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Abstract— The solution to the nonlinear output regulation
problem requires one to solve a first order PDE, known as
the Francis–Byrnes–Isidori (FBI) equations. In this paper we
propose a method to compute approximate solutions to the FBI
equations when the zero dynamics of the plant are hyperbolic
and the exosystem is two-dimensional. Our method relies on the
periodic nature of two-dimensional analytic center manifolds.

I. INTRODUCTION

Consider the smooth nonlinear control system

ẋ = f(x) + g(x)u+ p(x)w

ẇ = s(w)

y = h(x) + q(w)

(1)

where x ∈ Rn , u ∈ Rm, w ∈ Rq is an exogenous signal
and y ∈ Rp. We say that the feedback u = α(x,w) solves
the output regulation problem (ORP) for (1) if ẋ = f(x) +
g(x)α(x, 0) has x = 0 as an exponentially stable equilibrium
and if limt→∞ y(t) = 0 for (x(0), w(0)) sufficiently small.
In [4], it is shown that under suitable conditions, the ORP
is solvable if and only if there exists a pair (π, κ), defined
locally about w = 0, satisfying the FBI equations

∂π

∂w
(w) s(w) =f(π(w)) + g(π(w))κ(w) + p(π(w))w

h(π(w)) + q(w) = 0.
(2)

Given a solution (π, κ) to (2), a feedback that solves the
ORP is α(x,w) = κ(w) + K(x − π(w)), where K is any
matrix rendering the linear system ẋ = ∂f

∂x (0)x + g(0)u
asymptotically stable. As shown in [4], solving (2) can be
reduced to the solvability of the center manifold PDE for a
dynamical system of the form

ż = f0(z, ϕ(w))

ẇ = s(w)
(3)

where ż = f0(z, 0) represent the zero dynamics of the plant,
ϕ(w) = −(q(w), Lsq(w), . . . , Lr−1

s q(w)) and 1 ≤ r < n
is the relative degree of the triple {f, g, h} at x = 0. It
is well-known that center manifolds suffer from subtleties
in regards to uniqueness and differentiability [2]. A case
that seems to have gone unnoticed in the nonlinear control
community is the case of two-dimensional real analytic (Cω)
center manifolds [1]. It is shown in [1] that if the local center
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manifold dynamics of the Cω system

ż = Bz + Z̄(w1, w2, z)

ẇ1 = −w2 + P (w1, w2, z)

ẇ2 = w1 +Q(w1, w2, z)

(4)

are Lyapunov stable and not attractive then (4) has a uniquely
determined local center manifold which is Cω and generated
by a family of periodic solutions. The matrix B in (4)
is assumed to have no eigenvalues on the imaginary axis
and z ∈ Rn, w1, w2 ∈ R. Hence, in the Cω case with a
two-dimensional exosystem and hyperbolic zero dynamics,
Aulbach’s theorem can be applied directly to the ORP
since it is assumed that the exosystem is neutrally stable
[4] thereby ensuring Lyapunov stability and non-attractivity.
Using Aulbach’s result and the patchy technique in [5],
we propose a method to obtain piecewise smooth approx-
imate solutions to the center manifold PDE for a system
of the form (4). The main idea of our method is to use
the periodicity of the solution and build a power series
approximation along the solutions of the exosystem. Other
methods for solving the FBI equations are based on direct
Taylor polynomial approximations [3] and finite-element
methods [6]. The novelty in our approach, albeit restricted
to two-dimensional exosystems, is that it takes advantage
of the geometric structure of the solution and produces an
approximate solution that is straightforward to evaluate.

II. PATCHY METHOD FOR THE CENTER MANIFOLD PDE

Applying the change of coordinates (w1, w2, z) =
(r cos θ, r sin θ, z) to (4) and eliminating the time variable,
one obtains a system of the form

dr

dθ
= R(θ, r) (5a)

dz

dθ
= Bz + Z(θ, r, z), (5b)

where R and Z are Cω converging for each θ ∈ [0, 2π], |r| ≤
a, ‖z‖ ≤ a, for some a > 0 [1]. In polar coordinates (θ, r),
the solution to the center manifold PDE of (4) takes the
form ψ(θ, r) =

∑∞
i=1 ei(θ)r

i and converges on a cylinder
θ ∈ [0, 2π], |r| < ε, with 2π-periodic coefficients ei(θ). The
solution ψ satisfies the PDE

Bψ(θ, r) + Z(θ, r, ψ(θ, r)) =
∂ψ

∂θ
+
∂ψ

∂r
R(θ, r). (6)

For simplicity, let us suppose that the exosystem is given
by ẇ1 = −w2 and ẇ2 = w1. Let φ0(w1, w2) denote the
solution to the center manifold PDE for the linear part of
(4). The mapping ψ0(θ, r) = φ0(r cos θ, r sin θ) is accepted
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as our initial approximation to ψ on the annular region θ ∈
[0, 2π], 0 ≤ r < r0, for some r0 > 0. Now define Ψ1(θ, σ) =
ψ(θ, r0 + σ). Then Ψ1 has a power series representation

Ψ1(θ, σ) = Ψ1(θ, 0) +

∞∑
i=1

∂iΨ1

∂σi
(θ, 0)

σi

i!

converging for θ ∈ [0, 2π] and |σ| sufficiently small. By con-
struction, Ψ1 is a radial perturbation of ψ along the solution
of the exosystem with initial condition (w1(0), w2(0)) =
(r0, 0). We compute a Taylor series approximation to Ψ1

of the form Ψ̃1(θ, σ) = Ψ1(θ, 0) + ΣNi=1
∂iΨ1

∂σi (θ, 0)σ
i

i! for
some desired N . Using (6), it is straightforward to show
that ∂iΨ1

∂σi (θ, 0) satisfy linear inhomogeneous ODEs:

dηi
dθ

= A(θ)η + Fi(θ, η0(θ), . . . , ηi−1(θ)), (7)

where Fi is 2π-periodic and ηi = ∂iΨ1

∂σi (θ, 0), i = 1, . . . , N .
To compute ∂iΨ1

∂σi (θ, 0), we solve a BVP using (7) with
2π-periodic boundary conditions. Similarly, to compute
Ψ1(θ, 0) = ψ(θ, r0) we solve a BVP using (5b) and 2π-
periodic boundary conditions. Let now ψ1(θ, r) = Ψ̃1(θ, r−
r0) and define, for θ ∈ [0, 2π] and r1 > r0,

ψ̃(θ, r) =

{
ψ0(θ, r), 0 ≤ r < r0

ψ1(θ, r), r0 ≤ r ≤ r1.

The mapping ψ̃ is a piecewise smooth approximation to the
solution ψ on the cylinder θ ∈ [0, 2π], 0 ≤ r ≤ r1. This
procedure can be iterated as follows. Let

ψ̃(θ, r) =


ψ0(θ, r), 0 ≤ r < r0

ψ1(θ, r), r0 ≤ r < r1

...
...

ψk(θ, r), rk−1 ≤ r ≤ rk

(8)

where ψj(θ, r) = Ψ̃j(θ, r − rj−1) and Ψ̃j is a N th order
Taylor approximation of Ψj(θ, σ) = ψ(θ, rj−1 + σ), j =
1, . . . , k. Now consider Ψk+1(θ, σ) = ψ(θ, rk + σ) and its
N th order Taylor approximation Ψ̃k+1(θ, σ) = Ψk+1(θ, 0)+

ΣNi=1
∂iΨk+1

∂σi (θ, 0)σ
i

i! , rk > rk−1. The curve Ψk+1(θ, 0) =
ψ(θ, rk) is computed by solving a BVP problem using (5b)
with 2π-periodic boundary conditions. As an initial guess for
the BVP we take ψ(θ, rk) ≈ ψk(θ, rk), i.e., we use the previ-
ously computed approximation as an initial guess. Similarly,
the coefficients ∂iΨk+1

∂σi (θ, 0) are computed by solving a BVP
problem using (7) with 2π-periodic boundary conditions. As
an initial guess for the BVP we take the previously computed
coefficients, i.e., ∂iΨk+1

∂σi (θ, 0) ≈ ∂Ψk

∂σi (θ, 0). We then define
ψk+1(θ, r) = Ψ̃k+1(θ, r − rk) and extend our running
approximation (8) to the annulus θ ∈ [0, 2π], rk ≤ r ≤ rk+1

by augmenting ψk+1 to it. In the next section we illustrate
our method on a standard control problem.

III. EXAMPLE

The dynamics of a single pendulum attached to a cart
moving in a straight line perpendicular to gravity can be

written in the form ẋ1 = x2, ẋ2 = u, ẋ3 = x4, ẋ4 =
g
` sin(x3)− 1

` cos(x3)u, where x1 is the position of the cart,
x3 is the angle the pendulum makes with the vertical, u
is the control, g is the acceleration due to gravity and ` is
the length of the rod. For simplicity we set g = 10 and
` = 1/3. As output we take h(x) = x1 and reference
trajectory yref(t) = A cos(βt). Hence we choose exosystem
ẇ1 = −βw2, ẇ2 = βw1 and q(w) = −w1. In the normal
coordinates ξ = (x1, x2) and z = (x3, x4 + x2

` cos(x3)),
the zero dynamics are hyperbolic. Using our method we
computed an approximate solution to the associated center
manifold PDE for this system and used it in a tracking
controller of the form α(x,w) = κ(w) +K(x− π(w)). The
matrix K was chosen so that the closed-loop eigenvalues
are −6,−3.5,−3,−2.5. We used k = 11 annuli and order
N = 2 for the Taylor approximations to Ψi. A radius of
r0 = 0.1 is used for the initial approximation ψ0 and each
subsequent annulus is of thickness σ = 0.1. The parameters
ω = 1.25 and A = 1.1 were selected. Figure 1 shows
the output and reference trajectory and Figure 2 shows the
tracking error. The initial condition of the cart was initialized
to x1(0) = −0.25.
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Fig. 1. Output y(t) = x1(t) and reference yref(t) = w1(t).
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Fig. 2. Tracking error e(t) = y(t)− yref(t).
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