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Abstract—This paper aims to develop a driver steering 

model that can capture driver’s key steering mechanisms from 

a control engineering point of view. Analyses with Double Lane 

Change (DLC) vehicle test data suggest that, instead of 

following the traditional concept of trajectory planning, drivers 

use target points located along the centerline of the lane they 

are changing to as references for control. The data also suggests 

that drivers engage steering rate control instead of steering 

angle control to steer the vehicle. Based on these analyses, this 

paper proposes a relatively straight-forward driver steering 

model based on this target & control scheme. Vehicle data of 

more than 80 DLC runs is used for the model verification. Both 

the open-loop identification and closed-loop simulations verify 

that this relatively simple driver steering model is capable of 

capturing driver’s steering behavior and the simulated steering 

rate matches well with the actual steering rate. 

I. INTRODUCTION 

nderstanding and modeling drivers have attracted 

researchers from many disciplines such as cognitive 

science, control theory, psychology, and physiology for 

more than half a century. The topics involved are quite broad 

in scope. This paper relates to one of the control aspects of 

driving behavior: driver’s steering control behavior.  

As reviewed in [1-3], a large number of articles with 

driver models have been published. Some driver models are 

virtual driver models [4] designed to follow a prescribed 

route at a given or self-imposed speed by operating a virtual 

vehicle. They act like an automatic driving controller and 

capturing driver’s driving behavior is not their emphasis. 

Some driver models do intend to capture driving behavior 

and typically try to match data from vehicle or driving 

simulator tests. For example, in [5], driver models are 

developed using neural networks (NN) to map the steering 

angle as a function of the time-delayed heading angle and 

lateral deviation from a desired trajectory. In [6], the steering 

controller is developed based on reinforcement learning. 

Hybrid driver models [7] and hierarchical driver models [8] 

are also typical in literature.  

Despite those efforts, the full understanding of driving 

behavior still seem elusive. As claimed in [3], “to simulate a 

closed-loop ISO-lane change at the same maximum speed 

that an experienced human driver is able to perform is not 
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only a big, if not so far, but also an impossible challenge for 

a driver model.” The commonly assumed elements of a 

driver steering model, such as trajectory planning and 

preview/prediction, seem to be reasonable, but they have not 

truly demonstrate their ability to capture driving behavior in 

various maneuvers yet.   

As another attempt on this elusive topic, this paper aims to 

understand driver’s steering behavior and to experimentally 

develop a driver steering model that can capture driver’s key 

steering mechanisms from a control engineering point of 

view. To achieve this goal, the research has been conducted 

following two guidelines: (1) the commonly assumed or 

accepted elements in a driver model (e.g., trajectory 

planning and preview/prediction) are treated as hypotheses 

to be verified, and (2) the hypotheses and assumptions made 

are evaluated with vehicle test data, especially with steering 

angle and preferably steering rate. (Steering rate indicates 

driver’s steering intents; therefore, it is important to capture 

the characteristics of the steering rate.) Ultimately, the 

model should be able to exhibit key characteristics of 

driver’s steering behavior in closed-loop simulations.     

As a starting point, a driver steering model for double lane 

change (DLC) maneuvers is developed and vehicle tests 

were conducted at a proving ground with 20 subject drivers 

to provide data of more than 80 test runs. Based on this data, 

this paper proposes and verifies a novel, relatively straight-

forward driver steering model based on a target & control 

scheme. Instead of the traditionally assumed trajectory 

planning, the paper proposes that drivers do not plan and 

follow a desired trajectory during the DLC; instead, drivers 

use target points located along the centerline of the lane they 

are changing to as references for control. Accordingly, 

instead of predicting the deviations from the desired 

trajectory at the preview distance, the paper introduces target 

angle errors with respect to the target at the preview distance 

and proposes that the steering control is to regulate the target 

angle errors. Finally, unlike the typical steering angle 

control, the paper proposes a steering rate control based on 

the target angle errors following what the data have 

suggested.  

Both open-loop analysis and closed-loop simulations are 

used to verify the proposed model. Not only does the 

simulated steering angle closely resemble the steering angle 

from vehicle tests, but the simulated steering rate also 

matches the steering rate from vehicle tests. Moreover, 

CarSim simulations with a verified nonlinear, complex 

vehicle model show that the relatively straight-forward 

model, when specifically tuned, can perform the DLC 

without hitting any cones at speeds as high as 105kph, which 

is higher than 85kph, approximately the highest speed a 

high-skilled driver can perform on the same DLC course.  
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Preliminary control synthesis was conducted and several 

advantages of this driver steering model were revealed, 

including open-loop zeros with a constant damping at 0.707, 

which provides stability margin for drivers to increase their 

control gains when needed [10].  

Although the development process involved multiple 

iterations, the paper describes the resultant model in a 

sequential fashion to make it easier to follow.  The paper is 

organized as follows. Section II presents the proposed driver 

steering model. Section III introduces the DLC vehicle test 

data, and Section IV shows the model verification based on 

the DLC vehicle test data. Conclusions are provided in 

Section V.  

II. THE PROPOSED DRIVER STEERING MODEL 

The driver steering model in this paper adopts a relatively 

broad scope as shown in Fig. 1. The inputs to the driver 

steering model include maneuver decisions (such as lane 

changes and left/right turns), road information, and vehicle 

motion information. The driver steering model then executes 

the desired maneuver based on the road information and the 

vehicle motion information.       

 
Fig. 1 Driver steering model 

To understand and model driver’s steering behavior, we 

start with understanding the steering behavior during DLC 

maneuvers. Compared to maneuvers such as lane keeping, 

(single) lane change and DLC maneuvers help induce 

trajectory planning behavior. Since DLC maneuvers are 

more demanding than lane changes, their data is likely to be 

richer and contains more distinct and definite characteristics.  

The model development starts with examining the typical 

configuration of a driver steering model (Fig. 2), which 

includes three commonly assumed elements: trajectory 

planning (or path planning), preview/prediction, and steering 

control. The findings through these examinations form the 

foundation of the proposed driver steering model. 

 
Fig. 2 Typical configuration of a driver steering model 

A. Trajectory Planning  

It is generally assumed that drivers first plan a desired 

trajectory and then steer the vehicle to follow the desired 

trajectory. However, our closed-loop simulations with 

several assumptions1 on the desired/planned path reveal that 

those assumptions cannot capture the non-linear, higher-

frequency content in the steering angle (let alone the steering 

rate); that is, the simulated steering angle is typically much 

 
1 Such as an individual smooth trajectory derived based on the low-

frequency content of the driver’s actual trajectory, as well as a segment-by-

segment polynomial curve that best fits the actual trajectory. 

smoother than the actual steering angle in test data.  

Observations based on our own DLC test experiences lead to 

several hypotheses, which are then evaluated with the DLC 

vehicle test data. The data analysis suggests that, instead of 

planning and following a desired trajectory, drivers use 

target points as references for control and switch the target 

points based on the maneuver. Fig. 3 shows the proposed 

target points as control references during a DLC maneuver.  

 
Fig. 3 Target sets (dotted line along the lane centerline) 

The DLC course can be divided into 3 segments separated 

at the transition points A and B, the locations where a driver 

starts changing to the next lane. Therefore, A and B are also 

referred to as maneuver execution locations. Depending on 

the segment the current vehicle position is in, the 

corresponding moving target point is described below: 

 Segment I (before Point A): the moving targets lie on 

the centerline of the lane defined by the first cone set;  

 Segment II (between Point A and Point B): the moving 

targets lie on the centerline of the lane defined by the 

second cone set;   

 Segment III (beyond Point B): the moving targets lie on 

the centerline of the lane defined by the third cone set.  

The maneuver in Segment I is the lane keeping maneuver, 

and the moving targets are consistent with that of the 

traditional trajectory planning: the road itself. The 

maneuvers in Segments II and III are essentially lane 

changes (and the lane keeping afterwards); the moving 

targets represent the lanes the vehicle is changing to, which 

are quite different from the actual vehicle trajectory.   

B. Preview/Prediction  

In literature, the preview/prediction module is included to 

mimic human’s preview and predictive behavior. The 

preview behavior refers to that the human drivers perceive 

future path information within a finite future distance 

through visual cues. The prediction behavior assumes that 

the human drivers establish an internal vehicle dynamic 

model and predict vehicle’s future trajectories [9].  

In the proposed driver steering model, the traditional 

concept of preview/prediction still applies, but in a different 

fashion. At any specific time, the target point is a look-ahead 

distance (i.e., preview distance which may be varying) away 

from the vehicle position; therefore, it is also referred to as 

the preview target. Thus, given the maneuver execution 

locations A and B and a look-ahead distance d(t), the 

preview target T (xT(t), yT(t)) can be uniquely determined 

based on the current vehicle position (x(t), y(t)): 

   
          

          
        and  

     

     
   , (1) 

Where    is the centerline of the lane to which the vehicle is 

changing. In this DLC maneuver,   is a function of the 

vehicle current position (x(t), y(t)) and the maneuver 
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execution locations A and B. Figure 4 illustrates the preview 

targets for a few vehicle positions.  

 
Fig. 4 Vehicle positions and the preview targets 

 Since the targets are fundamentally different from the 

“desired” trajectory, the traditional way of computing 

prediction errors as the future lateral deviations from the 

desired trajectory no longer applies. In the proposed driver 

steering model, the prediction is conducted based on the 

target heading angle as described below.  

Definition: Target heading angle: 

Given vehicle current position (x(t), y(t)), yaw rate     , 
speed     , and a target T(xT(t), yT(t)), and assuming the 

vehicle maintains its current yaw rate      and speed      
(that is, the vehicle travels along a curve with a fixed radius 

              ), the target heading angle θd is the 

heading angle that ensures the vehicle will reach the target T. 

Figure 5 illustrates the target heading angles,    and    , 

corresponding to two targets T and T1, respectively. In Fig. 

5(a), the vehicle maintains its current yaw rate      and 

speed     , while traveling towards the target point. Thus, 

the blue curvy lines are curves with the same fixed 

radius:               . Figure 5(b) shows the special 

case where the current yaw rate is zero; the target heading 

angle is then determined by the straight lines connecting the 

target and the vehicle current position. 

As illustrated in Fig. 6, the target heading angle can be 

computed as: 

               
          

          
         

    

     
   (2) 

where      is the look-ahead distance (as in Eq. 1).  

 
(a) yaw rate                            (b) yaw rate        

Fig. 5 Target heading angle 

 
Fig. 6 Computation of the target heading angle 

Therefore, we hypothesize that the target heading angle is 

the desired heading angle and the goal of the steering 

controller is to reduce the difference between the actual 

vehicle heading angle and the target heading angle. 

Accordingly, we introduce the target angle error as the 

predicted error to be regulated by the steering controller: 

                  .  (3) 

C. Steering Controller  

Accordingly, the input to the steering controller is the 

target angle error defined in Eq. 3 and the steering controller 

is to regulate the target angle error to zero. That is, the 

steering angle is a function of the target angle error:  

               .  (4) 

The structure of the control law is then chosen based on the 

relationship suggested by open-loop comparison, and the 

parameters of the controller are determined via open-loop 

identification (details in Section IV). The resulting control 

law is identified as a steering rate controller: 

                 (5) 

While most steering controllers in driver models assume 

steering angle control rather than steering rate control, this 

control law implies that drivers do not have a desired 

steering angle as a control command to turn the steering 

wheel to. Instead, drivers determine how much and how fast 

changes in the steering angle are needed based on the target 

angle error and move the steering wheel to increase or 

reduce the steering angle according to the “desired” rates.  

Eq. 5 shows the basic underlying steering controller; the 

actual steering control law will also include the time delay as 

well as the driver’s actuating “servo” characteristics of the 

driver due to driver physiologically limitations. That is: 

                                  (6) 

The overall driver steering model is shown in Fig. 7. It 

follows a target & control scheme where target selection 

replaces the traditional trajectory planning and preview 

targets serves as references for a steering rate control2.  

 
Fig. 7 The proposed driver steering model 

III. DLC VEHICLE TEST DATA 

The model development and verification are based on 

DLC vehicle tests at a proving ground. Since the goal of this 

paper is to understand and model driver steering behavior in 

general rather than during limit handling conditions, the 

DLC tests are conducted on high-co surfaces and the data 

verifies that the vehicle is mostly in its linear region. The 

geometry of the DLC course (shown in Fig. 4) was derived 

from Draft International Standard ISO/DIS 3888-2 

 
2 Delays and driver “servo” will be present in the steering rate control. 

Perception errors will show up in both the prediction of the target angle 

error and the steering rate control. However, the details of these factors will 

not be included in this paper due to page limitations. 
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"Passenger cars- Test track for a severe lane-change 

maneuver" (i.e., the "Moose Test"). Traffic cones (shown as 

the magenta lines) were used to define the DLC course.   

To ensure that the test data can capture both the common 

characteristics across drivers and the individuality of 

different drivers, twenty drivers of both genders and across a 

wide age range and different skill levels completed the tests. 

Each driver attempted the course at least four times, and a 

total of more than 80 DLC test runs were conducted. 

A 4-door passenger vehicle was used and the data 

recorded include vehicle motion data (e.g., vehicle speed, 

yaw rate, lateral acceleration), driver’s control input 

(including steering wheel angle, brake pedal position, 

throttle percentage), and vehicle positions (from a DGPS). 

IV. MODEL VERIFICATION 

The vehicle data of more than 80 DLC test runs is used 

for the model verification. Due to the page limitation, the 

results from two expert drivers of different driving style are 

shown here.  

A. Target Selection & Preview/Prediction  

The proposed target points as shown in Fig. 3 are verified 

together with the proposed preview/prediction based on the 

target heading angle. Figure 8 shows the configuration for 

the open-loop analysis with DLC vehicle test data.    

For each DLC test run, the corresponding test data include 

the vehicle positions and heading angle from the DGPS, as 

well as the yaw rate, speed, and steering angle from on-

board sensors. At any time instant  , the vehicle position 

(x(t), y(t)), together with the maneuver execution locations A 

and B, are used to first determine  , the corresponding set of 

target points as shown in Fig. 3. The specific preview target 

at time t, (xT(t), yT(t)), is then determined based on Eq. 1 

once a look-ahead distance is given. Accordingly, the target 

heading angle       is computed based on Eq. 2 using the 

yaw rate (    ) and speed (    ) from the test data. The 

target angle error is then computed with the target heading 

angle and the vehicle heading angle from the DGPS.  

 
Fig. 8 Open-loop analysis based on DLC vehicle test data  

Fig. 9 shows the target angle errors computed based on 

the vehicle test data from Subject #1’s run #2. Four look-

ahead distances are used for the computation: 15 m, 18 m, 

21 m, and 24 m, and the corresponding target angle errors 

are shown as dashed lines in four colors: yellow, green, blue, 

and cyan. The maneuver execution locations A and B are 

assumed to be the starting location of the first and second 

cone sets, respectively3; therefore, there are sudden jumps in 

the target heading angle at the two maneuver decision 

 
3 The maneuver decision locations A and B will be identified based on 

each individual DLC test data in the subsequent controller identification. 

locations. Both the steering angle and the normalized 

steering rate are plotted for comparison. The steering rate is 

computed by differentiating the steering angle 

measurements; it is further normalized with the mean speed 

of the corresponding test run for visual comparison purpose4.  

As shown in Fig. 9, the target angle errors (shown as 

dashed lines) correlate quite well with the steering rate in the 

majority part (areas with shaded blue) of the lane changes. In 

particular, the target angle error at 21 m look-ahead distance 

(blue dashed line) yields the best correlation with the 

steering rate. This (open-loop) comparison suggests that the 

steering controller is likely a linear steering rate controller 

(                in Eq. 5) during most part of the DLC.   

There are discrepancies between the target angle error and 

the steering rate at the beginning of the lane change. This is 

understandable since drivers are bounded in the steering 

acceleration; the steering rate has to increase continuously 

until it reaches the desired value as demanded by the target 

angle error. Once the steering rate meets the target angle 

error (at around the end of the first cone set for the first lane 

change and the end of the second cone set for the second 

lane change), the steering rate then follows the target angle 

error. From a control’s perspective, this may indicate that the 

beginning of the lane change is conducted in a “catching-up” 

fashion, where the goal is to reach the desired value before 

regulation control starts. Using the same controller structure 

in Eq. 5 (               ), this phenomenon could suggest 

that the control gain (    ) increases linearly at the 

beginning of the lane change and then more or less keeps 

constant for the remaining part of the lane change. 

 
Fig. 9 Target angle error (Subject #1, Run #2)  

The above observations hold true for all of the 80 test runs 

except the few cases where the subject drivers gave up 

completing the DLC course. Figure 10 shows the target 

angle errors computed based on the test data from Subject 

#2’s run #2. Compared to Subject #1, Subject #2 engages 

more steering activities: the steering rate in Fig. 10 has 

larger maximum values and contains more high-frequency 

contents than the steering rate in Fig. 9. Subject #1 is 

 
4 The reason for the normalization is that the control gain k(t) in Eq. 5 

increases as the vehicle speed increases. Therefore, the normalized steering 

rate shows a more consistent correlation with the target angle error than the 

steering rate itself. The normalization is for visual comparison purpose.   
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commonly referred to as a preview driver while Subject #2 

is a feedback driver who is more like a race car driver. 

Despite the differences, the target angle error (at look-ahead 

distance between 18m (green) and 21m (blue)) captures the 

characteristics of the steering rate relatively well.   

 
Fig. 10 Target angle error (Subject #2, Run #2)  

B. Controller Parameter Identification 

The previous sub-section suggests that the steering control 

structure is a linear, steering rate control:                . 
As the target angle error can be computed based on the 

vehicle states, the steering control is uniquely defined if the 

controller gain (    ) is identified. As shown in Eq. 6, the 

final steering controller also includes delays and driver 

“servo” characteristics, but for this initial model verification, 

the delay is estimated by data observation and the driver 

“servo” characteristics are ignored.  

Therefore, using the computed target angle error and the 

steering rate from the same vehicle test run, the controller 

gain can be estimated. Since the controller gain can be time 

varying, the windowed least square estimation is used. 

Figure 11 shows the identified controller gains 

corresponding to Subject #1’s Run #3, with the look-ahead 

distances set to be 15m, 18m, 21m, and 24m. The vehicle 

trajectory, steering angle, and steering rate from the vehicle 

test data are also shown as reference. To make the plots 

easier to read, the trajectory is shifted down and the 

controller gain is scaled up by 2 and shifted upwards by 20.  

 

Fig. 11 Open-loop identified controller gains (Subject #1 Run #3) 

Note that the identified controller gain becomes negative 

at locations where the steering rate crosses zero. This is 

mainly because the computation is sensitive around 0 (i.e., 

any slight mismatch or delay between the steering rate and 

the target angle error would generate relatively large 

changes in the control gain). Therefore, the identified 

controller gains at those locations are not trustworthy and 

typically the (steady state) values before or after the 0 

crossing will be used in the closed-loop simulations. 

C. Closed-loop Simulations with the Open-Loop 

Identified Control Gains 

Since the open-loop identification only suggests the 

possibility of a relationship, closed-loop simulation is used 

to verify the correctness and causality of the relationship. A 

bicycle model that has been verified against the vehicle test 

data is used in these simulations. Figure 12 shows the 

configuration of the closed-loop simulation. Unlike the 

open-loop analysis and identification in Fig. 8, the simulated 

vehicle states (rather than those from vehicle test data) are 

used to determine the target points, the target angle errors, 

and subsequently the steering angle (and rate command). 

 
Fig. 12 Configuration for the closed-loop simulations 

 
Fig. 13 Closed-loop simulation with controller gain based on the 

open-loop identification (Subject #1, Run 3)     

Figure 13 shows the closed-loop simulation results with 

the modified controller gain. The modified gain is shown as 

the cyan solid line and the open-loop identified gain is 

shown as cyan dashed line. The simulation results are shown 

as solid lines while the vehicle test data is shown as dashed 

lines. Simulations with look-ahead distances of 18m and 
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21m match the actual steering rate well. The results of these 

closed-loop simulations are quite typical with data from 

other test runs. In short, these closed-loop simulations 

indicate that the simple steering rate control law is likely to 

be both correct and causal, and the proposed driver steering 

model can capture driver’s steering behavior accurately.    

D. Closed-loop Simulations with a Simplified Control 

Gain Structure 

The control synthesis in [10] has shown that the resultant 

closed-loop system has two open-loop zeros at ( 
 

 
 

 

 
 ). 

This rate controller is therefore likely to be able to sustain 

higher gains without sacrificing stability. It provides a 

reservoir of stability margin that allows the driver to increase 

his or her gain when higher gain is needed. Due to the page 

limitation, this paper will not get into the details of these 

analyses. The final controller has a simple control gain 

structure that includes a straight-forward gain scheduling 

mechanism to allow the control gain to increase by a couple 

of discrete steps based on some thresholds on the target 

angle error.  

Fig. 14 shows the simulation results with this simple gain 

structure. Compared to the open-loop identified control gain 

(shown as the cyan dashed line), the control gain based on 

this simplified gain structure (shown as the cyan solid line) 

is straight-forward. The simulation results show that the 

proposed driver steering model with such a simple gain 

structure captures the driver’s steering behavior adequately. 

 
Fig. 14 Closed-loop simulation with the simplified controller gain 

structure (Compared to Subject #1 Run #2) 

V. CONCLUSION 

This paper aims to understand driver’s steering behavior 

and to develop a driver steering model that can capture 

driver’s key steering mechanisms based on vehicle test data. 

The paper starts with examining the commonly assumed or 

accepted elements in a driver steering model. These 

elements include trajectory planning, preview/prediction, 

and steering controller. Our findings suggest that instead of 

planning and following a desired trajectory during the DLC, 

drivers seem to follow a target & control scheme for steering 

control. That is, drivers use target points located along the 

centerline of the lane they are changing to as references for 

control. The vehicle test data also suggests that drivers 

predict target angle errors with respect to the preview targets 

and control the steering rate to execute the DLC maneuver.  

Based on these findings, this paper develops a relatively 

straight-forward driver steering model based on the target 

and control scheme. Vehicle test data of 80 DLC runs is 

used for the model verification. The DLC vehicle test data 

shows consistent, good correlations between the steering rate 

and the target angle error. Furthermore, closed-loop 

simulations show that the relationship is likely to be correct 

and causal. The target-based steering rate control is further 

simplified and verified with simulations using both a bicycle 

model and a verified nonlinear, complex CarSim model5. 

The simulations show that the relatively simple driver 

steering model is capable of capturing driver’s steering 

behavior and the simulated steering rate matches well with 

the actual steering rate.  
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