matrix-block Ak.
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Algorithm 1 The BOMP algorithm for recovery of block-sparse signals

Require: matrix A, measurements b, block size n, stopping criteria

Ensure: r0 = b, x0 = 0, Λ0 = ∅, l = 0
repeat

1. match: ei = AT
i rl, i = 1, 2, . . . , P

2. identify support: λ = argmaxi ‖ei‖2
3. update the support: Λl+1 = Λl ∪ λ
4. update signal estimate: xl+1 = argminz:supp(z)⊆Λl+1 ‖b −Az‖2,

where supp(z) indicates the blocks on which z may be non-zero

5. update residual estimate: rl+1 = b −Axl+1

6. increase index: l = l + 1
until stopping criteria true

output: x̂ = xl

2) Recovery Condition: In [18, Theorem 3], a sufficient

condition is provided that guarantees recovery of any block

K-sparse signal x from the measurements b = Ax via

BOMP. This condition is stated in terms of the block-

coherence metrics, µblock and µsub-block of the matrix A.

Theorem 1: [18] If x is block-sparse with K non-zero

blocks of length n, then BOMP will recover x from the

measurements b = Ax if

Kn < µT , (15)

where

µT =
1

2

(
µ−1

block + n− (n− 1)
µsub-block

µblock

)
. (16)

When n = 1, Eq. (15) is equivalent to the exact recovery

condition using OMP [19], namely, K < 1
2 (µ

−1 +1). What

Theorem 1 tells us is that, for a given matrix A with certain

block-coherence metrics (µblock and µsub-block), BOMP is

guaranteed exact recovery of block-sparse signals of a limited

sparsity level. The smaller the block-coherence metrics, the

higher the permitted value of K, and the broader the class

of signals that can be recovered via BOMP.

V. NETWORK COHERENCE

In previous sections, we explained how we can cast

the topology identification of a large-scale interconnected

network as a CS recovery problem where the signal to be

identified has a block-sparse structure and the measurement

matrix is a block-concatenation of Toeplitz matrices. Since

the block-coherence metrics (12) and (14) give a sufficient

condition for recovery via BOMP, it is of interest to examine

the particular effect of the network interconnection structure

on the block-coherence metrics of A. To highlight the impor-

tant role that these metrics play in the context of our topology

identification problem, where the coupling between node

outputs is based on a discrete-time convolution process, we

will collectively refer to µblock and µsub-block as the network

coherence metrics. In order to give some insight into how the

network coherence relates to the network topology, we focus

in this section on networks with very simple interconnection

structures.

1 2
L1,2

Fig. 3. A simple network for our study of network coherence.

To begin, let us consider the simple network shown in

Fig. 3 and assume that the input di(t) is Gaussian white

noise with unit variance. We would like to estimate the block-

coherence and sub-coherence of the matrix A associated with

this network. For this network configuration, we can write

the output of each node as

a1 = d1 and a2 = A1x12 + d2. (17)

It is easy to see that a2 can be rewritten as

a2 = G12d1 + d2 (18)

where G12 = T (x12)
M
M . Using the down-shift operator SM ∈

R
M×M defined as

SM =




0 · · · · · · · · · 0

1 0
. . .

. . .
...

0 1
. . .

. . .
...

...
. . .

. . . 0
...

0 · · · 0 1 0




,

G12 ∈ R
M×M can be rewritten as

G12 = x12(1)SM + x12(2)S
2
M + · · ·+ x12(n)S

n
M . (19)

Similarly, the matrix A ∈ R
M×2n can be written as

A = [A1 A2] =[
SMa1 S2

Ma1 · · ·Sn
Ma1 SMa2 S2

Ma2 · · ·Sn
Ma2

]
. (20)

Note that E
[
‖a1‖

2
2

]
= M and E

[
‖a2‖

2
2

]
= M(1+‖x12‖

2
2).

Using concentration of measure inequalities, it can be shown

that as M → ∞, ‖a1‖
2
2 and ‖a2‖

2
2 are highly concentrated

around their expected values [24]. Normalizing by these

expected column norms, let Â1 and Â2 be A1 and A2 with

approximately normalized columns, and let Â = [Â1 Â2].
Therefore, a reasonable estimate of the block-coherence
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µblock(A) is simply given by the spectral norm of ÂT
1 Â2.

We define such an estimate:

µ̃block(A) := µblock(Â) =
1

n
‖ÂT

1 Â2‖2. (21)

In order to derive a lower bound on E [µ̃block(A)], we use

the result of Lemma 1 which states lower and upper bounds

on ‖E
[
ÂT

1 Â2

]
‖2.

Lemma 1: Assume M > n. Considering the configuration

of the network shown in Fig. 3, we have

‖x12‖2√
1 + ‖x12‖22

≤ ‖E
[
ÂT

1 Â2

]
‖2 ≤

‖x12‖1√
1 + ‖x12‖22

. (22)

Proof: See Appendix A.

We are especially interested in deriving lower bounds on the

expected value of the network coherence metrics. However,

deriving upper bounds would also be of interest. Using

Lemma 1, we can state the following theorem.

Theorem 2: For the network of Fig. 3, E [µ̃block(A)] is

bounded from below as

E [µ̃block(A)] ≥
‖x12‖2

n
√

1 + ‖x12‖22
. (23)

Proof: From Jensen’s inequality applied for convex

functions and Eq. (21), we have the following lower bound

for E [µ̃block(A)] as

E [µ̃block(A)] =
1

n
E

[
‖ÂT

1 Â2‖2
]
≥

1

n
‖E

[
ÂT

1 Â2

]
‖2 (24)

where we use the fact that the spectral norm of a matrix ‖·‖2
is a convex function. Combining Eq. (24) and (22), we have

E [µ̃block(A)] ≥
‖x12‖2

n
√

1 + ‖x12‖22
. (25)

A similar approach can be carried out for the analysis of

other types of network elements. For example, we can show

that the network coherence of Fig. 4 is bounded by

E [µ̃block(A)] ≥
1

n
max

{
‖x21‖2√
1 + ‖x21‖22

,
‖x31‖2√
1 + ‖x31‖22

}
.

(26)

We can follow the same steps and derive a bound for the

sub-coherence of the simple network of Fig. 3. We simply

state the result here: letting µ̃sub-block(A) := µsub-block(Â), we

have

E [µ̃sub-block(A)] ≥ ‖[Rx12(1) · · ·Rx12(n− 1)]T ‖∞ (27)

where

Rx12 (τ) :=

n−τ∑

i=1

x12(i)x12(i+ τ)

denotes the un-normalized sample autocorrelation function

of x12 ∈ R
n. While finding network coherence bounds for

more complicated interconnected networks (e.g., networks

with loops and nodes of high out-degree) is a harder task,

we observe the following important characteristics:

2

1

3L2,1 L3,1

Fig. 4. Three nodes used in our recovery simulations. In the connected case,
we suppose node 1 has a subsequent connection to all other 29 nodes in the
network. In the disconnected case, node 1has no subsequent connections.

1) In the limit, the network coherence metrics are inde-

pendent of the number of measurements.

2) The network coherence metrics are bounded below by

a non-zero value that depends on the link impulse

responses.

The latter phenomenon may suggest an ultimate limitation

of the coherence metrics in the analysis of interconnected

dynamical networks. Nevertheless, our simulations in the

network topology problem do indicate that as the number

of measurements M increases, recovery remains possible

for a range of interesting problem sizes. The asymptotic

behavior of the network coherence metrics is contrary to

the conventional behavior in CS, in which increasing the

number of rows of a dense matrix (number of measurements

M ) populated with independent and identically-distributed

(i.i.d.) Gaussian random variables will make the coherence

approach a zero value, guaranteeing the recovery of signals

with more and more non-zero coefficients.

VI. NUMERICAL SIMULATIONS

In this section, we test the proposed method for recovering

the topology of a dynamical network based on compressive

observations with random but known inputs, and we observe

how the probability of successful recovery changes for

different nodes in the network based on the local sparsity. In

all of these simulations, we consider a network of 32 nodes

with second order (n = 2) interconnecting links.

To begin, in order to highlight the influence of network

coherence in the recovery success rate of BOMP, consider

the three nodes illustrated in Fig. 4. We suppose these nodes

are part of a larger 32-node network, and we consider two

possible scenarios: in one case, node 1 has a subsequent

connection to all other 29 nodes in the network (we call this

the “connected” case), while in the other, “disconnected”

case, node 1 has has no subsequent connections to other

nodes in the network. In both scenarios, the in-degree of node

1 is 2, while its out-degree is 29 in the connected case and 0

in the disconnected case. In either scenario, we are interested

in recovering the incoming links that contribute to node 1. As

a function of the number of measurements M , Fig. 5 plots

the coherence measures for the two cases where curves are

averaged over 1000 realizations of the network. As would

be expected from our analysis on the network coherence in

Section V, the coherence metrics are bounded from below by

a non-zero value that depends on the link impulse responses,

namely expressed in Eq. (26) for the disconnected network.

The connected network, however, has higher (worse) block-

and sub-coherence measures. Although coherence is only a
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Fig. 5. Coherence metrics for the connected (dashed lines) and discon-
nected (solid lines) networks. The curves are averaged over 1000 realizations
of the networks. Note that the coherence metrics approach a non-zero
asymptote as the number of measurements M increases.
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Fig. 6. Recovery rate comparison of node 1 (L2,1 and L3,1) for connected
and disconnected networks. For each measurement, 1000 realizations of the
network are carried out and the recovery rate is calculated.

sufficient condition for recovery, simulation results do show

weaker recovery performance for the connected network, as

shown in Fig. 6. For each value of M , 1000 realizations

of the network are carried out and the recovery rate is

calculated.

For the sake of comparison, we compute the same coher-

ence metrics for matrices populated with random Gaussian

entries in either an unstructured format or in a Toeplitz block

format. The results in Fig. 7 show that for A ∈ R
M×N ,

the coherence measures approach zero as M increases. In

contrast, as we have seen from Fig. 5, in an interconnected

network of dynamical systems, the coherence measures have

an asymptotic behavior. This prevents the predicted recovery

performance from growing as M increases (see the plot of

µT in Fig. 5).

Finally, to examine the performance of BOMP in re-

0 50 100 150 200 250 300
0

0.5

1

µ

0 50 100 150 200 250 300
0

0.5

1

µ
b
lo

c
k

0 50 100 150 200 250 300
0

0.5

1

µ
s
u
b
−

b
lo

c
k

0 50 100 150 200 250 300
0

5

Measurements (M)

µ
T

Fig. 7. Coherence metrics for matrices with i.i.d. Gaussian entries (solid
lines) and matrices which are block-concatenations of Toeplitz matrices with
Gaussian entries. The curves are averaged over 1000 realizations of these
types of matrices. Note that the coherence metrics approach zero as the
number of measurements M increases.

covering the topology of a network containing loops, we

consider the more complicated network shown in Fig. 8. As

a function of the number of measurements M , the coherence

measures of this network are plotted in Fig. 9 where curves

are averaged over 1000 realizations of the network.

These measures again approach a non-zero asymptote as

the number of measurements increases. Within the network

graph, BOMP has different recovery performance for dif-

ferent nodes mainly based on their block-sparsity level (in-

degree of the coming links to a node). Fig. 10 shows the

recovery performance of the BOMP algorithm for nodes 3,

26 and 28. These links are distinguished from each other by

their in-degrees. The single in-connection to node 3 is more

likely to be recovered than the 5 in-connections to node 26;

we cannot recover these nodes with higher in-degrees until

M is large enough that the network coherence metrics reach

a suitably small level, and if such a level were never to be

reached, we might be limited in the degree of nodes that we

could recover by this technique.

VII. CONCLUSIONS

In this paper, we have considered the problem of identify-

ing the exact topology of an interconnected dynamical net-

work based on compressive measurements of the individual

nodes. We have shown that exact topology identification is

indeed possible form compressive node measurements under

the assumption that the network contains nodes of low maxi-

mum degree. To do this, we have cast the topology identifica-

tion in the context of CS and employed the BOMP algorithm

to recover the block-sparse solutions that encode the network
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Fig. 8. A complicated network of interconnected dynamical systems including trees, loops and self-loops.

topology. We have characterized the recovery conditions of

this algorithm in terms of the network coherence metrics

and observed that, as the number of measurements increases,

these metrics approach a non-zero value that depends on

link impulse responses. Similar approaches can be used to

extend our analysis to more complicated networks such as

those containing loops. As our simulations have indicated,

however, the basic phenomena (including the asymptotic

behavior to a non-zero coherence) are likely to generalize.

APPENDIX

A. Proof of Lemma 1

We can show that for M > n

E

[
ÂT

1 Â2

]
=

1√
1 + ‖x12‖22

· T (x12)
n
n. (28)

Using a conservative lower bound for ‖T (x12)
n
n‖2 ≥ ‖x12‖2,

from Eq. (28) we get

‖E
[
ÂT

1 Â2

]
‖2 ≥

‖x12‖2√
1 + ‖x12‖22

. (29)

We can derive an upper bound for ‖E
[
ÂT

1 Â2

]
‖2 using

the Cauchy Interlacing Theorem [25]. Let X12 = E

[
ÂT

1 Â2

]
.

We have

‖X12‖
2
2 = max

i
λi(X

T
12X12) ≤ max

i
λi(X̃

T
12X̃12), (30)

where X̃12 is a (2n− 1)× (2n− 1) circulant matrix with

x̃12 =
1√

1 + ‖x12‖22
[0, . . . , 0, x12(n−1), . . . , x12(2), x12(1)]

as its first row [24]. Since λi(X̃
T
12X̃12) = |λi(X̃12)|

2,

an upper bound for ‖X12‖
2
2 is provided by the maximum

eigenvalue of X̃12. Because X̃12 is circulant, λi(X̃12) simply

equals the un-normalized length-(2n − 1) Discrete Fourier

Transform (DFT) of the first row of X̃12. As a result,

λi(X̃12) =
1√

1 + ‖x12‖22

n−1∑

k=1

x12(k)e
−j2π(i−1)k/(2n−1).

(31)

From Eq. (31) and by applying the triangle inequality, we

get

|λi(X̃12)| ≤
1√

1 + ‖x12‖22

n−1∑

k=1

|x12(k)|. (32)
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Fig. 9. Coherence metrics for the network of Fig. 8. The curves are
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Fig. 10. Recovery rate comparison. For each value of M , 1000 realizations
of the network are carried out and the recovery rate is calculated. Note that
node 3 has in-degree one, node 28 has in-degree 3, and node 26 has in-
degree 5, according to the network shown in Fig. 8.

Therefore, combining Eq. (30) and Eq. (32), we have

‖X12‖2 ≤
1√

1 + ‖x12‖22

n−1∑

k=1

|x12(k)| ≤
‖x12‖1√
1 + ‖x12‖22

.
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