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Abstract—Recent results indicate how to optimally schedule
transmissions of a measurement to a remote estimator when
there are limited uses of the communication channel available.
The resulting optimal encoder and estimation policies solve
an important problem in networked control systems when
bandwidth is limited. Previous results were obtained only for
scalar processes, and the previous work was unable to address
questions regarding informational relevance. We extend the state-
of-the art by treating the case where the source process and
measurements are multi-dimensional. To this end, we develop
a non-trivial re-working of the underlying proofs. Specifically,
we develop optimal encoder policies for Gaussian and Gauss-
Markov measurement processes by utilizing a measure of the
informational value of the source data. Explicit expressions for
optimal hyper-ellipsoidal regions are derived and utilized in these
encoder policies. Interestingly, it is shown in this paper that
analytical expressions for the hyper-ellipsoids exist only when
the state’s dimension is even; in odd dimensions (as in the scalar
case) the solution requires a numerical look up (e.g., use of
the erf function). We also have extended the previous analyses
by introducing a weighting matrix in the quadratic cumulative
cost function, whose purpose is to allow the system designer to
designate which states are more important or relevant to total
system performance.

I. INTRODUCTION1

The current technological advances in circuit miniaturiza-
tion are driving down the cost of producing many sensors, es-
pecially cameras and other EO imaging sensors; this makes it
feasible to deploy numerous high-resolution sensors to provide
feedback for some control system. One of the many emerging
challenges faced by modern feedback system designers is
that such sensors are often not collocated with the plant
to be controlled. This leads to difficult questions regarding
bandwidth utilization, time-delays, and other effects that have
been somewhat addressed in the networked control systems
literature (e.g., see [1], [2], [3]).
A central issue in such information-rich problems is that of

deciding which data is valuable enough to transmit (and thus
consume relatively scarce bandwidth resources) and which
data can be safely discarded. The seminal work in [4] ad-
dressed a version of this problem, where they assumed that
only one sensor among a set of multiple sensors could be used
at any given time. They proved a separation property between
the optimal plant control policy and the measurement control

1This research is supported in part by a grant from the National Research
Council.

policy. The measurement control problem, which is the sensor
scheduling problem, was cast as a nonlinear deterministic
control problem and shown to be solvable by a tree-search in
general. It was proven that if the decision to choose a particular
sensor rests with the estimator, an open-loop selection strategy
is optimal for a cost based on the estimate error covariance [5].
Forward dynamic programming (DP) and a gradient method
were proposed for this purpose.
In this paper, we address the issue of informational value

in a networked estimation and control context. In these fields
there has been a traditional bias towards using the entropic
formulation [6], [7] as a standard measure of information,
though there has recently been increasing interest in alternative
informational value metrics for cooperative and networked
estimation [8] and control. In [9] the authors examine the
optimal communication policy of an observer who is observing
a random process and who must decide whether to send
observations across a communication channel to an estimator.
They discover jointly optimal policies for the observer and the
estimator so as to minimize the mean-square estimation error
of the observer in the case where the observer is limited in the
number of times that it can transmit. A method is presented
in [9] to compute the optimal transmission policy off-line
via DP. A very similar problem was also treated in [10],
where the optimal policy involves transmitting a measurement
only if it lies outside some symmetric region centered around
the mean value of the observed process. Both papers treat
only the scalar case, and both papers propose solutions of an
optimization problem where the objective function considers
only estimation and communication errors.
The constrained uses of the communication channel ne-

cessitate information arbitrage, and the sensing agent must
decide which measurement will be of most value to the
estimator. The contribution of this paper is development which
illustrates how observation and estimation techniques can be
designed for optimal estimation of multi-dimensional data over
a communication channel with limited uses. This entails a non-
trivial re-working of the proofs found in [9]. Moving beyond
a scalar problem is essential for exploring informational rele-
vance issues, because it forces the observer to consider which
elements of the observation vector may be most relevant to
some decision-maker (controller) who is being fed information
by the estimator.
An important aspect of our extension to multiple dimensions
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Fig. 1. Communication system with limited transmission channel uses.

is that, in the present work, the objective function can entertain
notions of informational relevance through a cost-weighting
matrix. In multiple dimensions one is forced to grapple with
the fact that some states might be much more valuable to
know precisely than others, and this leads to interesting
future questions regarding how control systems being fed by
this estimator might influence the choice of weights in the
observer/estimator policy.

A. Problem Statement

The problem of optimal estimation of data based on limited
measurements will be addressed for the case where the source
data is multidimensional. The problem will be framed in
the context of communication of data across a channel with
limited uses as depicted in Fig. 1. By extending a technique
similar to that presented in [2], value of information (VOI)-
based encoder and decoder policies will be utilized for optimal
sequential estimation of  dimensional data communicated
over a channel with limited uses. Specifically, a source se-
quentially generates data  ∈ R over an  -step decision
horizon 0 ≤  ≤  − 1, which must be transmitted over a
channel. The data  are generated according to some a priori
known stochastic process (e.g., an independent identically
distributed (I.I.D.) Gaussian random process or a correlated
Gauss-Markov process). An encoder/observer is placed at the
source output, and a decoder/estimator is placed at the channel
output. Observer and estimator policies are utilized to optimize
the accuracy of the communication system in the presence of
limited channel uses.
The communication channel is restricted such that it can

only be accessed for   transmissions. The objective is to
design observer and estimator policies that minimize the error
between the source data  and its estimate ̂ over the  -step
decision horizon. At each time step , the number of remaining
time steps is denoted 1 ≤  ≤  , and the remaining number
of available transmissions is denoted 1 ≤  ≤ .

II. SOURCE PROCESS IS GAUSSIAN

A. The Solution in the -D Case

The total estimation error over the  -step horizon can be
expressed as

() =
−1X
=0

½³
 − ̂

´

³
 − ̂

´¾
(1)

where  ∈ R× denotes a user-defined weighting matrix.
The estimate ̂ ∈ R of  is defined as the following

conditional expectation:

̂ =  { | ( ) ;}
where  ∈ R denotes the observer output. The observer
policy  can be expressed as

 =

½
 if  ∈ J()
NT if  ∈ J 

()
 (2)

If the source data  ∈ J(), the observer transmits the
data, and the estimator uses the transmitted data. If  ∈
J 
()

, where J 
()

denotes the complement of J(),
the observer does not transmit the data, but instead transmits a
single bit datum indicating NT for no transmission. When the
estimator receives the NT signal, it uses the expected value
of the source data based on knowledge of the statistics of
. The observer policy utilizes the VOI of the source data
to determine whether or not the data should be transmitted.
Heuristically speaking, if the observer determines that the data
falls within the region J 

()
, the data is determined to have

low informational value since it is close to the expected value
of the source data. If the data falls within the set J(),
it is far from the expected value, so it is determined to
have high informational value. Data having low informational
value is not transmitted by the observer; instead the NT
datum is transmitted. Data having high informational value
is transmitted, and the estimator simply uses the transmitted
data. Since the estimator has knowledge of the statistics of the
source data, it can minimize the overall error in the estimation
of the source data by using the expected value of the data when
the NT signal is received. In the following development, the
procedure for calculating the optimal observation set J ∗ will
be presented.
Based on (1), the DP equation can be used to express the

optimal estimation error as [11]

∗() = min
J()

n
∗(−1−1) −

³
∗(−1−1) − ∗(−1)

´
×Z

∈J 

 () +

Z
∈J 

 () 

¾
(3)

given that  has zero mean, where the fact that
R
∈J  () 

= 1− R
∈J   ()  was utilized.

B. Optimal Observation Set

In this section, the cost-to-go equation in (3) will be utilized
to calculate an optimal observation set J ∗ within which the
source data possesses high VOI. To that end, the optimal
region J ∗ will be calculated from (3) as the range of  that
globally minimizes ∗(). The set J ∗ will be used to develop
an observer policy that only transmits data having high VOI.
The Gaussian PDF  () in (3) can be expressed as

 () =
1

(2)2 | |12
exp

½
−1
2
−1

¾
(4)

To facilitate the following analysis, a linear transformation will
be defined as

 = −12  =  12 (5)
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Using the Jacobian determinant, (5) can be used to express
the integration differential  as

 =
¯̄̄
 12

¯̄̄
 (6)

After using (5), the expression in (4) can be rewritten as

 () =
1

(2)
2 | |12

exp

½
−1
2


¾
(7)

where the fact that h
−12

i
= −12 (8)

was utilized. The motivation behind the linear transformation
in (5) is based on the desire to facilitate the subsequent
evaluation of the integrals in (3). After substituting (5) in (3),
transforming into spherical coordinates, the optimal integration
region J ∗ minimizing the estimation error can be obtained
as

∗−1∗ =

³
∗(−1−1) − ∗(−1)

´
 [ ]

 (9)

where  [·] denotes the trace of a matrix, and ∗ denotes the
optimal value of 

III. ESTIMATION ERROR RECURSION

In this section, an analytical formulation for the estimation
error recursion formula is derived. To derive an explicit
mathematical expression for the optimal estimation error, the
two integrals in (3) must be evaluated. Since the integration
variable in this case is a vector, the expression will be trans-
formed into spherical coordinates to facilitate the derivation.
After transforming the Gaussian PDF given in (7) to spher-

ical coordinates, the PDF can be expressed as

 () =

Ã
1

(2)

2 | |12

!
exp

½
−1
2
2
¾

(10)

where  ∈ R denotes the radial distance in spherical coordi-
nates.

A. Evaluating the Recursion Formula

By transforming the integral expression in (3) to spherical
coordinates and utilizing the region defined in (9) to define
the limits of integration, the optimal estimation error (cost to
go) can be calculated as

∗() = ∗(−1−1) −
³
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In (11), the limits of integration ∗ =
√
 were calculated

based on the transformed version of (9) in spherical coordi-
nates, where  ∈ R is defined as

 =

³
∗(−1−1) − ∗(−1)

´
 [ ]

 (12)

1) The Case of  Even: After performing the necessary
integrations in (11), the optimal estimation error ∗() can be
expressed for the case where  is even as follows:

∗() = ∗(−1−1) −
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where the auxiliary functions 1 () and 2 () are explicitly
defined as
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2) The Case of  Odd: In a manner similar to the case
where  is even, the integral expression in (11) can be
evaluated as follows for the case where  is odd:

∗() = ∗(−1−1) −
r
2
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where 1 () and 2 () are explicitly defined as
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respectively. In (17) and (18), Φ (·) denotes the cumulative
distribution function (CDF) of the standard Gaussian random
variable with zero-mean and unit variance, which is defined
as

Φ () , 1√
2

Z 

−∞
exp

½
−1
2
2
¾
 (19)

for any  ∈ R.
IV. SOURCE PROCESS IS GAUSS-MARKOV

In this section, the optimal estimation technique outlined in
the previous section will be applied to a system for which the
source data is generated via a Gauss-Markov process.
In the case where the source process is Markov driven by

an I.I.D. Gaussian process {} with zero mean, the source
data is generated by the following model:

 = −1 + −1 (20)

where   ∈ R and  ∈ R×. The current value of the
state  depends only on the value of the state at the previous
time step (i.e., Markov property). If  time steps have passed
since the last transmission was received, then the current value
of the state  will depend on the value of the state  time
steps in the past, i.e., −. If data were transmitted in the
previous time step, then  = 1, and the current value  of
the source data is given explicitly by (20). If   1, a linear
regression can be performed on (20) to determine the current
value of the state  in terms of − as

 = − +−1− +−2−+1 (21)

+ · · ·+1−2 +0−1

To simplify the notation in the following analysis, let  denote
the number of time units passed since the last transmission of a
source output at time step . So in the presence of noise {},
the estimation error will increase with the number of time steps
passed since the use of the channel for transmission. Based on
(21), the expectation 

£
 | (−)

¤
(i.e., the expected value

of  after  missed transmissions) can be expressed as


£
 | (−)

¤
= − (22)

where the fact that  has zero mean was utilized. Based on
(22), it is apparent that the mean value of  varies with the
number of missed transmissions . Thus, the distribution of 
can be expressed as

 ∼ N (− ) (23)

where  ∈ R× denotes the covariance of  after  missed
transmissions.

A. Covariance Matrix Calculation

For the source process given in (20), the expected value of
 and the covariance matrix will change with the number of
missed transmissions . In this section, the general formula for
the covariance matrix based on  missed transmissions will be
derived.
The covariance matrix  is defined as

 , 
h
(− []) (− [])

i
 (24)

In the  dimensional case,  can be expressed in matrix form
as

 =

⎡⎢⎢⎢⎣
21 12 · · · 1

12 22 · · · 2
...

...
. . .

...
1 · · · (−1) 2

⎤⎥⎥⎥⎦ (25)

where the elements of  (i.e., the variances 2 and the
covariances ) in (25) can be obtained by performing the
necessary multiplications in the expansion of (24) as follows:

2 =
X

=1

Ã
X

=1

−1
 

!2
(26)

and the covariances can be expressed as

 =
X

=1

Ã
X

=1

−1
 

X
=1

−1
 

!
(27)

for   = 1     , where the fact that the noise  is I.I.D.
was utilized.
Note that if  = 1, the variances and covariances reduce to

2 and  , for   = 1     , respectively. In the scalar
case,  = 1, and (26) can be used to show that the variance
after  steps without transmissions can be calculated as [2]

2 =

Ã
X

=1

2(−1)
!
2 (28)

where  ∈ R, 2 denotes the variance of  after  time steps of
no transmissions, and 2 denotes the variance of  after only
a single time step without a transmission (i.e., when  = 1).

4260



B. Optimal Observation Set

For the case where the source data is generated via the
Gauss-Markov process in (20) and (21), the encoder and
decoder policies can be derived in a manner very similar to
the case where the source data is a Gaussian random variable.
The main difference in the Gauss-Markov case is that the mean
and covariance of the vector  can change at each time step
based on the number of missed transmissions , as expressed
in (22), and (25) - (28).
The PDF in the Gauss-Markov case can be expressed as

 () =

Ã
1

(2)

2 ||12

!
exp

½
−1
2
(− ) −1 (− )

¾
(29)

where  = −, and  is defined in (25), (26), and (27).
To derive the optimal observation set J(), the optimal
cost to go is formulated as

∗() = min
J()

n
∗(1−1−1) (30)

−
³
∗(1−1−1) − ∗(+1−1−1)

´Z
∈J 

 () 

+

Z
∈J 

(− )

 (− )  () 

¾


The notation ∗() is used in this case to represent the
optimal estimation error, since the estimation error depends
on the three parameters: , , and  in the Gauss-Markov
case. After transforming variables and performing the required
integrations in (30), the optimal integration region can be
expressed as

(∗ −−)
 −1 (∗ −−) =  (31)

where  is defined as

 ,

³
∗(1−1−1) − ∗(+1−1)

´
 []

 (32)

Hence, as in the case where the source data is purely Gaussian,
the region minimizing the estimation error in the Gauss-
Markov case is defined by an  dimensional hyper-ellipsoid.
Unlike the Gaussian case, however, the center (i.e., ) and
shape (i.e., ) of the hyper-ellipsoidal region vary with the
number of missed transmissions .

C. Estimation Error Recursion

In a manner similar to the Gaussian source data case, the
expression given in (30) can be integrated to express the
optimal estimation error. Thus, following a procedure identical
to that given in the previous section, expressions for the
estimation error recursion formula for the Gauss-Markov case
can be obtained for the cases where  is odd and where
 is even. As before, the estimation error recursion can be
evaluated explicitly for the case where  is even; and for the
case where  is odd, the estimation error recursion contains
the CDF Φ (·) defined in (19). The explicit expressions for the
estimation error recursions have been omitted here for brevity.

V. SIMULATION RESULTS

Numerical simulations were created to test the performance
of the proposed optimal estimation technique for the cases
where the source data is generated via a purely Gaussian
random process and via a Gauss-Markov process. For each
simulation, a lookup table containing the optimal cost to go
at each instant ( ) was generated offline. The lookup table
is used along with equations (13) or (16) for the purely
Gaussian case, or with the corresponding equations for the
Gauss-Markov case to calculate the optimal cost to go at
each time step. For clarity of presentation, the simulation
results presented in this paper were obtained using 2-D source
data; however, the 2-D case effectively serves to illustrate the
capability of this estimation technique to estimate incomplete
multidimensional data. It is a trivial task to extend the 2-D
results to -D.

A. Source Process is Gaussian

For the purely Gaussian simulation, the source data is
generated via a zero mean standard Gaussian random process
with PDF and covariance matrix defined as

 () =
1

2 | |12
exp

©−−1ª   = ∙ 1 05
05 1

¸


(33)
The initial conditions used in the simulation are

∗() = 0 ∗(0) =  ∀   0
Fig. 2 summarizes the results of the numerical simulation for
the purely Gaussian source data case. In each of the six plot
windows in Fig. 2, the point indicating the current value of
the 2-D vector  is denoted as an ‘o’ or an ‘×’, where ‘o’
indicates that the data will be transmitted, and ‘×’ indicates
that the data will not be transmitted. Toward the top right
corner of each of the six plots in Fig. 2, the [ ] value
indicates the value of  and  before the decision to transmit
or not is made at that time step. Fig. 2 shows the optimal 2-D
region ∗ at each time step for the case where  = 6 and
 = 4.

B. Source Process is Gauss-Markov

For the 2-D Gauss-Markov case, the source data is generated
via (20), where the process matrix  ∈ R2×2 is defined as

 ,
∙
05 02
01 09

¸
and {} is an I.I.D. Gaussian process with zero mean. The
-dependent covariance matrix and the PDF of  ∈ R2 can
be expressed as given in (25) and (29), where  = 2. The
elements of the covariance matrix are defined as

 =
X

=1

Ã
2X

=1

−1
 

2X
=1

−1
 

!
(34)

for   = 1 2, where  for  = 1 2 are elements of the
covariance matrix for  = 1. The initial conditions used in the
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Gauss-Markov simulation are

∗() = 0

∗(0) =
+−1X
=

X
=1

Ã
2X

=1

−1
 

2X
=1

−1
 

!

for   = 1 2, ∀   0.
Fig. 3 shows the results from the simulation in the Gauss-

Markov case. The dependence on the mean and covariance on
the number  of missed transmissions results in the center and
shape of the ellipses shown in Fig. 3 to vary with the time step
. Specifically, the means at each time step 1 ≤  ≤ 6 are (see
(22))  =

∙
0 010 032 −011 −057 −027
0 −001 019 −062 009 −004

¸
,

and the covariance matrices for  = 1 2 are 1 =∙
1 02
02 1

¸
and 2 =

∙
030 019
019 041

¸
, respectively. The

value of  is 2 for time steps  = 2 and  = 6 since there
were no transmissions for  = 1 or  = 5.

VI. CONCLUSION

Optimal encoder policies are developed for a sensor that
takes multi-dimensional measurements of some true state
process. The criterion function to be minimized consists of
a weighted cumulative quadratic estimation error under the
constraint that over a time-window of length  , only  
measurements can be transmitted to a remote estimator. We
show how the optimal policy is to transmit a measurement only
if it lies outside of a certain hyper-ellipsoid which depends
on the number of remaining channel-uses, the number of
remaining time-steps, and the statistics of the measurement
process. We show how dynamic programming can be used to
find the optimal hyper-ellipsoid in a Gaussian scenario, as well
as in a Gauss-Markov process, where the sensor is subject to
Gaussian noise.
We also incorporate an arbitrary (positive-definite) weight-

ing matrix that allows the user to specify which elements of
the state vector are most valuable to estimate accurately. This
is a first step in extending this research to address the larger
issues of informational value and relevance when this problem
is set in a closed-loop context (i.e., when the estimate is used
by a control system to generate an input signal that alters the
trajectory of the state that is being measured). In the previous
(scalar-valued) work, there was no place for consideration of
which dimensions of the sensor data might be most useful to
control the system.
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