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Abstract— This paper deals with optimal design of input
signals for linear, controllable systems, by means of their flat
output. The flat output is parametrized by a polynomial spline
and a linear problem is formulated in which both the spline
coefficients and the knot locations are found simultaneously.
Conservative constraints on the spline coefficients ensure that
semi-infinite bounds are never violated and numerical results
show that the amount of conservatism is little.

I. INTRODUCTION

This paper considers input design for so-called flat systems.
For such systems there exists a minimal set of particular
outputs, i.e. the flat outputs, that characterize all the state-
space motions and the corresponding input history [1]. Solving
a motion control problem through flatness avoids integrating
the differential equations and amounts to finding the best flat
output motion that obeys the path constraints expressed in
terms of the flat outputs and their derivatives [2].

In [2] this motion planning problem is reformulated as a B-
spline positivity problem, which can be cast as a semidefinite
program using a sum of squares decomposition. However,
the authors consider the knot locations to be fixed, resulting
in a suboptimal solution. In this paper we improve upon [2]
by also optimizing over the spline knots using an indirect
approach as in [3]. In addition, we formulate the problem
as a linear program for improved numerical efficiency at the
cost of introducing conservatism.

II. OPTIMIZATION PROBLEM

The system considered in this paper is an overhead crane with
fixed cable length as shown in Fig. 1. With the small-angle
approximation, the state-variable description of this system is

Lθ̈(t) = −ü(t)− gθ(t), (1)

where u(t) is the system input, θ(t) is the angle between
the cable and the vertical axis, L is the cable length and g
is the gravitational acceleration. This linearized system is
differentially flat with y(t) = Lθ(t) + u(t), the coordinate of
the load, as the flat output:

θ(t) = − ÿ(t)

g
and u(t) = y(t) + L

ÿ(t)

g
. (2)

Now consider the basic problem of moving the load from
y0, at time t = 0 to yT as fast as possible. At the boundaries
we wish that the input is smooth. Therefore we impose
y(r)(0) = y(r)(T ) = 0 for r = 1, 2, 3. This also ensures

θ

L

u

y = Lθ + u

Fig. 1. Illustration of an overhead crane, with input u, states θ and θ̇ ,and
output y, the coordinate of the load.

residual vibrations are canceled at the end of the motion.
The acceleration of the trolley is limited, a ≤ ü(t) ≤ a to
avoid actuator saturation. The considered problem amounts to
solving the following integration-free optimization problem

minimize
T,y(t)

T (3a)

subject to y(0) = y0, y(T ) = yT (3b)

y(r)(0) = 0, r = 1, 2, 3 (3c)

y(r)(T ) = 0, r = 1, 2, 3 (3d)

a ≤ ÿ(t) + L
y(4)(t)

g
≤ a (3e)

θ ≤ − ÿ(t)

g
≤ θ . (3f)

Equation (3f) constrains the angle so the small-angle approx-
imation remains valid. From the solution, y∗(t), T ∗ of this
problem, we then calculate the optimal input u∗(t) as in (2).

A. Trajectory Parametrization

In order to find a solution of problem (3), the trajectory y(t)
is parametrized by a polynomial spline of degree k = 4. The
main challenge when optimizing splines is determining the
location of the knots, {λ1, . . . , λn}. This requires treating
the knots as variables, resulting in a highly nonlinear and
nonconvex optimization problem [4]. To overcome the non-
linearity, [3] propose to optimize the spline knot locations
indirectly by supplying many candidate knot locations (n =
500 à 1000) and using a regularization to favor solutions
with few active1 knots when many equally optimal solutions
exist. In this work we apply this indirect approach and use
B-splines as a basis to represent polynomial splines, which

1A knot λi is called active if the kth-order derivative of the spline is
discontinuous at λi
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allows us to deal with constraints (3e,3f) in an elegant manner
(see Section II-B).

Assuming the knot sequence {0 = λ−k = · · · = λ0 ≤
λ1 ≤ · · · ≤ λn ≤ λn+1 = · · · = λn+k+1 = T}, y(t) is
written as

y(t) =

n∑
i=−k

ciBi,k+1(t) , (4)

where ci are the B-spline coefficients of y(t) and Bi,k+1(t)
are the B-spline basis functions [4]. The coefficients c =
(c−k · · · cn)T become the optimization variables for (3).

B. Inequality Constraints

To impose C ≤
∑n

i=−k ciBi,k+1(t) ≤ C for all t, it follows
from the convex hull property of B-splines that C ≤ ci ≤ C
for i = −k, . . . , n, is a sufficient condition. However, it is
not a necessary condition and may introduce conservatism
[5].

In our problem, we impose such constraints on the spline
coefficients of θ(t) (3f) and ü(t) (3e). By virtue of the Curry-
Schoenberg theorem θ(t) and ü(t) also have a B-spline
representation, whose basis can easily be determined from
y(t) [2]. The spline coefficients of θ(t) and ü(t) depend
linearly on the spline coefficients of y(t) via matrices Θ and
A, which are found by comparing sampled values.

C. Time Optimality

The objective T in problem (3) would render the optimization
problem non-convex. Therefore a bisection is performed to
find the optimal time, where each bisection step requires
solving the following linear feasibility problem

minimize
c∈Rg+k+1

0 (5a)

subject to c−k = y0, cn = yT (5b)
c−k+i = c−k, i = 1, 2, 3 (5c)
cn−i = cn, i = 1, 2, 3 (5d)
a ≤ Ac ≤ a (5e)

θ ≤ Θc ≤ θ , (5f)

where (5c, 5d) constrain the derivatives at the boundaries ac-
cording to (3c,3d) and (5e, 5f) replace (3e, 3f) by constraining
the spline coefficients.

III. RESULTS

An optimal input to move the load from y0 = 0 m to yT =
0.6 m, is calculated for L = 0.45 m, a = 5 m s−2 = −a,
θ = 5◦ = −θ, k = 4 and n = 500. Fig. 2 shows the results
for ü(t) (top) and θ(t) (bottom). Only seven active knots are
found.

The motion looks optimal since at each time instant one
of the inequality constraints seems to be active. Though
not visible in Fig. 2, a closer inspection reveals that some
conservatism is introduced by (5e), related to the approach
from II-B. However, the relative difference between the
optimal time by gridding (3e, 3f), as in [3], and our approach
is only 0.005 %. Contrary to [3], constraints are guaranteed
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Fig. 2. Time optimal input acceleration (top) and the corresponding swing
angle (bottom)

to be satisfied between candidate knots without any post-
analysis. Also, the flat system approach allows us to formulate
constraints on the states and outputs elegantly, without having
to introduce additional variables and integrate the differential
equations.

The conservative linear program is solved more efficiently
than the exact semidefinite program [2] and allows for
optimizing over the knot locations. Moreover, by choosing the
candidate knots where active knots are expected, the problem
size can be vastly reduced allowing for solutions to be found
even more efficiently.

IV. FUTURE WORK

The presented method will be validated experimentally on
an overhead crane. Since efficient algorithms exist to solve
linear programs, online implementations are subject for future
research. Also, the framework is being extended to nonlinear
flat systems, which will require convex approximations of
the feasible set.
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