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Abstract— This paper designs the central finite-dimensional
H∞ filter for linear stochastic systems with integral-
quadratically bounded deterministic disturbances, that is sub-
optimal for a given threshold γ with respect to a modified Bolza-
Meyer quadratic criterion including the attenuation control
term with the opposite sign. The original H∞ filtering problem
for a linear stochastic system is reduced to the corresponding
mean-square H2 filtering problem, using the technique proposed
in [1]. In the example, the designed filter is applied to estimation
of the pitch and yaw angles of a two degrees of freedom (2DOF)
helicopter.

I. INTRODUCTION

Over the past two decades, considerable attention has been

paid to the H∞ estimation problem for deterministic and

stochastic systems. The seminal papers on H∞ control ([1])

and estimation ([2], [3], [4]) established a background for

consistent treatment of controller/filtering problems in the

H∞ framework. The H∞ filter design implies that the resulting

closed-loop filtering system is robustly stable and achieves a

prescribed level of attenuation from the disturbance input to

the output estimation error in L2/l2-norm. A large number of

results on this subject have been reported for systems in the

general situation (see, for example, [5]–[23] and references

therein). Sufficient conditions for existence of an H∞ filter,

where the filter gain matrices satisfy Riccati equations, were

obtained for linear deterministic systems in [4] and linear

systems with state delay in [24] or with measurement delay

in [25]. However, the criteria of existence and suboptimality

of solution for the central H∞ filtering problems based on

the reduction of the original H∞ problem to the induced H2

one, similar to those obtained in [1], [4] for linear systems,

remain yet undeveloped for linear stochastic systems with

integral-quadratically bounded deterministic disturbances.

This paper presents the central (see [1] for definition)

finite-dimensional mean-square H∞ filter for linear stochastic

systems, that is suboptimal for a given threshold γ with

respect to a modified Bolza-Meyer quadratic criterion includ-

ing the attenuation control term with the opposite sign. In

contrast to results previously obtained for linear systems [4],

[24], [25], this paper reduces the original H∞ filtering prob-

lem to the corresponding mean-square H2 filtering problem,

using the technique proposed in [1].
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Designing the central suboptimal mean-square H∞ filter

for linear stochastic systems presents a significant advantage

in filtering theory and practice, since (1) it enables one

to address filtering problems for linear stochastic time-

varying systems, where the linear matrix inequality tech-

nique is hardly applicable and the Hamilton-Jacobi-Bellman

equation-based methods fail to provide a closed-form solu-

tion, (2) the obtained mean-square H∞ filter is suboptimal,

that is, optimal for any fixed γ with respect to the H∞ noise

attenuation criterion, and (3) the obtained mean-square H ∞

filter is finite-dimensional.

It should be commented that the proposed design of

the central suboptimal mean-square H∞ filters for linear

stochastic systems with integral-quadratically bounded dis-

turbances naturally carries over from the design of the opti-

mal mean-square H2 filters for linear stochastic systems with

unbounded disturbances (white noises). The entire design

approach creates a complete filtering algorithm for handling

the linear stochastic time-varying systems with unbounded or

integral-quadratically bounded disturbances optimally for all

thresholds γ uniformly or for any fixed γ separately. A similar

algorithm for linear deterministic systems was developed in

[4].

The designed filter is applied to estimation of the pitch and

yaw angles of a two degrees of freedom (2DOF) helicopter.

The simulation results show a reliable performance of the

filter, in particular, the obtained attenuation level is five times

less than a given threshold.

The paper is organized as follows. Section 2 presents the

mean-square H∞ filter problem statement for linear stochastic

time-varying systems. The central suboptimal mean-square

H∞ filter is designed in Section 3. In Section 4, the designed

filter is applied to estimation of the pitch and yaw angles of

a two degrees of freedom (2DOF) helicopter. Conclusions

are given in Section 5.

II. MEAN-SQUARE H∞ FILTERING PROBLEM STATEMENT

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be independent

Wiener processes. Consider the following linear stochastic

time-varying system S1:

dx(t) = (A(t)x(t)+B(t)u(t)+G(t)ω(t))dt+ b(t)dW1(t),

x(t0) = x0, (1)

dy1(t) = C1(t)x(t)dt + h(t)dW2(t), (2)

y2(t) = C2(t)x(t)+H(t)ω(t), (3)

z(t) = L(t)x(t), (4)
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where x(t) ∈ R
n is the unmeasured state, u(t) ∈ R

l is

is a known input signal,y1(t) ∈ R
m1 and y2(t) ∈ R

m2 are

the measured observations, z(t) ∈ R
q is the output to be

estimated, ω(t) ∈ L
s
2 [0,∞) is the deterministic disturbance

input, A(t), B(t),G(t), b(t), C1(t), h(t), C2(t), H(t), and L(t)
are known deterministic continuous time-varying functions

of appropriate dimension. The initial condition x 0 ∈ Rn is

a Gaussian random variable such that x0, W1(t) ∈ R
p1 , and

W2(t) ∈R
p2 are independent. It is assumed that h(t)hT (t) is

a positive definite matrix.

For the system given by (1)–(4), the following assumptions

are made over the time interval [t0, t1]:

• (A(t),b(t)) is stabilizable and (C1(t),A(t)) is detectable;

(C1)
• (A(t),G(t)) is stabilizable and (C2(t),A(t)) is de-

tectable; (C2)
• (A(t),B(t)) is stabilizable and (L(t),A(t)) is detectable,

and (C3)
• H(t)GT (t) = 0 and H(t)HT (t) is a positive definite

matrix. (C4)

As usual, the first two assumptions ensure that the esti-

mation error, provided by the designed filter, converge to

zero [26]. The noise orthogonality condition H(t)G T (t) = 0

is technical and represents the independence between the

state and measurement deterministic disturbances. Extensive

comments on the assumption (C4) can be found in [1].

The filtering problem to be addressed is as follows:

develop a central suboptimal mean-square H∞ filter for the

linear stochastic system (S1) as a linear filter based on the

observations {y1(s), t0 ≤ s ≤ t} and {y2(s), t0 ≤ s ≤ t} such

that the following three requirements are satisfied.

1) The resulting dynamics of the estimation error

E(x(t))− m(t), where x(t) is the state of (S1) and

m(t) is the mean-square H∞ estimate produced by the

designed filter, is asymptotically stable in the absence

of disturbances, ω(t) ≡ 0. Here, E(x(t)) denotes the

expectation of stochastic process x(t).
2) The variance of the mean-square H∞ estimate m(t) of

the system state x(t), based on the observation process

Y (t) = {y1(s),0 ≤ s ≤ t}, is equal to the minimum

estimation error variance ([27])

E[(x(t)−E(x(t) | FY
t ))(x(t)−E(x(t) |FY

t ))T |FY
t ] (5)

at every time moment t. Here, E[ξ (t) | FY
t ] means the

conditional expectation of a stochastic matrix process

ξ (t) = (x(t)−E(x(t) | FY
t ))(x(t)−E(x(t) | FY

t ))T with

respect to the σ - algebra FY
t generated by the obser-

vation process Y (t) in the interval [t0, t].
3) Given a noise attenuation level γ , the H∞ noise at-

tenuation condition (6) is ensured. More specifically,

for any nonzero disturbance input ω(t)∈L s
2 [0,∞), the

inequality

‖z(t)−L(t)m(t)‖2
2 <

γ2
{

‖ω(t)‖2
2 +E(xT (t0))RE(x(t0))

}

(6)

holds, where ‖ f (t)‖2
2 :=

∫ t1
t0

f T (t) f (t)dt, t1 is the se-

lected filter horizon, R is a symmetric positive definite

matrix, and γ is a given real positive scalar.

III. CENTRAL SUBOPTIMAL MEAN-SQUARE H∞ FILTER

DESIGN

The proposed design of the suboptimal mean-square H ∞

filter for linear stochastic systems is based on the general

result (see Theorem 3 in [1]) reducing the H∞ controller

problem to the corresponding optimal H2 controller problem.

In this paper, only the filtering part of this result, valid for the

entire controller problem, is used. Then, the optimal mean-

square Kalman-Bucy filter for linear stochastic systems [28]

and the H∞ filter for linear systems (Theorem 4 in [4]) are

employed to obtain the desired result, which is given by the

following theorem.

Theorem 1. The central suboptimal mean-square H∞

filter for the linear stochastic system (1)–(4), ensuring the

minimum of the mean-square criterion (5) and the H∞ noise

attenuation condition (6), is given by the equation for the

mean-square H∞ estimate m(t)

dm(t) = (A(t)m(t)+B(t)u(t))dt+ (7)

P(t)CT
1 (t)(h(t)h

T (t))−1[dy1(t)−C1(t)m(t)dt]+

S(t)CT
2 (t)(H(t)HT (t))−1[y2(t)−C2(t)m(t)]dt,

with initial condition m(t0) = E(x(t0) | FY
t0
), where the matrix

function P(t) (minimum estimation error variance) is the

solution of the differential Riccati equation

Ṗ(t) = A(t)P(t)+P(t)AT (t)+ (8)

b(t)bT (t)−P(t)CT
1 (t)(h(t)h

T (t))−1C1(t)P(t),

with initial condition P(t0) = E[(x(t0) − m(t0))(x(t0) −
m(t0))

T | FY
t0
], and the symmetric matrix function S(t) is the

solution of the differential Riccati equation

Ṡ(t) = A(t)S(t)+ S(t)AT(t)+G(t)GT (t)− (9)

S(t)[CT
2 (t)(H(t)HT (t))−1C2(t)− γ−2LT (t)L(t)]S(t),

with initial condition S(t0) = R−1.

Proof. First, let us design the estimate x̄(t) satisfying the

minimum variance condition (5) of Section 2. As known

[27], this mean-square estimate is given by the conditional

expectation x̄(t) = E(x(t) | FY
t ) of the system state x(t) with

respect to the σ - algebra FY
t , generated by the observations

(2) in the interval [t0, t], and is produced by the Kalman-

Bucy filter [28] applied to the linear stochastic system (1)

over the linear observations (2) in the presence of Gaussian

disturbances (Wiener processes) W1(t) and W2(t). The cor-

responding filtering equations for the estimate x̄(t) and the

estimation error variance P̄(t) take the form

dx̄(t) = (A(t)x̄(t)+B(t)u(t)+G(t)ω(t))dt+ (10)

P̄(t)CT
1 (t)(h(t)h

T (t))−1[dy1(t)−C1(t)x̄(t)dt],

with the initial condition x̄(t0) = E(x(t0) | FY
t0
), and

˙̄P(t) = A(t)P̄(t)+ P̄(t)AT (t)+ b(t)bT (t)− (11)
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P̄(t)CT
1 (t)(h(t)h

T (t))−1C1(t)P̄(t),

with the initial condition

P̄(t0) = E((x(t0)− x̄(t0))(x(t0)− x̄(t0))
T | FY

t0
).

Note that the latter equation coincides with (8). Now, apply-

ing the central suboptimal H∞ filter for linear systems [4] to

the estimate x̄(t) governed by equations (10), (11) yields the

central suboptimal mean-square H∞ estimate equation (7),

where the matrix function P̄(t) satisfies equation (8), and

the matrix S(t) in (7) satisfies equation (9).

Note that filter (7)–(9) yields, in view of Theorems 3 and

4 in [1], the asymptotic stability of the mean value E(x̄(t))
of the estimate (10) in the absence of disturbances and the

prescribed attenuation level γ for this variable: ‖E(x̄(t))‖2
2 <

γ2‖ω(t)‖2
2 + E(xT (t0))RE(x(t0)). Since E(x̄(t)) = E(x(t))

and the variances of the estimated errors produced by the

estimates x̄(t) and m(t) are equal, the conditions 1–3 of

Section 2 hold. The theorem is proved. �

Remark 1. The convergence of the designed mean-square

H∞ state estimate m(t) to the real state value x(t) is assured

by the conditions (C1) and (C2) in view of the results of

Theorem 7.4 and Section 7.7 in [26]. Note that boundedness

of the noise-output H∞ norm for the system (S1), controlled

by filter (7)–(9), i.e., admissibility of the mean-square H∞ fil-

ter (7)–(9), is determined by the conditions I–III of Theorem

3 in [1].

Remark 2. According to the comments in Subsection

V.G in [1], the obtained central mean-square H∞ filter (7)–

(9) presents a natural choice for H∞ filter design among

all admissible H∞ filters satisfying the inequality (6) for a

given threshold γ , since it does not involve any additional

actuator loop (i.e., any additional external state variable) in

constructing the filter gain matrix. Moreover, the obtained

central mean-square H∞ filter has the suboptimality property,

i.e., it minimizes the criterion

J = ‖z(t)−L(t)m(t)‖2
2 − γ2

(

‖ω(t)‖2
2 +E(xT

0 )RE(x0)
)

Remark 3. Following the discussion in Subsection V.G in

[1], note that the complementarity condition always holds for

the obtained filter (7)–(9), since the positive definiteness of

the initial condition matrix R implies the positive definiteness

of the filter gain matrix S(t) as the solution of (9).

IV. EXAMPLE

This section presents the design of the central suboptimal

mean-square H∞ filter to estimate the pitch and yaw angles

for a 2DOF helicopter, ensuring the minimum of the mean-

square criterion (5) and the H∞ noise attenuation condition

(6) holds for γ = 1.1.

Let the 2DOF helicopter system with the state space

representation

ẋ(t) = Ax(t)+B(t)u(t)+Gω(t)+ bψ1(t),x(t0) = x0 (12)

y(t) =C1x(t)+ hψ2(t) (13)

y2(t) =C2x(t)+Hω(t) (14)

z(t) = Lx(t), (15)

where the state vector is: x = [Θ,Ψ, Θ̇,Ψ̇]T , in which Θ and

Ψ are pitch and yaw angles respectively, Θ̇ and Ψ̇ are pitch

and yaw rates respectively. The matrices are:

A =









0 0 1 0

0 0 0 1

0 0 −9.2751 0

0 0 0 −3.4955









B =









0 0

0 0

2.3667 0.0790

0.2410 0.7913









b =









0 0

0 0

0.9024 0.0876

0.0919 0.8772









G =









0 0 0 0

0 0 0 0

0.9024 0.0876 0 0

0.0919 0.8772 0 0









C1 =C2 = L =

[

1 0 0 0

0 1 0 0

]

h =

[

1 0

0 1

]

H =

[

0 0 1 0

0 0 0 1

]

.

Here, u(t) is the motor voltage input, ω(t) is an L2
2

disturbance input, ψ1(t) and ψ2(t) are Gaussian white noises,

which are the weak mean square derivatives of standard

Wiener processes W1(t) and W2(t) (see [27]), respectively.

The Wiener processes are considered independent of each

other and of a Gaussian random variable x0 serving as the

initial condition in (12). Equations (12) and (13) present the

conventional form for equations (1) and (2), which is actually

used in practice [29]. It can be easily verified that the noise

orthogonality condition holds for the system (12)–(15).

The filtering problem to be addressed is the same as

described at Section 2. The filtering horizon is set from t0 = 0

to t1 = 80 s.

The central suboptimal mean-square H∞ filter takes the

following form for the system (12)–(15)

ṁ(t) =









0 0 1 0

0 0 0 1

0 0 −9.2751 0

0 0 0 −3.4955









m(t) (16)

+P(t)









1 0

0 1

0 0

0 0









(

y(t)−

[

1 0 0 0

0 1 0 0

]

m(t)

)

+S(t)









1 0

0 1

0 0

0 0









(

y2(t)−

[

1 0 0 0

0 1 0 0

]

m(t)

)

,
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with m(0) = m0 = E(x0 | FY
0 ), where S(t) and P(t) are the

solutions to the differential Riccati equations

Ṡ(t) =









0 0 1 0

0 0 0 1

0 0 −9.2751 0

0 0 0 −3.4955









S(t) (17)

+S(t)









0 0 0 0

0 0 0 0

1 0 −9.2751 0

0 1 0 −3.4955









−S(t)









0.1736 0 0 0

0 0.1736 0 0

0 0 0 0

0 0 0 0









S(t)

+









0 0 1 0

0 0 0 1

0 0 0.8220 0.1597

0 0 0.1597 0.7779









, S(0) = S0 = R−1,

and

Ṗ(t) =









0 0 1 0

0 0 0 1

0 0 −9.2751 0

0 0 0 −3.4955









P(t) (18)

+P(t)









0 0 0 0

0 0 0 0

1 0 −9.2751 0

0 1 0 −3.4955









−P(t)









1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0









P(t)+









0 0 1 0

0 0 0 1

0 0 0.8220 0.1597

0 0 0.1597 0.7779









,

P(0) = E[(x0 −m0)(x0 −m0)
T | FY

0 ] = P0,

respectively.

Numerical simulations results are obtained

solving the system (12)–(15), and the filtering

equations (16)-(18), with the following initial values:

x0 = [−0.7069,0,0,0]T , P0 = diag(10,10,15,5),
R = [0.8,0.5,0.2,0.1;0.5,0.8,0.7,0.2;0.2,0.7,0.9,0.4;

0.1,0.2,0.4,0.9], and m0 = [0.1745,−0.5236,−0.15,−0.4]T.

The motor voltage u(t) = [12.495,−3.835]T , the

L2 disturbance ω(t) = [ω1(t),ω2(t),ω3(t),ω4(t)]
T is

realized as ω1(t) = 1/(1 + t), ω2(t) = 0.1(1 − e−0.3t),
ω3(t) = 0.1745/(1+ t), and ω4(t) = 0.0873(1− e−0.3t). The

attenuation level value is set to γ = 1.1. The disturbances

ψ1(t) and ψ2(t) in (12),(13) are realized using the built-in

MatLab white noise function.

As a result of the numerical simulation, the following

graphs are presented: graph of the noise-output H∞ norm

(Figure 1); graphs of the pitch angle and the corresponding

estimation error (Figure 2); graph of the yaw angle and the

corresponding estimation error (Figure 3).

Note that the maximum value of the noise-output H∞ norm

T = ‖z(t)−L(t)m(t)‖/(‖ω(t)‖2
2+E(x0)RE(x0))

1/2 is 0.208

in the considered simulation interval, which is five times less

than the given H∞ attenuation level, γ = 1.1. In addition, the

estimation errors converge to zero.

V. CONCLUSIONS

This paper designs the central finite-dimensional H∞ fil-

ter for linear stochastic systems with integral-quadratically

bounded deterministic disturbances, that is suboptimal for

a given threshold γ with respect to a modified Bolza-

Meyer quadratic criterion including the attenuation control

term with opposite sign. The designed filter is applied to

estimation of the pitch and yaw angles of a two degrees of

freedom (2DOF) helicopter. The simulation results show a

reliable performance of the filter, in particular, the obtained

attenuation level is five times less than a given threshold.

This significant improvement is obtained due to the more

reasonable selection of the filter gain matrix in the designed

filter. Although this conclusion follows from the developed

theory, the numerical simulation serves as a convincing

illustration. The presented approach would be applied in the

future to obtain the central suboptimal mean-square H∞ filters

for nonlinear polynomial stochastic systems.
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Fig. 2. Above. Pitch angle. Below. Estimation error.
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Fig. 3. Above. Yaw angle. Below. Estimation error.
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