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Abstract— This paper focuses on the modeling, identification
and control of the Pierburg mechatronic actuator. This is an
air inlet swirl actuator. It is used in the BMW 6 cylinder diesel
engine to control the air amount entering in the piston chamber.
Physical model, which accurately reproduces the real behavior
of this actuator, is developed using its static characteristics.
This mechatronic actuator is subject of parameter variation
during its life span. Therefore, a PI-Fuzzy logic controller is
designed to ensure the desired performance. Simulation results
using Simulink and experimental results using Labview with
CompactRIO are presented. Results show that the PI-Fuzzy
logic controller is able to govern the system and to guarantee
the desired performance.

I. INTRODUCTION

Mechatronics is a multidisciplinary engineering that aims
to design simple, more efficient and reliable systems by
combining the knowledge of numerous disciplines, such as
the mechanics, the electronics, the control engineering, etc.
Because of the development of these disciplines, mecha-
tronics are becoming more and more important. Nowadays,
the mechatronic systems are increasingly adopted to realize
extremely important tasks and to accomplish very crucial
actions. In motorization field, the mechatronic systems or
also the mechatronic actuators are extensively used to im-
prove the vehicle comfort as well as the engine efficiency.
An important evolution of the internal combustion engine
has been made using the mechatronic actuators to control
its air path. As example, excellent air-fuel mixture implies
high engine power production and low engine greenhouse gas
emission. This may be achieved using inlet swirl actuators
[21] to control the air amount entering into the cylinder, and
exhaust gas recirculation actuators [22] to reduce the NOx
emission in internal combustion engines.

The Pierburg actuator is an electromechanical inlet swirl
actuator. It is used in the BMW 6 cylinder diesel engine to
control the air flow entering into the combustion chamber.
Such system has a highly nonlinear behavior, due in part to
external factors (temperature transients, disturbance...), and
in other part to its own structure (gear systems relating the
motor to the output shaft [1], springs [3], etc). Actually,
such structure gives rise to extremely nonlinear phenomena
such as friction forces, backlash phenomenon, hysteresis,
etc. Therefore, the modeling of such system brings together
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knowledge of several disciplines such as: machine design
[2], mechanic aspects [19], tribology [20], etc. Furthermore,
the temperature transients and the material ageing cause
parameter variations. Hence, an uncertain behavior is regen-
erated. Therefore, a robust controller is essential to ensure
the desired performance while the system uncertainties occur.
The fuzzy logic controller (FLC) has proven to be successful
in the control of black box systems. It has also shown an
improved performance over the classical controller when
the transfer function is known [15]. Consequently, a lot of
interest has been spent to the development and design of
FLC, especially after the publication of L. A. Zadeh and E.
H. Mamdani works [4], [5].

This paper addresses the modeling and identification of the
Pierburg mechatronic actuator. Herein, the main objective is
to design an appropriate model for simulation and control,
a model which accurately reproduces the dynamics of the
system taking in consideration the friction phenomenon. For
this, the identification procedure given in [3], is applied. This
procedure is based on the system’s static characteristics. It
allows, using standard techniques, to achieve the modeling
objective mentioned above. Such system is subject of param-
eter variations, due to the ageing process and to some other
external factors (e.g. temperature transients). Subsequently,
a PI-fuzzy logic controller (PIFLC) is designed to ensure the
desired performance even if the parameter variations occur.
The effectiveness of the Pierburg simulator and the proposed
controller are validated by simulation using Simulink and by
experiments using Labview.

II. THE PIERBURG MECHATRONIC ACTUATOR

A. Actuator description

The Pierburg actuator is an inlet swirl actuator which is
supposed to control the air amount entering in the piston
chamber. Fig. 1-(A) illustrates the internal components of
the considered system. While Fig. 1-(B) shows a simplified
diagram of the actuator. Herein, two parts may be discerned:
the electrical and the mechanical parts. The first one is a
DC motor, whereas the second one includes a gear system
and a helical spring attached to the output shaft. The electric
motor is supplied by a pulse width modulated signal having
a mean value that depends on the desired displacement.
Then, the cogwheel mechanism transmits the mechanical
power of the motor to the output shaft. This ranges from
a minimum angle αmin of 0◦ to a maximum one αmax of
90◦. The two limits αmin and αmax actually correspond on
two mechanical stoppers ensuring the minimum and the
maximum displacement. Within this interval, a Hall effect
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Fig. 1. The Pierburg actuator: (A) Internal components; (B) Simplified diagram.

sensor is used to determine the adjustment shaft position.
Once the DC motor duty cycle is null, or in the case of
electrical failure, the helical spring ensures the return of the
adjustment shaft to the initial position αmin.

B. The Pierburg model

This section addresses the modeling of the system shown
in Fig.1-(B). Herein, the entry of the system is the armature
voltage whereas its output is the shaft displacement. Our
objective is to design a model that accurately relates the
armature voltage to the adjustment shaft position, taking into
accounts the friction forces.

The electrical part of the Pierburg actuator is a standard
DC motor. This may be described by the following linear
equations:

U = Ri+L
di
dt

+Vem f (1)

Tm = J
dωm

dt
+ f ωm +Tload (2)

Tm = kmi

Vem f = keωm

where U is the armature voltage. i, R and L are the motor
current, resistance and inductance respectively. J is the motor
inertia, f is the friction coefficient, ωm is the motor velocity
and Tload represents the load torque. Vem f and Tm are the
back EMF and the motor torque, which are defined by the
speed constant ke and the torque constant km respectively.

The motor torque is transmitted to the output shaft by
a gear system. This is supposed to be perfect (reducer).
Therefore, its transmission coefficient may be given as:

kg =
ωm

ω
=

Tad j

Tm
(3)

where Tad j and ω are the torque applying to, and the velocity
of the output shaft respectively.

Applying the Newton’s second law of motion to the output
shaft gives:

Jt
dω

dt
= Tad j−Tf −Ts−TLoad , (4)

Ts = ksθ +∆s

where Jt is the total inertia, Tad j is the torque applied to
the adjustment shaft, Tf is the global friction torque, Ts is
the spring torque, ks is the spring elastic constant, ∆s is a

Fig. 2. Friction Force: (A) Coulomb friction model; (B) Karnopp model.

constant torque due to the pre-compression of the spring, and
θ represents the adjustment shaft angle.

Assuming that:
• the torque and the speed constants are equals.
• the load torque TLoad is negligible 1.
And using (1), (3) and (4), the actuator dynamics may be

described by the following equations:

U = Ri+L
di
dt

+ kgkm
dθ

dt
(5)

Jt
d2θ

dt2 = kgkmi− ksθ −∆s−Tf (6)

C. The friction forces

Friction occurs in all systems including parts with relative
motion. It is generally the force resisting to the relative mo-
tion of two surfaces in contact. As a rule, the friction causes
degradations of system performance, and can generate limit
cycles [12]. Therefore, study of the friction phenomenon is
a pivotal step in modeling and control of machines or also
electromechanical systems. In literature, numerous models
have been proposed to reproduce the friction dynamics and to
capture its characteristics [8], [9]. Fig. 2-(A) shows one of the
simplest friction models. It only comprises one component,

1In the modeling and identification procedure, no load torque is applied
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namely the Coulomb force which may be reproduced by
a constant friction level acting in the direction opposite to
motion. A crucial drawback of such model (generally, the
classical friction models) is the discontinuity at zero velocity,
which may lead to simulation difficulties. Such problem may
be surmounted using either the dynamic friction models
[10], [13], or one of the techniques given in [11], [14],
[18]. In the following study, the Karnopp model will be
used [11]. Fig. 2-(B) illustrates its block diagram. Herein,
T, θ̇ , Tstick, Tslip and Tf are the applied torque, the relative
velocity, the static friction, the kinetic friction and the total
friction force respectively. A small interval [−∆θ̇ ,+∆θ̇ ] is
defined where the velocity is forced to be zero. According
to this, the friction force is calculated as follows:
• Velocity inside [−∆θ̇ ,+∆θ̇ ]: the friction is a function of

the applied (external) torque. It is limited by the block
III which is activated by the block I. Thus, the friction
force may be mathematically expressed as follows:

Tstick =

{
T, |T |< Tstick.max

Tstick.max, Otherwise (7)

• Velocity outside [−∆θ̇ ,+∆θ̇ ]: the friction is an instan-
taneous force-velocity curve, defined by the block II in
Fig. 2-(B). Example for this is the Coulomb friction
force:

Tslip = Tcsgn(∆θ̇) (8)

The Karnopp model has been essentially developed to
overcome the zero-velocity detection problem and to cap-
ture the stick-slip phenomenon, but it can also be used to
regenerate the Coloumb model by fixing Tstick = Tslip.

D. Parameter identification

In order to identify the system parameters, we will use
the procedure given in [3]. This method is based on the
system static characteristics relating the DC motor duty cycle
to the output shaft position. It allows to identify the Karnopp
friction coefficients as well as the system parameters. In this
study, it is assumed that:
• The friction forces may be simulated by the Coulomb

model. Hence, the static friction and the viscous friction
will be both neglected.

• The effect of the armature circuit current will be ig-
nored.

Fig. 3 gives the theoretical static characteristics of the Pier-
burg actuator. Herein, D is the duty cycle, Dc and Dpre are
the duty cycles required to overcome the Coulomb friction
and the pre-compression torque respectively. Let V and U
be the DC motor voltage supply and the armature voltage
respectively. Then, the following expression is obtained:

U = DV, Dc =
TslipR

V KgKm
, Dpre =

∆sR
V KgKm

, (9)

The values of Dc and Dpre can be determined by com-
paring the measured static characteristics to the theoritical
curve given in Fig. 3. Once these two parameters are set, the

Fig. 3. Static characteristic of the Pierburg actuator.

duty cycle value Dm, which reproduces the movement of the
mechatronic actuator, can be easily obtained as:

Dm = D−
(Tslip +∆s)R

V kgkm
(10)

The system dynamics, which corresponds to the duty cycle
value Dm, may be imitated by a 2nd order linear system.
Therefore, the other unknown parameters may be estimated
by fitting the step response of the Pierburg actuator by the
following expression:

θs(t, pi) = DmV K(1+
p2

p1− p2
exp(p1t)− p1

p1− p2
exp(p2t)),

(11)
where

K =
kgkm

Rks

ω
2
n = p1 p2 =

ks

Jt

2ξ

ωn
=

p1 + p2

p1 p2
=

(kmkg)
2

Rks

Here the damping ratio is considered to be greater than
one, and θs(t, pi) is the time evolution of the 2nd order
system for a step entry. ωn is the system’s natural pulse,
ξ is the system’s damping ratio, K and pi are the unknown
parameters representing the system gain and the system’s
poles respectively. These parameters can be estimated by
solving the following least squares problem:

E = min
N

∑
i=0

(θs(t, pi)−θ)2 (12)

Where, E represents the error between the simulated dis-
placement θs(t, pi) and the real data θ . While N is the
number of acquired samples.

TABLE I summarizes the system parameters that were
calculated using (9)-(12). Herein, the gear ratio was provided
by the constructor. The motor resistance can be directly
measured when the output shaft is at a stationary position.
These parameters were subsequently used to design a Pier-
burg actuator simulator in the Simulink environment. In Fig.
4, a comparison between the experimental data (continuous
line) and the simulated data (dotted line) is given. From top
to bottom, these curves show the system response for a step
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TABLE I
THE IDENTIFICATION PARAMETERS.

Parameter Signification
K = 0.4363 rad/volt The system gain
ξ = 137.68 The damping coefficient
ωn = 240.16 rad/sec The natural frequency
R = 4.139 Ω The motor resistance
kg = 37.3 The gear ratio
ks = 0.1419 Nm/rad The elastic constant
km = 0.022 Nm/A The mechanical constant
Jt = 2.460210−6 Kg.m2 The total inertia
∆s = 0.29 Nm The pre-loading of the spring
Tslip = 0.2007 Nm The static and coulomb friction

Fig. 4. Experimental and simulation results.

Fig. 5. Parameter variation effects.

Fig. 6. The PI-Fuzzy controller.

Fig. 7. Membership functions.

TABLE II
THE FUZZY LOGIC RULES.

E
N Z P

N NB N Z
ė Z N Z P

P Z P PB

entry of 0 7→ 24%, 0 7→ 20% and 0 7→ 22% respectively. It
can be seen that the simulation results corroborate well with
the experimental data. The difference between the real and
the simulated data can be justified by the fact that some
phenomena, such as the backlash phenomenon, the static
friction, the viscous friction, etc, were ignored.

III. A PI-FUZZY LOGIC CONTROL

Mathematical model, that can accurately reproduce the
system dynamics and approximately predict the effects of
parameter variations, is necessary for the control design.
However, the model developed in the previous section does
not perfectly reproduce the actuator behavior nor incorpo-
rate the effect of the parameter variations. The parameter
variations may affect both the dynamics and the static
characteristics of systems. In Fig. 5, we show the effect
of the armature resistance variation, by adding an external
resistor in series, on the actuator output. Hence, a simple or
reduced model may not be reliable under some conditions.
Therefore, the design of a controller that is robust against
the parameter uncertainties is essential to ensure the desired
performance. In this study, The FLC will be used. This has
shown an ability to successfully control processes, where
the transfer function is undefined, and improved performance
over the classical controller, where the transfer function is
known [15]. Therefore, a lot of interest has been given to
the development and application of fuzzy logic to control
systems [16], [17]. Several structures of the hybrid PID-fuzzy
logic controller have been also proposed, as example, a self
tuning fuzzy PID type controller was proposed in [6]. While
in [7], a fuzzy logic block is used to tuned on-line the gains
of the conventional PID controller, based on the error, its
derivative and fuzzy inference.

The designed control structure, used here, is shown
schematically in Fig. 6. Herein, the FLC is governed by two
entries which are the PI controller output and the derivative
of the error ė respectively. According to these, the PIFLC
regenerates the control signal U which is subsequently ap-
plied to the actuator in order to get the desired position. The
controller signal U is determined basing on a set of fuzzy
rules of the form:

if the PI output is Ai and ė is Bi, then U is Ci

i = 1,2, ...,m. (13)

Here, Ai, Bi and Ci are fuzzy sets on the corresponding sets.
Table II gives the fuzzy logic rules used to evaluate the
control signal. Herein, the abbreviations PB, P, Z, N and NB
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Fig. 8. The main hardware.

Fig. 9. System response for Rtotal = Rmotor .

Fig. 10. System response for Rtotal = 1.17Rmotor .

represent positive big, positive, zero, negative and negative
big respectively.

Adding the proportional integral block in the controller
simplifies building up the appropriate membership functions.
In this work, it has been seen that using the standard
triangular membership functions is sufficient to reach the
desired closed-loop performance. Fig. 7 shows the set of
membership functions used for both the PI output and the
derivative of the error ė. The only difference between these
two sets is the support interval, which is chosen according
to the variation interval of the parameter, for example, the
output displacement of the Pierburg actuator ranges from
0.42V (0◦) to 4.52V (90◦). Hence, the error is inevitably
inside [−4.1V,4.1V ]. Therefore, the variation range of the
PI output may be evaluated according to the PI gains. In the
same way, the variation interval of ė may be also estimated.

In order to test the controller performance, the PIFLC
described in the previous section was implemented in the

Fig. 11. System response for Rtotal = 1.42Rmotor .

Fig. 12. Output for a square signal.

Labview environment. Hence, two programs were made.
The first one is compiled in a field programmable gate
array circuit (FPGA), which provides more accuracy and
reliability. This one ensures the data transmission between
the mechatronic actuator and the Labview software. Whereas,
the second program is the Real-Time controller including the
PIFLC program and some blocks to read from and write in
the FPGA program. Fig. 8 shows the main hardware used to
realize the experimentation. It consists of one CompactRIO
NI cRIO-9022 (equipped by two modules: the NI 9215 A/D
converter and the NI 9505 PWM generation), the Pierburg
actuator, a power circuit and a computer. According to the
PI output and the time derivative of the error, the PIFLC
evaluates the control value. Then, the NI 9505 module re-
generates the voltage amplitude corresponding to this value.
Subsequently, the angular displacement is measured by a
Hall effect sensor and acquired by the NI 9215 A/D converter
module to be used in calculating the posterior error value,
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and so on.
Fig.9-11 illustrate the experimental actuator behavior for

a total resistance RT = Rmotor, RT = 1.17Rmotor and RT =
1.42Rmotor respectively. These results show that the PIFLC
is robust against the parameter uncertainties and it is able
to ensure the desired displacement. The realized tests show
that the actuator response changes according to the PI gains
and the displacement direction. Fig.12 illustrates the system
response for a square signal. When the angular displacement
goes in the clockwise direction, the motor and the spring
torque have the same direction, and generally, there is a small
overshoot.

IV. CONCLUSION

In this paper, a global study of the Pierburg mechatronic
actuator has been presented. First, a physical model that
accurately makes the relationship between the armature volt-
age and the output shaft displacement has been developed
using the Newton’s and the Kirchhoff’s laws. Next, the
static characteristics of the system have been exploited to
identify both the actuator parameters and the friction model
coefficients. Then, a PIFLC was designed to achieve the
desired performance even if the parameters variation occurs.
Experimental results using Labview with CompactRIO and
simulation results using Simulink have shown the effective-
ness of both the actuator simulator and the performance and
robustness of the PIFLC.
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