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Abstract— This paper utilizes a minimum principle for in-
finite dimensional systems for the optimal control of systems
constrained by the Fokker-Plank equation governing the evolu-
tion of a state probability density function. From the backwards
evolution of the corresponding adjoint system, we define a
Hamiltonian and use its gradient to construct a numerical
optimal control. The basic nature of the adjoint system allows
for all of the necessary terms defining the control to be inferred
from stochastic process samples which is exploited in provided
examples. Solving stochastic optimal control problems utilizing
stochastic processes is a promising approach for solving open-
loop stochastic optimal control problems of non-linear dynamic
systems with a multi-dimensional state vector.

I. INTRODUCTION

Since the development of the Pontryagin Minimum Princi-

ple [1], the Hamiltonian is a fundamental tool in the analysis

of optimal control problems. Similar to Hamiltonian mechan-

ics in Physics, the Hamiltonian for optimal control is defined

based on a set of co-state variables obeying an adjoint system

of equations. A standard approach to stochastic optimal

control is to utilize Bellman’s dynamic programming algo-

rithm and solve the corresponding Hamilton-Jacobi-Bellman

(HJB) equation. For incomplete state feedback information,

the standard result considers problems with linear dynamics,

quadratic costs and Gaussian noise, and the exact feedback

solution is used along with a filter for the state estimation

[2].

In this paper, we consider a Hamiltonian approach for

solving general stochastic optimal control problems with

no state feedback, i.e., open-loop control. The open-loop

stochastic optimal control depends on terminal costs, the

dynamics and the initial state probability distribution. Pre-

vious work on this problem has focused on constructing the

Hamiltonian with solutions to forward-backward stochastic

differential equations [3], [4]. The focus of our work is a

novel method based on an infinite dimensional minimum

principle [5] applied to partial differential operators for the

state probability density function (PDF) and the co-state

distribution.

In order to compute the optimal control, we can use partial

differential equation (PDE) solution for the state PDF, the co-

state distribution and an iterative numerical method similar

to the one presented in [6]. However, the dimension of the

dynamical system state can be the limiting factor to proceed
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with these types of methods. The reason is that we need not

only reliable multidimensional PDE solvers, but a reliable

computation of the scalar product, which is important for

the Hamiltonian evaluation. Therefore, it is beneficial to find

an alternative way to evaluate the state PDF, the co-state

distribution and the Hamiltonian.

In this work, we show that the state, co-state distributions

and the Hamiltonian can be evaluated based on trajectory

samples, where the co-state distribution is evaluated from tra-

jectory samples by the Feynman-Kac formula [7]. This eval-

uation method is suitable for non-linear multi-dimensional

systems and it provides rationale on how stochastic processes

can be utilized to compute control.

Our work is illustrated by examples in which the Hamil-

tonian is used as a gradient in search for a time discretized

optimal control, following work on successive approximation

for optimal control from Mitter [8] and previous work of

the author Milutinović, which uses the infinite dimensional

minimum principle [6], [9]. In our examples, the co-state

distribution is either solved exactly or evaluated from tra-

jectory samples. Other manners of the co-state distribution

evaluation can be done using a finite approximation of the

eigenspace of the operators as done for an HJB example by

Hongler, et. al. [10].

In Section II we introduce a non-linear stochastic optimal

control problem. Section III explains the minimum principle

we are dealing with, as well as its relation to stochastic

trajectory samples. An example with controlled intensity

of diffusion is presented in Section IV, and a problem

involving a non-linear stochastic process and state constraints

is provided in V. Section VI gives conclusions.

II. OPTIMAL CONTROL PROBLEM FORMULATION

The stochastic differential equation that we control is in

the form

dX = b(X, t, u(t))dt+ L(X, t, u(t))dw, (1)

where X(t) is an n dimensional stochastic process and dw

is the derivative of a m dimensional Wiener process. The

control belongs to the set u(t) : [0, T ] → U ⊂ R
k. The

vector b(X, t, u(t)) : D × [0, T ] × U → R
n, and, similarly,

the matrix L(X, t, u(t)) : D × [0, T ] × U →⊂ R
n,m. In

our approach, we deal with the probability density function

(PDF) of the process X(t), ρ(X, t) : D × [0, T ] → R
+,

and consider its evolution in time. The PDF ρ(X, t) evolves

according to the Fokker-Planck equation [11], [12]. In sequel,

to make notation shorter, we will omit explicit dependence

on the space and time coordinates.
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The Fokker-Planck equation for our process is

∂ρ

∂t
=

n
∑

i,j=1

∂(−bi(u)ρ)

∂xi

+
1

2

∂2
(

[LLT ]ij(u)ρ
)

∂xi∂xj

, (2)

= F (u)ρ. (3)

where the second equality is the same equation written in the

form of a differential operator F (u) acting on the probability

density function ρ, and xi is the ith component of the state

vector X . Let us introduce an inner product 〈·, ·〉 between

two functions as

〈f, g〉 =

∫

D

f(X)g(X)dX (4)

where x belongs to the domain D. Then we can write

〈ρ(t), 1〉 = 1, ∀t (5)

since under the Fokker-Plank evolution, the probability mass

is conserved.

The optimal control we consider is to find the open-loop

control sequence u that minimizes the cost function

J(u) = 〈φ, ρ(T )〉+

∫ T

0

〈f0(X(t), u(t)), ρ(t)〉dt. (6)

The first term is the terminal cost given in the form of

a product between the weighting function φ and the PDF

at the terminal time T , ρ(T ), which is the expected value

of φ(X(T )). The second term describes the expected costs

acquired along the stochastic process (1) trajectory controller

by the control sequence u.

III. MINIMUM PRINCIPLE AND TRAJECTORY SAMPLES

In the previous section, we defined the optimal control

of the stochastic process in a probability density function

space. Therefore, in order to solve the control, we employ

the minimum principle for infinite dimensional systems [5].

According to the minimum principle, a necessary condi-

tion for optimality is that for any time point t ∈ [0, T ], the

optimal control value u∗(t) minimizes the Hamiltonian, i.e,

H(ρ∗(t), π∗(t), u∗(t)) = min
u(t)

{H(ρ∗(t), π∗(t), u(t))} (7)

where ρ∗(t) and π∗(t) are the state PDF and the co-state

distribution at the time t, respectively (Appendix I). The

Hamiltonian is defined as

H(ρ, π, u) = 〈ρ, f0(u) + F ′(u)π〉. (8)

while the co-state distribution evolution is defined by

−
∂π

∂t
= f0(u(t)) + F ′(u(t))π, (9)

π(T ) = φ (10)

with F ′(u) being the adjoint operator to the operator F (u),
such as that (see Appendix II)

F ′(u)π =

n
∑

i,j

bi(u)
∂π

∂xi

+
1

2
[LLT ]ij(u)

∂2π

∂xi∂xj

.(11)

Moreover, for F ′(u) to be the adjoint operator to F (u), we

also need to verify that at the boundary of the domain D,

we have
∮

∂D

n
∑

i,j

ni

(

bi(u)πρ+ π
∂
(

[LLT ]ij(u)ρ
)

∂xj

(12)

−[LLT ]ij(u)ρ
∂π

∂xj

)

dS = 0,

where n is the normal vector to the boundary surface and

dS is the differential surface element.

An important use of the Hamiltonian is that it provides

the gradient of the total cost with respect to control, in other

words,
∂J(u)

∂u(t)
=

∂H(ρ, π, u)

∂u(t)
(13)

which is verified for discrete time by [2], [13] and is very

useful in numerical iterative algorithms computing a discrete

approximation of the optimal control. Clearly the right-hand

side of (13) is easier to calculate than the left-hand side of

the equation since the differentiation is only with respect

to u(t) and the Hamiltonian depends on the state PDF and

the co-state distribution at the time t, i.e., ρ(t) and π(t),
respectively.

If we sample trajectories of a stochastic process (1), the

density of samples will evolve according to the Fokker-

Planck equation. However, it is a less obvious fact that the

co-state distribution at the point X+ can be evaluated as

π(X+, t) =

E

[

∫ T

t

f0(X(s), u)ds+ φ(X(T ))|X(t) = X+

]

, (14)

where X(s) obeys the evolution of (1) given u and starting

at the time point t with the initial condition X(t) = X+.

The proof of this relation is provided in Appendix III and

the relation is also known as the Feyman-Kac equation from

statistical mechanics.

IV. 2D EXAMPLE WITH CONTROLLED NOISE INTENSITY

This example is inspired by the standard problem in-

volving linear dynamics and quadratic cost. Here we use

a numerical solution of the backward co-state distribution

evolution (18-27) and samples of stochastic trajectories to

evaluate the inner product of the Hamiltonian (28). The

control is computed iteratively with update rules based on the

gradient of the Hamiltonian (29). We use the gradient method

with a constant step-size, the Fletcher-Reeves conjugate-

gradient method and the Matlab fmincon function for

constrained non-linear minimization from the Matlab opti-

mization toolbox. All three numerical procedures converge

towards the same cost function value (Fig. 1) and the same

control presented in Fig. 2.

The process under control is two-dimensional X = [x y]
and described by

d

[

x

y

]

=

[

y

u

]

dt+

[

ξ0 0
0 ξ1u

] [

dW1

dW1

]

. (15)
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Fig. 1. A comparison of optimization methods for the first example. For
the gradient methods, λ = 0.005 was used.
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Fig. 2. Optimal control found for the 2D example. The control is nearly
constant to limit diffusion and then decreases nearly linearly so the particle
comes close to a stop near the origin. Iterations computing the optimal
control were initialized with u(t) = 0, ∀t

where the control u(t) influences both the drift, as well as

the process noise intensity. We assume that the control is

within the bounds u ∈ [umin, umax] and the initial condition

is x(0) = x0, y(0) = y0, i.e., the initial state PDF ρ([x y], 0)
is a two-dimensional Dirac function centered at x0, y0, i.e.,

ρ([x y], 0) = ρ0([x y]) = δ(x− x0, y − y0) (16)

The cost function we consider is given by expression (6),

the terminal time T = 2 and the instantaneous and terminal

costs are given by

f0(u) =
1

2
Ru2 and φ(x, y) =

a

2
x2 +

b

2
y2. (17)

Other parameters of the process and the cost function are

x0 = −2, y0 = −1, ξ0 = 0.5, ξ1 = 0.5, R = 0.5, a = 5,

b = 5, umin = −10, umax = 10.

The state PDF evolution ρ(t) is given by

∂ρ

∂t
= F (u)ρ = −y

∂ρ

∂x
− u

∂ρ

∂y
+

ξ20
2

∂2ρ

∂x2
+

ξ21u
2

2

∂2ρ

∂y2

The corresponding co-state distribution can be obtained

from the adjoint equation as

−
∂π

∂t
= y

∂π

∂x
+ u

∂π

∂y
+

ξ20
2

∂2π

∂x2
+

ξ21u
2

2

∂2π

∂y2
(18)

π(T ) = φ. (19)

In the latter equation, π can be parameterized as a quadratic

function, analogous to the commonly used Riccati equation

of linear quadratic feedback control [2], and the parameters

are found by solving ordinary differential equations. Thus,

we look for a solution for π in the form

π =
1

2

[

x y
]

P (t)

[

x

y

]

(20)

+α1(t)x+ α2(t)y + β(t).

F ′(u)π =
R

2
u2 + yx[P ]11 + (y2 + xu)[P ]12 + yu[P ]22

+yα1 + uα2 +
ξ20
2
[P ]11 +

ξ21u
2

2
[P ]22. (21)

Collecting similar terms, we get a system of differential

equations,

[Ṗ ]11 = 0 (22)

−[Ṗ ]22 = 2[P ]12 (23)

−[Ṗ ]12 = [P ]11 (24)

−α̇1 = u[P ]12 (25)

−α̇2 = α1 + u[P ]22 (26)

−β̇ =
R

2
u2 + uα2 +

ξ20
2
[P ]11 +

ξ21u
2

2
[P ]22.(27)

that should satisfy the terminal condition for π(T ), given by

φ(x, y). The part of the Hamiltonian with control dependence

can be expressed

H(ρ, π, u) =< ρ,
R

2
u2 +

u2ξ21
2

(

b+ a(T − t)2
)

> (28)

+u
(

a(T − t)x+ (b+ a(T − t)2)y + α2

)

∂H(ρ, π, u)

∂u
= u

(

R+ ξ21
(

b+ a(T − t)2
))

+ α2 (29)

+ < ρ, a(T − t)x+ (b+ a(T − t)2)y >

While we do not know ρ exactly, the inner product can

be computed by sampling trajectories and evaluating the

necessary derivatives of the co-state at the sampled positions.

In order to compute the numerical optimal control presented

in Fig. 2, we discretized control with 100 time steps and we

used 500 trajectory samples.

V. NON-LINEAR EXAMPLE

The purpose of this example is to show implementation of

this method on a problem with non-linear dynamics and more

difficult boundary conditions. Rather than attempting to solve

the resulting PDE’s, we evaluate the co-state by computing

the expectation of costs along trajectory samples and infer all

relevant information on the Hamiltonian from the statistical

data. Once again an iterative method is employed that, de-

spite the noise of the sampled data influencing the iterations

( Fig. 3 ), converges to the optimal control presented in Fig.

4 after iterations of the control shown in Fig. 5.

The non-linear process under control is:

dx = [u(t)− αx]dt+ ξ

√

(3− x)2

2
+ u2(t)dw (30)
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Fig. 3. The convergence plot of the cost for a conjugate gradient method
with λ = 0.05. The use of stochastic process samples in calculations causes
the cost function fluctuations.
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Fig. 4. Optimal control found for the non-linear example problem with
diffusion proportional to the space. Iterations computing the optimal control
were initialized with u(t) = 0, ∀t

with the initial condition x(0) = 0 and the non-linear state

constraints for x,

x(t) ∈ [−3, 3], ∀t, (31)

x(t) ∈ [−2,−1], t = 1, (32)

x(t) ∈ [
1

2
, 2], t = 2 (33)

the process terminates upon hitting the boundary or the

‘walls’ at two intermediate points, and accrues a cost upon

termination. It also has a non-linear relation between the con-

trol and the noise intensity. The process is one-dimensional

and we assume ξ = 0.1, α = 0.5, u(t) ∈ [−3, 3], ∀t, the

terminal time T = 3 and ρ(0) = δ(x). The cost function we

use to control the process is given by

f0(u) =
R

2
u2, φ(x) =

4

9
x2, R = 0.2. (34)

The Hamiltonian with dependance on u is

H(ρ, π, u) =< ρ,
R

2
u2 +

∂π

∂x
+

ξ20u
2

2

∂2π

∂x2
> (35)

and the corresponding gradient with respect to u is

∂H

∂u
(ρ, π, u) =< ρ,Ru+ u

∂π

∂x
+ ξ20u

∂2π

∂x2
> . (36)

In order to compute π, we should use the expectation of

(14). However, with the introduction of the boundaries, any

time a trajectory, which we use to compute π(x, t), hits the

boundaries, i.e, forbidden states, it should be appropriately

weighted in the expectation. Therefore, the expression for

computing the expectation is

π(x+, t) =

1

K

K
∑

k=1

[

φ(xk(T )) +

∫ T

t

f0(xk(s), u)ds

]

(1− Ik) (37)

+
1

K

K
∑

k=1

[

Γ(r) +

∫ r

t

f0(xk(s), u)ds

]

Ik

where xk(t) is the sample of kth trajectory at the time point

t and Ik is 1 if the trajectory k hits the boundary, otherwise

is 0. The function Γ(r) = 7− r puts weight on the length of

the trajectory hitting a boundary at time r ∈ [0, T ] and the

weight is smaller for longer trajectories.

For a numerical solution instead of solving the PDE

we evaluate π(x, t) on a spatio-temporal grid using the

expectation of (37). For all the points that are not at the grid

point, we interpolate π using a piecewise cubic polynomial

resulting from the Matlab’s interp function for cubic spline

approximation. To compute π, we iterate backwards in time,

sampling paths forward and computing the expectation based

on the instantaneous cost, as well as an interpolated value of

the expected value from the time step ahead, for which π has

already been computed. The piecewise cubic polynomial also

gives us approximations of the first and second derivatives

of π.

To compute the inner product to get the Hamiltonian,

we generate multiple process trajectories from the initial

position x(0) and calculate the weighted expression for the

gradient of the Hamiltonian using the interpolated values of

the derivatives of π. In numerical calculations, we use 180

time steps and 20 space steps. For evaluation of π(x, t), we

sample 100 paths for each grid point and 1000 paths for the

inner product. Starting from a control of zero, the conjugate

Fig. 5. A plot of the updated controls for every ten iterations. Although
the calculation of the update is stochastic, we observe the convergence to
the optimal control.
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Fig. 6. Trajectories over a contour for π (gray scale), all calculated for
the optimal control of the non-linear example.

gradient method finds the slits (31-33) and converges to the

optimal control solution.

Fig. 6 shows the computed co-state distribution values as

a contour plot on a gray scale, as well as examples of the

stochastic process trajectories under the computed control.

This helps to illustrate how the diffusion can actually help

the optimization, as without the diffusion the slits (31-33) at

t = 1 and t = 2 would never be found.

VI. CONCLUSIONS

While stochastic optimal control problems have been

studied previously, their relation with the Pontryagin-like

minimum principle has not been made clear and simple by

the literature surveyed by the authors. Having in mind that

the state PDF of stochastic processes under control obeys the

PDE evolutions, we proposed a solution of control problems

based on an infinite dimensional minimum principle.

The Hamiltonian we obtain from the minimum principle

provides us a gradient we can use in numerical iterations

computing the optimal control. In order to obtain the Hamil-

tonian, we can use the PDE solutions. However, we also

showed that the Hamiltonian can be computed based on

stochastic trajectory samples and we provided two illustrative

examples.

The method for computing the Hamiltonian utilizing

stochastic processes is general, it can work in many dimen-

sions and deal with complex state constraints. Due to its

intrinsic stochasticity, the optimization methods based on

such computations have also a better chance of escaping

from local minimums. For future research, methods of using

importance sampling or sampling with larger diffusions could

be considered as ways of improving the search for global

rather then local minimums.

APPENDIX I

The work of this paper is based on Theorem 6.6.2 from

H.O. Fattorini’s book [5]. This theorem has the hypothesis

that the evolution operator, which is in our case Fρ, is a

Fréchet differentiable, and both the operator and its derivative

are bounded. Since the differential operator we are dealing

with is linear, these conditions are met for our case when the

operator is bounded, as shown in Appendix IV. The same

has to be valid for the instantaneous cost and the terminal

cost is assumed to be a Fréchet differentiable.

Assuming there are no restrictions on ρ at the terminal

time T , the necessary conditions of optimality are that there

exists a scalar z0 ≥ 0 and the co-state distribution π∗(x, t)
satisfying

−
∂π∗(X, t)

∂t
= F ′(u∗)π∗(X, t)+z0f0(X, t),

π(T ) = z0φ(T )

< ρ∗, z0f0 > + < F (u∗)ρ∗, π∗ >=

min
u∈U

{< ρ∗, z0f0 > + < F (u)ρ∗, π∗ >} .

where u∗ is the optimal control, while ρ∗ and φ∗ are

the state PDF and co-state distribution under the optimal

control, respectively. The Hamiltonian we are dealing with

is defined by the expression inside the braces. Generally, z0
is determined only up to multiplication by a positive scalar

and in our work is set to be 1. In relation to classic optimal

control, π can be interpreted as a Lagrange multiplier for the

differential constraint.

APPENDIX II

We would like to find the adjoint differential operator F ′

satisfying the Green’s identity,

< Fρ, π > − < ρ, F ′π >= 0. (38)

To determine the adjoint operator and the proper boundary

conditions for π, we use the product rule to ‘liberate’ ρ [14],

πFρ =

n
∑

i,j=1

−π
∂

∂xi

(biρ) +
1

2
π
∂2
(

[LLT ]ijρ
)

∂xi∂xj

,

=

n
∑

i,j=1

(

−
∂

∂xi

(πbiρ) + ρbi
∂

∂xi

π

)

+
1

2

∂

∂xi

(

π
∂
(

[LLT ]ijρ
)

∂xj

)

−
1

2

∂

∂xi

(

[LLT ]ijρ
∂π

∂xj

)

+
1

2
ρ[LLT ]ij

∂2π

∂xi∂xj

.

The “process of liberation” is shown in [14] on p. 196, and

on pp. 171, 180 there are discussions on how the boundary

conditions belong to the differential operator.

From the terms for which ρ has been ‘liberated’, we define

the adjoint operator F ′ by

F ′π =
n
∑

i,j=1

bi
∂

∂xi

π +
1

2
[LLT ]ij

∂2π

∂xi∂xj

(39)

and the additional condition that must be satisfied

0 = < πFρ− ρF ′π >

=

∮

∂D

n
∑

i,j=1

ni

(

(πbiρ) +
1

2
π
∂
(

[LLT ]ijρ
)

∂xj

−
1

2
[LLT ]ijρ

∂π

∂xj

)

dS
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The last line is an application of the divergence theorem,

where the term becomes the dot product with a normal

vector, n, of the boundary surface.

APPENDIX III

The inner product of a function with a PDF represents the

expectation of a function with regards to that PDF. Let φ be

an arbitrary PDF,

∂

∂t
(< φ, π >) = <

∂φ

∂t
, π > + < φ,

∂π

∂t
>,

= < Fφ, π > − < φ, f0 + F ′π >,

= − < φ, f0 > .

The adjoint operator is defined to satisfy the Green’s identity

leaving only the term of instantaneous cost on the right-hand

side. Now, integrate both sides from t → T

< φ, π > |T− < φ(t), π(t) > |t = −

∫ T

t

< φ, f0 > |sds,

and let φ(X, t) be a delta function centered at X+, i.e,

φ(X, t) = δ(X −X+); then the expression above becomes

< φ, π > |T − π(X+, t) = −

∫ T

t

< φ, f0 > ds,

and finally we obtain

π(X+, t) =< φ, π >T +

∫ T

t

< φ, f0 > ds.

which is equivalent to the expectation of (14). If we have a

boundary condition such that paths terminate earlier, we also

need to include the end cost for those paths.

APPENDIX IV

In this appendix, we provide assumptions under which the

operator F is bounded. We can use the product rule to rewrite

(2) in terms of derivatives of ρ,

Fρ =
n
∑

i,j=1

∂

∂xi

(biρ)

+
1

2

∂

∂xi

(

ρ
∂[LLT ]ij

∂xj

+ [LLT ]ij
∂ρ

∂xj

)

,

=

n
∑

i

(

ρ
∂bi

∂xi

+ bi
∂ρ

∂xi

)

+

n
∑

i,j

(1

2
ρ
∂[LLT ]ij
∂xi∂xj

+
∂2[LLT ]ij

∂xi

∂ρ

∂xj

+
1

2
[LLT ]ij

∂2ρ

∂xi∂xj

)

.

Naturally, we define the L2 norm ‖ · ‖ using the scalar

product (4). To show the boundedness, we must show that

for ρ ∈ L2, ∃M ∈ R
+, such that for

||ρ|| ≤ 1, ||Fρ|| ≤ M. (40)

Using the Cauchy-Schwartz inequality and triangle in-

equality, we see that

‖Fρ‖ ≤

n
∑

i,j

∣

∣

∣

∣

∣

∣

∂bi

∂xi

ρ
∣

∣

∣

∣

∣

∣
+

1

2

∣

∣

∣

∣

∣

∣

∂2[LLT ]ij
∂xi∂xj

ρ
∣

∣

∣

∣

∣

∣

+
n
∑

i,j

∣

∣

∣

∣

∣

∣
bi

∂ρ

∂xi

∣

∣

∣

∣

∣

∣
+
∣

∣

∣

∣

∣

∣

∂[LLT ]ij
∂xi

∂ρ

∂xj

∣

∣

∣

∣

∣

∣

+
n
∑

i,j

1

2

∣

∣

∣

∣

∣

∣
[LLT ]ij

∂2ρ

∂xi∂xj

∣

∣

∣

∣

∣

∣
.

It is clear that ||Fρ|| is bounded as long as b, LLT , ρ

and its first and second derivatives are bounded. In the case

of discontinuities, extra care should be taken to define the

operator F on a Sobolev space in such a way that the operator

is bounded.
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