
 

 

Abstract  This paper presents a new approach for 

identifying the lateral dynamics of an automated off-

highway agricultural vehicle. A second order model is 

proposed to represent the vehicle lateral dynamics. An 

Iterative Learning Identification (ILI) method is used to 

identify the model parameters. Simulation and 

experimental results show the convergence of parameters 

with arbitrarily chosen initial estimations. The 

estimation results are compared to other traditional 

identification methods: least square estimation and 

gradient based adaptive estimation. The results highlight 

the practical benefit of the ILI approach- i.e. that it can 

be performed in a relatively small section of field and 

therefore done prior to actual usage or engagement with 

crops. 

I. INTRODUCTION 

griculture has always been central to the development 

of human civilizations and will become critical in the 

next several decades as the world population surges. In 

addition to crop genetics, a large factor in the advancement 

of modern agriculture is the increased mechanization and 

automation of the entire agricultural process. A key facet of 

the overall mechanization is the improved functionality of 

modern machines that work to plant, monitor, harvest, and 

condition the fields of operation.  

For several years, commercially available tractor 

machines have been capable of automatically steering 

themselves through pre-defined routes within fields by using 

global positioning systems (GPS). These remarkable systems 

are capable of centimeter-level line tracking in good 

conditions for a well-tuned control system that is integrated 

into the vehicle design. However, this level of performance 

degrades for so-called retrofit systems that effectively bolt-

on to existing vehicles. According to previous studies in  [1], 

[2], vehicle configurations and soil type and conditions will 

greatly affect the guidance performance. One possible 

solution to the problem is to perform a system identification 

test, and then design a robust controller based on the 

identified vehicle model. This paper details a method for 

identification of a vehicle lateral dynamics model. The 

assumption is that a vehicle-specific/ field-specific feedback 

controller can be readily designed once the vehicle model is 

well known; e.g. pole placement. Fig. 1 illustrates the 

Nanjun Liu (liu98@illinois.edu), and Andrew G. Alleyne 

(alleyne@illinois.edu) are with the Mechanical Science and Engineering 

Department at the University of Illinois at Urbana-Champaign, Urbana, IL 
61801 USA (phone: 217-244-9993; fax: 217-244-6534). 

current steering control approach used for this vehicle 

guidance system.  
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Fig 1. System configuration for an automatically steered agricultural vehicle  

Vehicle lateral dynamics model identification (ID) can be 

based on vehicle parameter estimation, which includes 

vehicle mass, moment of inertia, and cornering stiffness  [3]. 

However, these parameters are hard to measure and not 

always accessible. Another method of vehicle lateral 

dynamics model ID is open loop identification using a 

sinusoidal sweep  [4]. A set of sinusoidal tests within a range 

of frequencies are analyzed to determine the 

frequency response. This open loop sinusoidal sweep 

approach is challenging in agricultural settings due to the 

limited area available to perform the necessary tests. The 

two integrators present in the vehicle dynamics suggest a 

spatial drift during open loop tests. Since land, and the 

resident crops, in an agricultural setting are very valuable the 

open loop sine sweep approach is limited. Closed loop 

identification is considered more appropriate for farm 

vehicle identification. Rekow ,et al  [1] has used a Kalman 

filter to identify the model states online. In our study, we 

used the iterative learning identification method to identify 

the system model. 

Iterative Learning Identification (ILI) is a novel approach 

for closed loop identification  [5]- [7]. This method achieves 

identification by applying Iterative Learning Control (ILC) 

[8] concepts in the presence of measurement noise without 

any knowledge of the feedback controllers in the loop. The 

effectiveness of ILI has been previously demonstrated 

through numerical examples  [5]- [7]. The current work is, to 

the knowledge of the authors, one of the first presentations 

of ILI implementation.  

The rest of the paper is organized as follows. Section 2 

gives a brief introduction to the vehicle model under 

consideration, which is a simplification of the well-known 

  [9]. The choice of the model structure is 

important since ILI requires a fixed and known structure. 

Section 3 presents the ILI method used to identify the 

vehicle parameters. Results from simulated and experimental 

implementation on actual tractors are given in Section 4. A 

conclusion then summarizes the main points of the paper.  
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II. VEHICLE DYNAMICS MODEL 

A vehicle dynamics model can range from simple to very 

complex. For most vehicle control applications, it has been 

demonstrated that a 

dynamics are usually sufficient for a linearized version of 

the plant.  A 4
th

 order model is detailed in  [10] to describe 

the lateral dynamics of a vehicle for automatic controller 

design. This model has been widely recognized for 

automatic vehicle designs  [11]- [13]. The vehicle model is 

expressed as a transfer function from the front wheel 

steering angle, ( )u s , to the lateral output, ( )y s . 

Substituting a typical set of agricultural tractor parameters  

[14] into the model, assuming that the vehicle longitudinal 

velocity is fixed at 5 mph and the GPS receiver is placed 0.5 

meter ahead of vehicle centre of gravity, the fourth order 

model is expressed in (1). 

2

( 8.3455)( 1.7497)
( ) 62.3202

( 39.2902)( 10.8859)

s s
G s

s s s
 (1) 

Agriculture vehicles usually operate in a relatively low 

frequency range as compared to on-highway vehicles due to 

their relatively low sampling frequency. Examining (1) 

shows that the fourth order vehicle model has two poles (-

39.2902, -10.8859) and one zero (-8.3455) which 

characterize dynamics at least 4 times faster than the other 

poles (0,0) and zeros (-1.7497). Therefore, the 4
th

 order 

model in (1) can be further simplified by truncating the high 

frequency poles and zeros into a simple second order 

formulation in the format of (2). 

1 0

2 2
( )

b s bs a
G s k

s s
 (2) 

where, 1b  and  0b  are positive constants which depend on 

the vehicle parameters and operating conditions; k = 2.1276, 

and a = -1.7497. The Bode plot comparison of the 4
th

 order 

model from (1)  and the 2
nd

 order model from (2) is shown in 

Fig 2. From the plots, we see that the 2
nd

 order model is 

representative of the 4
th

 order model for low frequency 

operations. Previous investigation [4] have also 

demonstrated the suitability of a 2
nd

 order model for 

agricultural vehicle applications. 

Section 3 will focus on the identification of parameters 1b  

and 0b  in (2) with Section 4 illustrating the performance of 

the identification approach. 

 
Fig. 2, Bode plot for a 4th order and 2nd order model   

III. ITERATIVE LEARNING IDENTIFICATION 

A.  System Description 

Iterative learning identification (ILI) was first discussed in  

[5], which showed the convergence analysis, and simulation 

results, for this parameter identification method. This 

identification method is then generalized to a linear 

continuous-time system in closed loop [7] and exhibits 

robustness against white measurement noise. Moreover, for 

our particular class of systems, ILI is advantageous since it 

can be applied repeatedly on a small section of land prior to 

vehicle operation. The closed loop identification scheme in  

[7] requires the user to specify both a reference signal s(s) 

(Fig.3) and a feedforward control input signal ( )u s . 

However, in our experimental system (Fig. 6), only the 

reference signal s(s) (Fig. 3) can be specified. To 

accommodate our specific class of systems, the scheme of  

[7] is modified here and made specific to the plant given in 

(2).  

Consider (2) in transfer function form, 

 0 1

2

( )
( ) ( ) ( )

( )

o oo b b sB s
y s u s u s

A s s
  (3) 

where 0

ob  and 1

ob  are the unknown true parameters of the 

system, whose values are to be estimated. For the 

agricultural vehicle tested in the experiment, steered wheel 

angle u(s) is provided by the integrated AutoTrac
TM

 wheel 

angle sensor. Tractor lateral position y(s) is measured by a 

StarFire
TM

 RTK receiver, capable of 1 inch accuracy.  

Basic assumptions of ILI are similar to those of its 

counterpart, ILC. We assume the system has the same initial 

condition for each trial. Additionally, we assume the trial 

itself has the same characteristics (inputs, outputs) for each 

trial. The trial duration is the time interval [0,T]. The trial 

index is denoted as j. At the start of the process (j=0) there is 

an initial set of estimated parameters which need to be 

specified. We define the denominator and numerator of the 

system at the j-th trial as:  

 2( )A s s , 0 1( )j j jB s b b s  (4) 

Here we exploit process knowledge to identify only the 

numerator. The system denominator ( )A s  is known, and is 

therefore fixed at all trials. Parameters of system numerator

( )jB s , on the other hand, will be updated at each trial. We 

define the unknown parameter set at the j-th trail to be 

0 1[ , ]j j j Tb b . 

B. Identification Steps  

To construct an ILI scheme, we use the following 

procedure. First, choose a reference signal s(s). Then, 

perform the following experiment at the j-th trial as shown 

in Fig. 3, and use the parameter update law to estimate the 

parameters for the j+1-th trial. The error signal ( )j s  is 
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generated if the estimation of ( )jB s is known. The scheme 

for generating the error signal ( )j s  is shown in Fig. 3. 
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Fig. 3. Data generation scheme 

The identification steps are:  

1) Design a feedback controller ( )K s  to stabilize the plant

( )

( )

oB s

A s
. Then, choose a plant reference signal s(s), and inject 

it into the closed loop system.  

2) Take the measured steered wheel angle u(s), and inject it 

into the estimated plant model from the j-th trial 
( )

( )

jB s

A s
; this 

results in an estimated output ( )jy s . The measured vehicle 

lateral output is denoted by y(s). 

3) According to Fig. 3, obtain the mismatch signal ( )j s   

( ) [ ( ) ( )] ( )

( )
[ ( ) ( )] ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

j j

j

j

S T

s y s y s A s

B s
u s y s A s

A s

K s G s B s s s K s G s A s s s

 (5)       

where

( )

( )
( )

( )
1 ( )

( )

o

T o

B s

A s
G s

B s
K s

A s

, and 
1

( )
( )

1 ( )
( )

s o
G s

B s
K s

A s

 

4) Project ( )j t  onto a finite-dimensional subspace of 

dimension 2, which has the same dimension as the unknown 

parameter set 
j
. The projected error can then be written in 

vector form as: 

1 2[ , ] ( )j j j T jU s  (6) 

Matrix U  is obtained by taking the QR decomposition of 

matrix sV , 

sV UR                                            (7) 

where matrix sV  contains the differentiation of reference 

signal ( )s t , and is illustrated in (8) . The dimension of sV  is 

chosen in accordance with the dimension of 
j

.
 

( ), ( )sV s s s s s  (8)  

The choice of projection matrix U  is discussed in more 

detail in  [6]. According to (7) and (8), matrix U  can be 

calculated when s(s) is available. 

5) Substitute (5)    into (6), and rewrite (6) to separate the 

terms containing 
j
 with the rest.  

0 1

[ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

[ ( ) ( ) ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( )

j T j

T j

s T

T j j T

s T

T j

s s

T

T

U

U K s G s B s s s K s G s A s s s

U K s G s b b s s s U K s G s A s s s

U K s G s s s sK s G s s s

U K s G s A s s s

 (9) 

Denote 

 ( ) ( ) ( ) ( ) ( ) ( )T

s sM U G s K s s s sG s K s s s         (10) 

and the offset term 

( ) ( ) ( ) ( )j T

TU K s G s A s s s                     (11) 

(9) can be rewritten as: 
j j jM                                  (12) 

6) The parameter update law for 
j

 
can be developed as 

follows.  

 1j j jH  (13) 

The convergence of the estimation is guaranteed [6-8] 

when the learning gain H  is given by: 

 1* ,( 1)H k M k   (14) 

where k determines the convergence speed, and it is a 

constant less than 1. M is defined in (10). 

An examination of (13) indicates a similarity to the typical 

Iterative Learning Control update laws with learning gain H 

updating the parameters from iteration to iteration.  

C. Determining Learning Gain H 

According to (14) and (10), the learning gain H can be 

determined if we have a good estimation of matrix M. The 

unknown terms in the matrix M are ( ) ( ) ( )sG s K s s s
 

and

( ) ( ) ( )ssG s K s s s . 

The scheme in Fig. 4 gives an estimate of these two terms 

without knowing the dynamics of the controller. This needs 

to be done prior to the ILI procedure. First, use the same 

reference signal s(s) that has been discussed in the ILI 

procedure. Then, measure the system input, which, in this 

case, is the steered wheel angle u(s). The representation of 

u(s) is given by 

  
( )

( ) ( ) ( ) ( )
( )

1 ( )
( )

so

K s
u s s s G K s s s

B s
K s

A s

                                                                    (15) 

Taking the derivative of the input signal u(s) in the 

Laplace domain results in 

 
( )

( ) ( ) ( ) ( )
( )

1 ( )
( )

so

sK s
su s s s sG K s s s

B s
K s

A s

 (16) 

From (15) and (16), the two unknown terms in matrix M 

are estimated over the time window [0,T]. Thus, the learning 

gain H can be determined based on the estimated M matrix.  
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 The closed loop scheme in Fig. 4 is the same as the one in 

ILI scheme (Fig. 3). Therefore, a different experiment setup 

is not necessary for estimating the matrix M. 
oB (s)

A(s)
K(s)

+

-

u(s)s(s)

  
Fig.4. Estimation scheme for two unknown terms in matrix M 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

A. Simulation Results 

Ten iteration trials were performed with a time window of 

16 sec by using the iterative identification method discussed 

in Section 3. A step input signal was selected for the 

reference s(s), and the feedback controller was a 

proportional-integral-derivative (PID) controller.  The 

parameter updating results in Fig. 5 are starting at two 

different initial conditions. The true parameter values for 0b  

and 1b  are 1.89 and 0.66 respectively. At iteration 6, the 

estimation percentage errors for both parameters are 0.69% 

and 1.5% respectively when the initial estimates are 1 and 1. 

Fig. 5 also shows that the estimated parameters are almost 

the same as the true parameters after six iterations for the 

given reference trajectory. Comparing the convergence 

result from different initial conditions in Fig. 5, the 

convergence result is relatively insensitive to the choice of 

initial values.  

 

 
 

Fig. 5. Convergence of parameters in simulation with initial estimates [1,1] 

and [0.5 0.5]  

B. Experimental Results 

This identification approach was tested on a full scale 

John Deere 8330 tractor equipped with a StarFire
TM

 RTK 

receiver and an integrated AutoTrac
TM

 steering system. Fig.6 

shows the system on which experimental data was obtained. 

The automatic tractor is capable of following some 

designated trajectories, which allows us to choose some 

built-in test references. The chosen reference s(s) is a step 

lateral signal with an amplitude of 3 meters, equivalent to a 

crop row change, as shown in Fig. 7(b). During the tests, the 

longitudinal speed is fixed at 5 mph, and the measurements 

are recorded at 5 Hz. For consistency, the experiment is 

repeated for ten times with a time window of 16 sec. Fig. 7 

shows the measured input signal (vehicle wheel angle) and 

output signal (vehicle lateral position) for the 10 iterations, 

and each input and output pair corresponds to one iteration.  

 
Fig. 6. Experiments are conducted on a John Deere tractor with integrated 

AutoTracTM (model 8330, Deere and Co.). 

 
                               (a)                                                             (b) 
Fig.7. (a) Experimental Inputs (b) Experimental Outputs 

The experimental parameter update results are shown in 

Fig.8. Each point represents the estimated parameter value at 

a particular trial. The trend of parameter convergence is 

clear from Fig. 8. The estimated parameter values are quite 

consistent after 6 iterations as the simulation results 

indicated. Fig. 8 also compares the parameter convergence 

results by starting at different initial value. As expected, the 

convergence result is not affected by the choice of initial 

values. 

 
Fig.8. Convergence of parameters in experiment with initial estimate [1,1] 

and initial estimate [0.5 0.5] respectively 
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Fig.9. Comparison between the estimated output and the measured output 

using the model from ILI 

The estimation result of parameters 0b  and 1b  are taken as 

the average of the parameter values when convergences are 

observed. In this case, at iteration 8,9 and 10. The estimated 

parameter values 0b  and  1b
 

are 0.6398 and 1.8733 

respectively. We then construct the vehicle lateral dynamics 

model using (2) by substituting the estimated parameter 

values. Injecting the measured input to our estimated plant, 

we obtain the estimated plant output. The estimated output 

and the measured output are compared in Fig. 9. As 

evidenced, the transient behavior is captured quite well; this 

is sufficient information to supply a model-based controller 

design scheme.  

C. Comparison with Other Identification Approaches 

Since in this paper, we are identifying the unknown 

parameters in a transfer function; two conventional transfer-

function domain parameter ID methods are compared with 

the ILI approach.  

An adaptive estimation method is also applied to identify 

the system parameters. Using the same model structure 

shown in (2), gradient based adaptive estimation is 

performed with a continuous update law (17) [15]: 

ne   (17) 

where,  is the estimated parameter set,    is a scaling 

matrix, ne  is the normalized estimation error, and vector  

is called the regressor vector. 

In the experiment, the reference is chosen as series of step 

maneuvers, since one single step maneuver is not sufficient 

excitation for estimating a second order system. This 

experiment is performed 5 times, and the averaged 

parameter estimation results are compared with the ones we 

obtained using ILI scheme in Table1. From Table 1, the 

estimated system gain and zero are close to the ones 

estimated from ILI. This indicated that the estimated vehicle 

models are quite consistent. The estimated output and the 

measured output are compared in Fig.10 (a). The transient 

response again is captured quite well. The time used for the 

parameters to converge is about 157 sec. However, if the 

longitudinal velocity is fixed, the testing area needed for this 

157 sec test is comparatively bigger than the 16 sec test 

using ILI method. 

 

 
                           (a)                                                 (b) 

Fig.10. (a) Comparison between the estimated output and the measured 
output using the model from gradient estimation 

(b) Comparison between the estimated output and the measured output 

using the model from LSE 

Least Square Estimation (LSE) has also been applied and 

compared with the ILI method. The estimation of parameter 

set  is obtained through  (18) [16] 

 
1

T T y   (18) 

where,  is the estimated parameter set,  is the regressor 

matrix, and y is the measured output.
 Both a single step and series of step maneuvers references 

have been tried for LSE. The estimation results are similar 

by using these different references, and the averaged 

estimate results are also included in Table 1. Fig. 10(b) 

compares the estimated output and the measured output for 

series of step maneuvers. The estimated model from LSE is 

a non minimum-phase system, which is clearly not true for 

the tractor model. One of the main reasons for the 

insufficiency of LSE is that the reference signal does not 

contain enough information. Simulation results also 

indicated a non minimum-phase system using the same 

reference with a SNR 30. However, when the selected 

reference is a chirp, using the same setup, the parameter 

estimation error is less than 10 %. It has also been indicated 

in  [17] that when the reference signal does not contain 

enough information, the identification results are likely to be 

unfaithful. 
TABLE I 

ESTIMATED PARAMETERS USING THREE DIFFERENT IDENTIFICATION 

ALGORITHMS 

Identification 

Algorithm 

System 

gain and zero 

Model 

Parameters 

k  a  
0b  

1b  

ILI 0.6398 -2.9279 1.8733 0.6398 

Gradient 0.5941 -2.9830 1.7722 0.5941 

LSE -3.510 0.6150 2.1585 -3.510 

V. CONCLUSION AND DISCUSSION 

This work presented the framework for Iterative Learning                      

Identification (ILI) and, to the knowledge of the authors, 

presented one of the first implementations of ILI on an 

experimental system.  The ILI was demonstrated to be 

successful in identifying model parameters for an 

agricultural tractor vehicle.  While there are other 

approaches available for parameter identification, there were 

0 5 10 15

-3

-2

-1

0

Time(sec)

L
a

te
ra

l 
O

u
tp

u
t(

m
)

Measured Output

Estimated Output

0 50 100 150
-2

-1

0

1

2

Time(sec)

L
a

te
ra

l 
O

u
tp

u
t(

m
)

Measured Output

Estimated Output

0 50 100 150
-4

-3

-2

-1

0

1

2

3

Time(sec)

L
a

te
ra

l 
O

u
tp

u
t(

m
)

Measured Output

Estimated Output

4303



 

 

 

significant key benefits in this application which made ILI 

particularly attractive.  As mentioned, the field available for 

identification is limited. Contrary to a gradient based 

adaptive approach, which is suitable for on-line parameter 

identification, the ILI can be carried out on a small field 

section.  Additionally, the ILI is capable of identifying 

system parameters with a step signal which is easily 

available from the current AutoTrac
TM

 system. As a result, it 

provides better estimation results than a batch least squares 

type off-line identification.
 

While ILI has been shown to be a very viable technique in 

this work there is room for improvement.  Future directions 

for the ILI approach include a better understanding of 

convergence speed and steady state convergence error.  

Using techniques from available ILC results, alternate 

update designs for (13) will be developed.  This may 

include, for example, a stabilizing filter (e.g. Q-filter) type of 

technique  [8] for low signal-to-noise ratio conditions. 
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