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Abstract— We consider the problem of stabilizing and mini-
mizing the disturbance response of a SISO LTI plant, subject
to a stochastic disturbance, over an analog communication
channel with additive white noise and a signal-to-noise ratio
(SNR) constraint. The controller is linear, based on output
feedback and has a structure with two degrees of freedom:
One part represents sensing and encoding operations and the
other part represents decoding and issuing the control signal.
It is shown that the problem of simultaneously designing the
two optimal controller parts can be solved in two stages: First
a functional depending both on the 1- and 2-norms of the Youla
parameter is minimized. This minimization can be arbitrarily
well approximated by a quasiconvex program. The second stage
consists of a spectral factorization.

I. INTRODUCTION

The trend towards decentralized control systems has in

recent years inspired a lot of research on networked control

systems (NCS). As control systems are required to operate

using non-ideal communication channels between its parts,

it becomes important to take into account the impact of

these channels on the control performance. Communication

constraints, which are a fundamental aspect of NCS, can

take various forms depending on the type of communication

system used. In digital networks there may be packet drops,

bit rate limitations, and time delays. In analog communica-

tion systems there may be constraints on the Signal-to-Noise

Ratio (SNR).

The NCS considered in this paper uses an analog commu-

nication channel and has the architecture seen in Fig. 1. The

controller has two degrees of freedom: C can be seen as a

sensor/encoder and D as a decoder/controller.

A. Previous Research

Until a few years ago, the majority of the research on

NCS with analog channels was focused on fundamental

limitations. Stabilizability of the feedback loop has been

characterized for general noisy channels in [12]. For Additive

White Noise (AWN) channels, conditions on the SNR for

stabilizability were derived, under different assumptions, in

[2] and [13]. limitations due to noisy channels have also been

characterized in [10] and [6].

More recently, the design problem has gained more atten-

tion. Design of an encoder-decoder pair with one degree of

freedom, when placing a fixed nominal controller in either

part, was studied in [7]. In [4], the decoder was optimized

under the assumption of a constant gain encoder, and it was

shown that this structure is optimal for first order plants.
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Fig. 1. General feedback system with noisy communication channel. In
this paper, C and D are linear and the channel has an SNR constraint.

Another approach was taken in [14], where instead the

decoder was fixed to be a unit gain.
The case when the encoder has access to the channel

output (feedback channel) has been considered in [1], where

it was shown that non-linear strategies can be better than

linear if the system is not of order one. Further, linear

strategies were studied in [13], [15] and others. The feedback

channel makes the problem different, but it is interesting to

see that the solution in [15] involves minimizing a functional

with a similar structure to the one obtained in this paper.
The problem of optimizing the control performance at

a given terminal time was considered in [5] and [3]. The

solutions may however yield poor transient performance and

therefore be unsuitable for closed-loop control.

B. Main Contribution

The problem of designing the optimal linear output feed-

back controller with two degrees of freedom is considered.

The plant is SISO, LTI and subject to a stochastic distur-

bance. The objective of the controller is to stabilize the

system, satisfy an SNR constraint on the noisy channel and

minimize the plant output.

It is shown that the optimal controller can be found by first

minimizing a functional which depends on a combination of

1- and 2-norms of the Youla parameter. It is demonstrated

that this minimization can be arbitrarily well approximated

by a quasiconvex program. The controller is then obtained

from a spectral factorization.

The solution technique is based on transfer function repre-

sentations. It is closely related to the methodology used in [8]

for design of an encoder-decoder pair for signal estimation

over a channel of the same type as here.

C. Notation

Denote the unit circle by T. For 1 ≤ p ≤ ∞, we define

the Lebesgue spaces Lp and the Hardy spaces Hp, over T,

in the usual manner. The space of real, rational and proper
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transfer functions is denoted by R. The intersections of R
with Hp and Lp are denoted RHp and RLp respectively. For

details, consult standard textbooks such as [11] and [18].
For 1 ≤ p < ∞ and scalar transfer functions X and Y ,

define the p-norms

‖X‖p =

(

1

2π

∫ 2π

0

∣

∣X(eiω)
∣

∣

p
dω

)1/p

and the quantity

〈X,Y 〉 =
1

2π

∫ 2π

0

X∗(eiω)Y (eiω)dω.

A transfer function X ∈ Hp is said to be outer if the set

{Xq : q is a polynomial in z−1} is dense in Hp. If X is

rational, then this is equivalent to X(z) 6= 0 for |z| > 1.
Equalities and inequalities involving functions in Lp evalu-

ated on T are to be interpreted as holding almost everywhere

on T. That is, the subset of T in which the (in)equality does

not hold is of measure zero. Transfer function arguments will

sometimes be omitted when they are clear from context.

II. PROBLEM FORMULATION

Consider the system in Fig. 2. The plant G is assumed

to be a finite dimensional, SISO, LTI system whose transfer

function G(z) admits a coprime factorization over RH∞.

The input signals, the disturbance v and the channel noise

n are mutually independent white noise sequences with zero

mean and identity variance (the signal w is only included in

the stability definition and is otherwise assumed to be zero).

The system is studied under a stationarity assumption, so the

feedback system is required to be internally stable.
The communication channel is assumed to be an AWN

channel with a transmission power constraint. Specifically,

r(k) = t(k) + n(k), E(t(k)2) ≤ σ2 (1)

where k is the time index, t is the transmitted variable,

r is the received variable, n is the channel noise, and

σ > 0 determines the maximum instantaneous transmission

power. Since the transmission power constraint in this case

is equivalent to an SNR constraint [13], we shall refer to it

as the SNR constraint.
The objective is to find the transfer functions of C and D

such that E(y2), the stationary variance of the plant output,

is minimized, while making the system internally stable and

satisfying the SNR constraint (1). The search is restricted to

linear C,D. However, we make no claim that linear solutions

are optimal per se.
Under these assumptions, the relevant variances are given

by the closed-loop transfer functions, and we have:
Problem 1:

minimize
C,D

‖y‖
2
2 =

∥

∥

∥

∥

G

1−GDC

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

DG

1−GDC

∥

∥

∥

∥

2

2

subject to

‖t‖
2
2 =

∥

∥

∥

∥

CG

1−GDC

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

DCG

1−GDC

∥

∥

∥

∥

2

2

≤ σ2

while achieving internal stability of the feedback system.

CD

G
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r t

n
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w

Fig. 2. Model of feedback system with disturbance and a noisy communi-
cation channel. The input w is only used for definition of internal stability.

III. SOLUTION

This section is divided into four subsections. In the first,

conditions for internal stability of the feedback system are

presented. In the second, it is shown how to find optimal C
and D if their product DC is given. In the third subsection,

a criterion for stabilizability under the SNR constraint is

presented, and the factorization result is used to show equiv-

alence between Problem 1 and minimization of a functional

in the Youla parameter. Finally, in the fourth subsection, it is

shown that this minimization problem can be approximated

arbitrarily well by a quasiconvex optimization problem.

A. Internal Stability

In order to analyze internal stability of the closed loop

system, we consider the block diagram in Fig. 2. The system

can be represented by the closed loop map T ,




y
t
u



 = T





v
w
n



 .

The feedback system of Fig. 2 is said to be internally

stable if

T =





G DCG DG
CG C DCG
DCG DC D



 (1−GDC)
−1

∈ H2. (2)

This definition implies that, given stochastic input signals

with finite variance, all the signals in the system will have

bounded variance.

The product DC will play an important role so we

introduce the notation K = DC. For practical reasons, we

will restrict ourselves to considering K ∈ RL1. It will be

shown in section III-D that this restriction does not change

the infimum value of the problem.

Together with (2), K ∈ RL1 implies that

[

1 −K
−G 1

]−1

=

[ 1
1−GK

K
1−GK

G
1−GK

1
1−GK

]

∈ RH∞, (3)

since these transfer functions are rational and have no poles

on or outside the unit circle. It is well-known that the set

of K satisfying (3) can be parameterized using the Youla

parameterization of all stabilizing controllers [18].

It will be shown in the next subsection how to find the

optimal factors C and D, for any given K ∈ RL1 such that

(3) holds. It turns out that the optimal factors can always be
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chosen so that C ∈ H2 is outer and D ∈ L2. For such K,

C and D, it is easy to show that T ∈ H2. Hence, we make

the following characterization of internal stability, which is

a slight variation of the Youla parametrization:

Lemma 1: Suppose that G = NM−1 is a coprime factor-

ization over RH∞ and that U, V ∈ RH∞ satisfy the Bezout

identity VM + UN = 1. Suppose further that C ∈ H2 is

outer, that D ∈ L2 and that K = DC ∈ RL1. Then the

closed loop system is internally stable if and only if

K =
MQ− U

NQ+ V
, Q ∈ RH∞. (4)

B. Optimal Factorization of K

Suppose for now that the product K = DC ∈ RL1 is

given, and that (4) holds. Perhaps K is a nominal controller

that is designed to have some desired properties and now

has to be implemented in the architecture of Fig. 2. Another

possibility is that K is optimal in the sense that it is the

product of some C and D that is the solution to problem 1.

In either case, a natural question to ask is how to factorize

K into C and D such that internal stability is achieved,

the SNR constraint is satisfied (if possible) and ‖y‖
2
2 is

minimized (the latter is equivalent to minimizing the impact

of the channel noise). If K is “optimal”, then finding an

optimal factorization should give a solution to Problem 1.

Problem 2 (Optimal Factorization): Given K ∈ RL1 such

that (4) holds,

minimize
C,D

∥

∥

∥

∥

G

1−GK

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

DG

1−GK

∥

∥

∥

∥

2

2

(5)

subject to

K = DC,

∥

∥

∥

∥

CG

1−GK

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

KG

1−GK

∥

∥

∥

∥

2

2

≤ σ2. (6)

while achieving internal stability of the feedback system.

Note that the first term in (5) and the second term in (6)

are constant. Problem 2 can thus be solved by applying the

following lemma. For simplicity, the lemma is written in

terms of a transfer function H , which is to be interpreted as

H = G/(1−GK) when considering Problem 2.

Lemma 2: Suppose that α > 0, H ∈ RH∞ and that

K ∈ RL1 satisfies (3). Then the minimum

min
C∈H2,D∈L2

‖DH‖
2
2 (7)

subject to the constraints

K = DC, ‖CH‖
2
2 ≤ α (8)

is attained. The minimum value is

1

α

∥

∥KH2
∥

∥

2

1
. (9)

Moreover, if K is not identically zero, then C and D are

optimal if and only if C ∈ H2, D = KC−1 ∈ L2 and

|C|
2
=

α

‖KH2‖1
|K| on T. (10)

If K = 0, then the minimum is achieved by C = D = 0.

Proof: The proof is trivial if K = 0, so assume that

K is not identically zero. Then C is not identically zero and

D = KC−1. Cauchy-Schwarz’s inequality gives that

∥

∥KC−1H
∥

∥

2

2
‖CH‖

2
2 ≥ 〈

∣

∣KC−1H
∣

∣ , |CH|〉2 =
∥

∥KH2
∥

∥

2

1
.

This shows that (9) is a lower bound on (7). Equality holds

if and only if
∣

∣KC−1H
∣

∣ = λ |CH| for some λ ∈ R and

‖CH‖
2
2 = α. It is easily verified that this is equivalent to

the optimality condition (10).

It only remains to verify the existence of C ∈ H2 and

D = KC−1 ∈ L2 such that (10) holds. Since K satisfies

(3), it can be written as in (4) with M,N,Q,U, V ∈ RH∞

and thus

log |K| = log |MQ− U | − log |NQ+ V |.

By Lemma 6 (in appendix), log |MQ− U | ∈ L1 and

log |NQ+ V | ∈ L1. Thus log |K| ∈ L1, so K satisfies

∫ 2π

0

log
∣

∣K
(

eiω
)∣

∣dω > −∞. (11)

It follows from Theorem 4 (in appendix) that there exists

an outer function C ∈ H2 such that (10) holds. Finally,

D = KC−1 ∈ L2 since

∥

∥KC−1
∥

∥

2

2
=

1

α

∥

∥KH2
∥

∥

1
‖K‖1 <∞.

Note that thanks to Szegő’s theorem, C can always be chosen

to be H2 and outer instead of, for example, L2, without

any increase in the optimal value. However, changing this

restriction could give more possible solutions. For example,

we could choose D to be H2 and outer. In this paper, we

settle on restricting C in this way since it simplifies the

characterization of internal stability.

Analyzing the structure of the solution to the factorization

problem, it is interesting to note that the magnitudes of C
and D are directly proportional to the square root of the

magnitude of K, on the unit circle. In other words, the

dynamics of K is “evenly” distributed on both sides of the

communication channel. The static gain of C is such that the

SNR constraint is active.

C. Minimum Variance Control

We will now present a condition for stabilizability of a

plant under the SNR constraint. First, we need to define the

set of admissible pairs (C,D),

ΘC,D = {(C,D) : C ∈ H2 is outer, D ∈ L2, DC ∈ RL1,

T ∈ H2,

∥

∥

∥

∥

CG

1−GDC

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

DCG

1−GDC

∥

∥

∥

∥

2

2

≤ σ2

}

,

and the set of admissible Q,

ΘQ =

{

Q : Q ∈ RH∞,K =
MQ− U

NQ+ V
∈ RL1,

‖MNQ−NU‖
2
2 < σ2

}

.

(12)
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The next lemma says that the smallest SNR compatible

with stabilization by linear filters can be found by consid-

ering ΘQ. That is, by minimizing ‖MNQ−NU‖
2
2. This

result was previously presented as Theorem III.2 in [2],

where an analytical formula for the smallest SNR was also

given, showing that the SNR requirement depends not only

on the unstable plant poles but also on the non-minimum

phase zeros and the relative degree. The condition is included

here in the present form to simplify the main theorem.

Lemma 3: Suppose that σ > 0, G = NM−1 is a coprime

factorization over RH∞ and that U, V ∈ RH∞ satisfy

the Bezout identity VM + UN = 1. Then there exists

(C,D) ∈ ΘC,D if and only if there exists Q ∈ ΘQ.

Proof: Suppose that (C,D) ∈ ΘC,D and
∥

∥

∥

∥

DCG

1−GDC

∥

∥

∥

∥

2

2

= σ2.

Then
∥

∥

∥

∥

CG

1−GDC

∥

∥

∥

∥

2

= 0 ⇒

∥

∥

∥

∥

DCG

1−GDC

∥

∥

∥

∥

2

= 0,

which is a contradiction. Hence,
∥

∥

∥

∥

DCG

1−GDC

∥

∥

∥

∥

2

2

< σ2 ∀(C,D) ∈ ΘC,D. (13)

By Lemma 1 there exists Q ∈ RH∞ such that (4) holds

for K = DC ∈ RL1. Moreover,

σ2 >

∥

∥

∥

∥

KG

1−GK

∥

∥

∥

∥

2

2

= ‖MNQ−NU‖
2
2 , (14)

so Q ∈ ΘQ.

Suppose conversely that Q ∈ ΘQ. Then (3) and (14) hold.

Define

α = σ2 −

∥

∥

∥

∥

KG

1−GK

∥

∥

∥

∥

2

2

, H =
G

1−GK
. (15)

Then Lemma 2 shows existence of an outer C ∈ H2 and

D ∈ L2 such that DC = K and ‖CH‖
2
2 ≤ α. It then follows

from Lemma 1 that T ∈ H2, so (C,D) ∈ ΘC,D.

The following theorem is one of the main results of this

paper. It shows that the infimum of Problem 1 is equal to the

infimum of an optimization problem in the Youla parameter.

Theorem 1: Make the same assumptions and definitions as

in Lemma 3. Further, suppose that ΘC,D is non-empty and

introduce A = N2, B = NV , E = MN and F = −NU
and the functionals

ϕ(C,D) =

∥

∥

∥

∥

G

1−GDC

∥

∥

∥

∥

2

2

+

∥

∥

∥

∥

DG

1−GDC

∥

∥

∥

∥

2

2

ψ(Q) = ‖AQ+B‖
2
2 +

‖(AQ+B) (EQ+ F )‖
2
1

σ2 − ‖EQ+ F‖
2
2

. (16)

Then

inf
(C,D)∈ΘC,D

ϕ(C,D) = inf
Q∈ΘQ

ψ(Q).

Moreover, suppose Q ∈ ΘQ minimizes ψ(Q). Then let

K = (MQ− U)(NQ+ V )−1.

If K is not identically zero, then (C,D) ∈ ΘC,D minimize

ϕ(C,D) if and only if K = DC and

|C|
2
=
σ2 −

∥

∥

∥

KG
1−GK

∥

∥

∥

2

2
∥

∥

∥

KG2

(1−GK)2

∥

∥

∥

1

|K| on T. (17)

If K = 0, then ϕ(C,D) is minimized by C = D = 0.

Proof: Define the sets

ΘC,D(K) = {(C,D) : (C,D) ∈ ΘC,D, DC = K}

ΘK =

{

K : K ∈ RL1 satisfies (3),

∥

∥

∥

∥

KG

1−GK

∥

∥

∥

∥

2

2

< σ2

}

.

Note that due to (13),

(C,D) ∈ ΘC,D ⇔ (C,D) ∈ ΘC,D(K) for some K ∈ ΘK .

since the additional inequality in ΘK imposes no restriction.

Now the minimization problem will be rewritten through a

series of equalities, followed by an explanation of each step.

inf
(C,D)∈ΘC,D

ϕ(C,D) = inf
K∈ΘK

(

inf
(C,D)∈ΘC,D(K)

ϕ(C,D)

)

= inf
K∈ΘK

(

∥

∥

∥

∥

G

1−GK

∥

∥

∥

∥

2

2

+ inf
(C,D)∈ΘC,D(K)

∥

∥

∥

∥

DG

1−GK

∥

∥

∥

∥

2

2

)

= inf
K∈ΘK







∥

∥

∥

∥

G

1−GK

∥

∥

∥

∥

2

2

+

∥

∥

∥

KG2

(1−GK)2

∥

∥

∥

2

1

σ2 −
∥

∥

∥

KG
1−GK

∥

∥

∥

2

2







= inf
Q∈ΘQ

‖AQ+B‖
2
2 +

‖(AQ+B) (EQ+ F )‖
2
1

σ2 − ‖EQ+ F‖
2
2

In the first equality, the minimization over ΘC,D is param-

eterized by the product K = DC. In the second equality,

the first term of ϕ(C,D) is moved out from the inner

minimization since it is constant for fixed K. In the third

equality, Lemma 2 is applied with α and H given by (15).

In the fourth equality, the parameterization (4) is used, since

(3) holds. The Bezout identity gives that

G

1−GK
= AQ+B,

KG

1−GK
= EQ+ F.

The optimality conditions for C and D follow from the

application of Lemma 2.

D. Quasiconvex Approximation

It will now be shown that the minimization of ψ(Q) over

ΘQ can be arbitrarily well approximated by a quasiconvex

optimization problem. To this end, the constraint K ∈ RL1,

which is non-convex in Q, is removed. The minimization is

thus done over the convex set

Θ̌Q =
{

Q : Q ∈ RH∞, ‖EQ+ F‖
2
2 < σ2

}

. (18)

instead of over ΘQ. Clearly, ΘQ ⊆ Θ̌Q. This change of

optimization domain is motivated by the following theorem:

Theorem 2: With definitions given by (12), (16) and (18),

inf
Q∈ΘQ

ψ(Q) = inf
Q∈Θ̌Q

ψ(Q). (19)
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Proof: Only a sketch of the proof is provided here due

to limited space. Clearly, infQ∈ΘQ
ψ(Q) ≥ infQ∈Θ̌Q

ψ(Q)

since ΘQ ⊆ Θ̌Q. Conversely, for any Q̌ ∈ Θ̌Q\ΘQ, define Q
as a small perturbation of Q̌, such that NQ+V has no zeros

on T. Existence of such perturbations can be shown using

the implicit function theorem. For sufficiently small pertur-

bations, |ψ(Q) − ψ(Q̌)| and
∣

∣‖EQ+ F‖2 −
∥

∥EQ̌+ F
∥

∥

2

∣

∣

will be small by continuity. Hence, Q ∈ ΘQ and the stated

equality follows from infQ∈ΘQ
ψ(Q) ≤ infQ∈Θ̌Q

ψ(Q).

Theorem 2 shows that the approximation can be made

sufficiently accurate. If the obtained K has poles on the unit

circles, a small perturbation must be done to make factoriza-

tion possible. It will now be shown that the approximation

is quasiconvex. To this end, define the functional

ρ(a, e) =
1

2π

∫ 2π

0

a(ω)2dω +

(

1
2π

∫ 2π

0
a(ω)e(ω)dω

)2

σ2 − 1
2π

∫ 2π

0
e(ω)2dω

,

with domain

{

(a, e) : a(ω), e(ω) ≥ 0 ∀ω,
1

2π

∫ 2π

0

e(ω)2dω < σ2

}

.

Lemma 4: Suppose Q ∈ Θ̌Q. Then ψ(Q) ≤ γ if and only

if there exists (a, e) such that ρ(a, e) ≤ γ and

a ≥ |AQ+B|, e ≥ |EQ+ F | ∀ω. (20)

Proof: Suppose ψ(Q) ≤ γ. Then it is enough to define

a = |AQ+B| and e = |EQ+F |. Conversely, suppose that

a and e satisfies the stated conditions. It then follows from

inspection of the functionals that ψ(a, e) ≤ ρ(a, e) ≤ γ.

Lemma 5: The functional ρ(a, e) is quasiconvex.

Proof: ρ(a, e)− γ is the Schur complement of

M =

[

1
2π

∫ 2π

0
e(ω)2dω − σ2 1

2π

∫ 2π

0
a(ω)e(ω)dω

1
2π

∫ 2π

0
a(ω)e(ω)dω 1

2π

∫ 2π

0
a(ω)2dω − γ

]

.

So ρ(a, e) ≤ γ if and only if M � 0. Equivalently,

1

2π

∫ 2π

0

[

e(ω)
a(ω)

] [

e(ω)
a(ω)

]T

dω �

[

σ2 0
0 γ

]

. (21)

Pre- and postmultiplication with z ∈ R
2 gives the equivalent

condition

∥

∥

[

e a
]

z
∥

∥

2

L2
≤ zT

[

σ2 0
0 γ

]

z ∀z,

which is convex in (e, a).

Theorem 3: The problem of minimizing ψ(Q) over Θ̌Q

is quasiconvex.

Proof: Suppose that Q1, Q2 ∈ Θ̌Q, ψ(Q1) ≤ γ,

ψ(Q2) ≤ γ and 0 ≤ θ ≤ 1. Then by Lemma 4 ∃a1, a2, e1, e2
such that ρ(a1, e1) ≤ γ and ρ(a2, e2) ≤ γ. By Lemma 5,

ρ (θa1 + (1− θ)a2, θe1 + (1− θ)e2) ≤ γ. Moreover, the

constraints (20) are convex in (a, e,Q). Hence, it follows

from Lemma 4 that ψ(θQ1 + (1− θ)Q2) ≤ γ.

IV. PROCEDURE FOR NUMERICAL SOLUTION

A. Optimization Program

By Lemma 4, the problem can be solved by minimiz-

ing ρ(a, e). In other words, minimize γ subject to (20),
1
2π

∫ 2π

0
e(ω)2dω < σ2 and M � 0. However, this problem

is infinite-dimensional, so the integrals must be discretized

and Q must be given a finite basis representation.
For N ≥ 2, define the grid points {ωk}

N
k=1, where ω1 = 0

and ωk+1 − ωk = 2π/N . Then M � 0 is approximated by
[

1
N

∑N
k=1 e(ωk)

2 − σ2 1
N

∑N
k=1 a(ωk)e(ωk)

1
N

∑N
k=1 a(ωk)e(ωk)

1
N

∑N
k=1 a(ωk)

2 − γ

]

� 0,

or

[

Nσ2 0
0 Nγ

]

−











e(ω1) a(ω1)
e(ω2) a(ω2)

...
...

e(ωN ) a(ωN )











T

IN











e(ω1) a(ω1)
e(ω2) a(ω2)

...
...

e(ωN ) a(ωN )











� 0.

Using Schur complement again, this is equivalent to


















1 e(ω1) a(ω1)
1 e(ω2) a(ω2)

. . .
...

...

1 e(ωN ) a(ωN )
e(ω1) e(ω2) . . . e(ωN ) Nσ2 0
a(ω1) a(ω2) . . . a(ωN ) 0 Nγ



















� 0. (22)

The remaining constraints can be approximated by

a(ωk) ≥
∣

∣A(eiωk)Q(eiωk) +B(eiωk)
∣

∣ , k = 1 . . . N (23)

e(ωk) ≥
∣

∣E(eiωk)Q(eiωk) + F (eiωk)
∣

∣ , k = 1 . . . N (24)

1

N

N
∑

k=1

e(ωk)
2 < σ2 (25)

Minimizing γ subject to (22)–(25) is a semidefinite pro-

gram with second-order cone constraints. By definition of

the integral, the approximations converge as N → ∞, so

the value of the approximated problem is arbitrarily close to

(19) for sufficiently large N .

B. Algorithm for solving Problem 1

1) Determine a coprime factorization of G and calculate

A,B,E, F as defined in Theorem 1.

2) Parameterize Q by a finite basis representation, for

example as an FIR filter.

3) Choose N large and calculate the grid points.

4) Minimize γ subject to (22)–(25). If the problem is

infeasible it could mean that a larger σ is needed to

stabilize the plant. This can be checked analytically

using the condition in [2]. If σ is sufficiently large, the

problem could still become infeasible if N is too small

or Q is too coarsely parameterized.

5) Calculate K using (4) and determine a stable and outer

spectral factor of |K|. Most likely, this has to be done

approximately.

6) Using this spectral factor, calculate C according to

(17). Finally, let D = KC−1.
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Fig. 3. Variance of the plant output y as a function of the maximum allowed
transmission power σ2, for the plant G = 1/(z(z−2)). The variance grows
unbounded as σ2 approaches the lower limit for stabilization.

V. NUMERICAL EXAMPLE

Consider the plant G = 1/(z(z − 2)). It has one unstable

pole and a one-sample time delay. Using Theorem III.2 in

[2], we determine that stabilization is possible for σ2 > 12.

Problem 1 was solved for various values of σ2, using the

method in section IV with Matlab and the toolboxes [9] and

[16]. In the optimization program, N = 629 grid points were

used and Q was parametrized as an FIR filter with length 20.

The performance is plotted in Fig. 3 as a function of σ2.

It can be seen that the variance of the plant output grows

unbounded as σ2 approaches 12 and the feedback system

comes closer to instability.

VI. CONCLUSIONS

This paper has three important contributions. First of all,

it shows that the considered design problem is in some

sense equivalent to minimizing a functional of the Youla

parameter. The functional has an interesting structure as it

depends both on 1- and 2-norms of the parameter. Second,

it gives a numerical algorithm for finding an arbitrarily good

approximation of the solution to the optimization problem.

Third, conditions are given for the optimal factorization of

a nominal controller, so that it can be implemented in the

system architecture of Fig. 1.

This work suggests many areas for future research. For

example, the extension to MIMO plants, or an investigation

of the (sub)optimality of linear solutions.

APPENDIX

The following lemma consists of one of the results stated

in Theorem 17.17 in [11].

Lemma 6: Suppose 0 < p ≤ ∞, X ∈ Hp, and X is not

identically zero. Define

X̄(eiω) = lim
r→1+

X(reiω).

Then log |X̄| ∈ L1.

The following theorem is a generalization of the Fejér-

Riesz Theorem and can be found in [17].

Theorem 4 (Szegő): Suppose that f(ω) is a non-negative

function on ω ∈ [−π, π], that is Lebesgue integrable and that
∫ π

−π
log f(ω) dω > −∞. Then there exists an outer function

X ∈ H2 such that for almost all ω ∈ [−π, π] it holds that

X(eiω) = limr→1+ X(reiω) and f(ω) = |X(eiω)|2.
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