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Abstract— Traditional minimum variance control (MVC)
based performance monitoring methods treats all controlled
variables (CVs) the same (or with some preselected weights).
However, due to the nature of soft CV constraint, CVs have
priority in cascade systems of linear programming - model
predictive control (LP-MPC). It is desired to reduce violations
of constraints for CVs at their upper or lower bounds and to
keep CVs under control. In this paper, we introduce block lower
triangular interactor matrix, based on which conditional MVC
and corresponding performance benchmark is developed. We
state that conditional MVC first consider CVs with multiple
level priority and a subset of CVs in each level of priority. A
simulation example is given to compare proposed method with
traditional MVC methods.

I. INTRODUCTION

Research on control performance monitoring has been
developing quickly these years in both academia and in-
dustry. Routine operation data are compared with some
benchmark to determine the performance quality of the
controller. Pioneer work by Harris [3] shows that MVC can
be used as a SISO performance benchmark and be estimated
from routing operation data. For MIMO systems, however,
it is difficult to extract time delay structure known as the
interactor without additional model knowledge beyond the
input-output time delays, which plays an important role in
determining feedback invariant terms [8]. Huang et al. [6]
use unitary interactors to assess control performance based
on the sum of output variances. Recently, Yu and Qin [13]
propose left and right diagonal interactor to take advantage
of diagonal delay structure to avoid the need for the first few
Markov parameters.

The MPC objective includes not only an output penalty
term but also input reference penalty and input move sup-
pression term. Performance benchmark based on MVC may
not be achievable by MPC. Huang and Shah [8] compare
MPC with linear quadratic regulator (LQR) and propose
the LQG benchmark. To fully utilize model and constraint
information, some model based approaches, such as the
design-case method [10] and the expectation-case method
[14], are proposed. This type of methods evaluate MPC per-
formance by comparing achieved MPC objective costs and
designed/expected costs. However, these methods ignore the
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impact of constraints on the control performance. Recently,
Harrison and Qin [5] propose a minimum variance map
considering effects of constraints. Nevertheless, in the MPC
practice, CVs have their priorities according to economics
and safety. The ability of closely tracking setpoints does not
necessarily mean more economic and safe operation.

Industrial MPC applications usually have a steady-state
optimizer, mostly via linear programming (LP), above MPC
to optimize MPC setpoints and achieve better economics
[11]. Ying and Joseph [12] provide stability conditions for
the LP-MPC system. Recent research by Nikandrov and
Swartz [9] provides sensitivity analysis on constraints in LP-
MPC. They point out that for MIMO systems disturbance
on one CV may affect other CVs through interactions. The
effects can be even amplified, thus cause large variations on
CVs with small disturbances. For CVs at their bounds, such
behavior is undesirable because the probability of violations
of safety limits increases. Meanwhile, if variance of other
less critical CVs decreases, the MVC based performance
monitoring methods will still regard controller as improved,
failing to identify potential performance degradations of the
more critical CVs. Although we can add weights to unitary
interactor, the CVs far away from the constraints cannot
be excluded completely. Therefore, it calls for an MPC
monitoring approach that considers CVs with priority.

In this paper, we propose a method to evaluate the
minimum variance based on CV priority. In the MPC for-
mulation, constraints on manipulated variables (MV) are
always ensured, but due to disturbances CVs may exceed
their bounds which are treated as soft constraints. Hence,
CV constraints of both LP and MPC actually back off from
their safety limits. The conditional MVC with group priority
in the proposed method enables one to reduce violations
of safety limits, and the performance benchmark evaluates
the potential reduction of violations. Moreover, improved
performance constraints of LP-MPC may be moved closer
to safety limits, which generally leads to better economics.

II. REVISIT OF MIMO INTERACTOR AND MINIMUM
VARIANCE BENCHMARK

Let the MIMO process take the following form:

yt = G(q)ut +N(q)at (1)

where G(q) and N(q) are process and disturbance transfer
functions which are proper and rational; yt, ut and at are
process output, input and noise vectors. It is further assumed
that at is Gaussian with zero mean and covariance of Σa.
N(q) is then realized in a form such that it is monic. For n×n
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transfer function matrix G(q), there exists a non-unique, non-
singular n× n polynomial matrix D such that det(D) = qr

and
lim

q−1→0
DG(q) = lim

q−1→0
G̃(q) = K (2)

where K is a non-zero and finite matrix with full rank,
the integer r is defined as the number of infinite zeros
of G(q), and G̃ is the delay-free transfer function matrix
corresponding to G(q). The interactor matrix, D, can be
written as

D = D0q
d +D1q

d−1 + · · ·+Dvq
d−v (3)

where d denotes the order of interactor matrix D, v is defined
as the relative degree of D [7], and Di (i = 0, . . . , v)
are coefficient matrices. The interactor matrix D can be
categorized into three forms. The simplest form is D = qdI ,
called simple interactor matrix. A more complicated inter-
actor matrix can be D = diag(qd1 , qd2 , . . . , qdn), which is
called diagonal interactor matrix. Otherwise, for some special
processes, interactor matrix can have off-diagonal elements
and is called general interactor matrix. The common forms of
general interactor matrix include lower triangular, nilpotent
and unitary matrix. The unitary interactor matrix satisfies

DT (q−1)D(q) = I. (4)

For unitary interactor, by introducing interactor filtered
output [8], [4]:

ỹt = q−dDyt

= F̃0at + F̃1at−1 + · · ·+ F̃d−1at−(d−1) + F̃dat−d + · · · ,

the sum of the variances of original output can be minimized
as

minE(yTt yt) = E(ỹTt ỹt) = tr[cov(ỹt)] (5)

where the first equality is due to unitary interactor matrix.
The MVC benchmark can be evaluated as

η =
E(yTt yt)min

E(yTt yt)
. (6)

For a lower triangular interactor matrix, the minimum
variance is conditional [1]. The minimum variance control
law derived from interactor filtered output minimizes:

1) the variance of first output;
2) the variance of second output on the condition that the

variance of first output is minimized;
3) the variance of third output on the condition that the

variance of first output is minimized first and then the
variance of second output is minimized; and so on.

III. INTRODUCTION OF BLOCK LOWER TRIANGULAR
INTERACTOR MATRIX

The lower triangular interactor matrix introduced in the
previous section can be extended to block lower triangular
interactor matrix.

Definition 1: For any n × n proper and rational transfer
function matrix G(q), D(q) is a block lower triangular
interactor matrix if it satisfies

G(q) = D(q)−1G̃(q) (7)

lim
q−1→0

G̃(q) = lim
q−1→0

D(q)G(q) = K (8)

and

D(q) =


D11(q) 0 · · · 0
D21(q) D22(q) · · · 0

...
...

. . .
...

Dm,1(q) Dm,2(q) · · · Dm,m(q)

 (9)

where K denotes a full rank finite and non-zero matrix and
Di,i (i = 1, . . . ,m) are unitary interactor matrices satisfying
(4).

As an example, CVs are partitioned to two groups accord-
ing to LP results. We aim at minimizing variance of CVs in
Group 1 unconditionally and then minimize the variance of
CVs in Group 2 under the condition that CVs in Group 1
have minimum variance. Hence, we focus on the case m = 2.
The results can be easily extended to other cases with m > 2
in a similar fashion.

Based on LP results, G(q) is partitioned as

G(q) =

(
G1(q)
G2(q)

)
(10)

where G1(q) and G2(q) are n1 × n and n2 × n transfer
function matrices, respectively. Using algorithms discussed
by Huang and Shah [8], one can obtain unitary interactors
D11(q) and D22(q) for G1(q) and G2(q). According to
property of unitary interactor, there exists full rank constant
matrices K1 and K2 such that

K1 = lim
q→∞

D11(q)G1(q)

K2 = lim
q→∞

D22(q)G1(q)

where K1 ∈ Rn1×n and K2 ∈ Rn2×n. If matrix

K =

(
K1

K2

)
(11)

is non-singular, then

D(q) =

(
D11(q) 0

0 D22(q)

)
(12)

is the block lower triangular interactor matrix for G(q).
Otherwise, there must be non-zero off-diagonal block in

D matrix. Since K is non-singular, the left null space UT

of matrix (KT
2 KT

1 )T can be factorized in reduced row
echelon form.

UT

(
K2

K1

)
= 0 (13)

where U ∈ Rnu×n

1) whose rows have the form (0 · · · 0 1 ∗
· · · ∗);
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2) the number of leading zeros in each row is strictly
greater than number of leading zeros in the row above
it; and

3) the column containing leading one is the only nonzero
component in its column.

Since both K1 and K2 are full row rank, the leading zeros
in last row of U is less than n2. This means that given U
some rows of K2 can be represented by linear combination
of K1 and K2. Let the leading one in the i-th row of U be
in column ni and U = (ui,j).

K2(ni, :) =

n2∑
j=ni+1

−ui,j K2(j, :)+

n1+n2∑
j=n2+1

−ui,j K1(j, :),

i = 1, . . . , nu (14)

where K1(j, :) and K2(j, :) denote j-th row of K1 and K2,
respectively, by borrowing notations in MATLAB. Hence,
delays in G2(q) can be increased in a similar fashion as the
method constructing lower triangular interactor matrix [2].
Let D0

2 be (0 D22)T which is the second row of D(q). Set

D1
2(ni, :) = qd

1
2,ni

D0
2(ni, :) +

n2∑
j=ni+1

ui,j D2(j, :)+

n1+n2∑
j=n2+1

ui,j D1(j, :)

 , i = 1, . . . , nu (15)

where d1
2,ni

is a unique integer such that
limq→∞D1

2(ni, :)G(q) = K1
2 (ni, :) is finite and nonzero.

If K1
2 (ni, :) linearly independent of rows of K1 and

K2(1 : ni − 1, :), then ni-th row of D2 is set to be
D1

2(ni, :). If not, delay of ni-th row of D2 can be increased
in the same way. The approach will eventually terminate
since detG(q) 6= 0 and D11(q), D22(q) have at least delay
of 1.

Remark 1: Although the lower triangular interactor is
unique [2], the block lower triangular interactor is non-
unique because of unitary diagonal blocks. For any unitary
interactor matrix D(q) and unitary real matrix Γ, D̄(q) =
ΓD(q) is also a unitary interactor matrix.

Example 1: Assume

G(q) =


4q−1

1−0.4q−1
q−2

1−0.1q−1
q−2

1−0.2q−1
q−2

1−0.3q−1

3q−1

1−0.1q−1
q−2

1−0.8q−1
q−2

1−0.3q−1
2q−2

1−0.5q−1

q−1

1−0.5q−1
q−1

1−0.6q−1
q−1

1−0.8q−1
q−1

1−0.7q−1

−4q−1

1−0.7q−1
q−1

1−0.5q−1
q−1

1−0.4q−1
q−1

1−0.6q−1


=

(
G1(q)
G2(q)

)
in which the first two CVs are of primary interest. It can be
easily verified that the interactors for G1(q) and G2(q) are

D11(q) =

(
−0.8q −0.6q
−0.6q2 0.8q2

)
, (16)

D22(q) =

(
q 0
0 q

)
(17)

respectively. The corresponding

K = lim
q→∞

(
D11(q) 0

0 D22(q)

)(
G1(q)
G2(q)

)

=


−5 0 0 0
−0.72 0.2 0.2 1

1 1 1 1
−4 1 1 1

 =

(
K1

K2

)

Then, the left null space of (K2 K1)T in reduced row
echelon form is found to be

UT =
(
1 −1 1 0

)
which indicates that D2(1, :) + D1(1, :) − D2(2, :) = 0.
Therefore, we need to increase the delay for this row.

D1
2(1, :) = qd

1
2,1
(
D0

2(1, :) +D1(1, :)−D2(2, :)
)

= qd
1
2,1 [(0 0 q 0) + (−0.8q − 0.6q 0 0)

− (0 0 0 q)]

= qd
1
2,1 (−0.8q − 0.6q q − q)

where d1
2,1 = 1 leads to a non-singular and finite K =

limq→∞DG(q):

K =


−5 0 0 0
−0.72 0.2 0.2 1

0 −1.3 −1 −1.9
−4 1 1 1

 .

Therefore, the block lower triangular interactor matrix for
G(q) is

D(q) =
(
D1(q) D2(q)

)T
=


−0.8q −0.6q 0 0
−0.6q2 0.8q2 0 0
−0.8q2 −0.6q2 q2 −q2

0 0 0 q



IV. LP-BASED MPC CONTROL PERFORMANCE
MONITORING

A. LP problem and active CV constraints

Assume that the setpoint of MPC controlling the process
described by (1) is obtained from the following LP problem:

min
ȳ,ū

αT ȳ + βT ū

s.t. ȳ = Gssū+ d (18)

ȳmin ≤ ȳ ≤ ȳmax

ūmin ≤ ū ≤ ūmax

where ȳ = (ȳ1, . . . , ȳn)T and ū = (ū1, . . . , ūm)T . Note
that the constraints on ȳ are soft constraints in the MPC
optimization problem. For simplicity, the solution to (18) is
denoted as ȳ, ū. The active constraints can be inferred from
sensitivity analysis or the dual solution.

Based on the solution to (18), CVs can be separated into
two groups: CVs with active (binding or more important)
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constraints and CVs with inactive (non-binding or less impor-
tant) constraints. The CVs in first group are of our primary
interest, whose variances along normal direction of active
constraints will be minimized. The CVs in second group are
of less importance, but one may still keep them under control.

Remark 2: In the case of multiple solutions to the LP
problem (18), it is recommended to choose the center of
solution subspace as setpoint of MPC. The reason is that
the number of active constraints may be reduced. For exam-
ple, let (ȳ1, ū1) and (ȳ2, ū2) be two optimal vertices, and
ȳ1 = ȳmax

1 and ȳ1 = ȳmin
1 are the active constraints for

(ȳ1, ū1) and (ȳ2, ū2) respectively. Then, (ȳ, ū) = [(ȳ1, ū1)+
(ȳ2, ū2)]/2 is still optimal but none of ȳ1 constraint is active.

Remark 3: Although the LP problem optimizing setpoint
of MPC usually takes the form (18) whose constraints are
upper and lower bounds, there may exists general constraint
A1ȳ +A2ū ≤ b in LP constraints. Under this circumstance,
active constraints can involve more than one CV. However,
it can be converted to upper and lower bound types of
constraints by introducing variable transformation.

B. Conditional MVC law and performance benchmark under
block lower triangular interactor

With CVs divided to two groups, the conditional MVC
law can be further derived. According to the CV priority, yt
is partitioned as

yt =

(
y1,t

y2,t

)
where y1,t ∈ Rn1 is the vector of CVs with high priority and
y2,t ∈ Rn2 is the vector of other CVs. The corresponding
block lower triangular interactor matrix is

D =

(
D11 0
D21 D22

)
.

Then, the process (1) becomes

yt = D−1G̃ut +Nat. (19)

Defining interactor filtered output ỹt = q−dD(q)yt, we
obtain

ỹt =

(
ỹ1,t

ỹ2,t

)
= q−d

(
D11 0
D21 D22

)(
y1,t

y2,t

)
(20)

ỹ1,t = q−dD11y1,t (21)

ỹ2,t = q−d(D21y1,t +D22y2,t). (22)

Equation (19) can be simplified as

ỹt+d = G̃ut +DNat. (23)

Since N(q) is a rational transfer function matrix of distur-
bance dynamics without delay, DN has some factors with
positive power of q. It can be factorized as

DN = Fdq
d + Fd−1q

d−1 + · · ·+ F1q︸ ︷︷ ︸
F (q)

+R(q).

Equation (23) becomes

ỹt+d = G̃ut + Fat +Rat. (24)

The MVC law is achieved by

ut = −G̃−1Rat (25)

since G̃ is invertible. We have the following lemma for MVC
law (25) under block lower triangular interactor.

Lemma 1: The control law (25) minimizes
1) the sum of variances of first n1 CVs; and
2) the sum of variances of last n2 CVs when 1) is

achieved.
Proof:

Consider first n1 CVs. Multiplying eT1 = (In1
0) to both

sides of (23) or (24), the first block row of (23) is obtained:

ỹ1,t+d = eT1 G̃ut + eT1 Fat + eT1 Rat. (26)

Because ỹt is stationary and at is white noise,

tr[cov(ỹ1,t)] = tr[cov(ỹ1,t+d)]

= tr[cov(eT1 G̃ut + eT1 Rat) + cov(eT1 Fat)]

≥ tr[cov(eT1 Fat)] = tr(eT1 FΣaF
T e1) (27)

On the other hand, substituting control low (25) leads to

ỹ1,t+d = eT1 Fat. (28)

which means the equality in (27) holds. Recalling D11 is
unitary, (21) implies cov(ỹ1,t) = cov(y1,t). Therefore, the
sum of variances of first n1 CVs is minimized.

Next, consider the last n2 CVs. Similarly, by multiplying
eT2 = (0 In2

) to both sides of (23), we obtain

ỹ2,t+d = eT2 G̃ut + eT2 Fat + eT2 Rat. (29)

Further, substitute (22) into (29),

D21y1,t +D22y2,t = eT2 G̃ut + eT2 Fat + eT2 Rat

D22y2,t = −D21D
T
11ỹ1,t + eT2 G̃ut + eT2 Fat + eT2 Rat

(30)

where DT
11 = DT

11(q−1) is the conjugate transpose. Since
the control law (25) yields (28), (30) becomes

D22y2,t = −D21D
T
11e

T
1 Fat + eT2 G̃ut + eT2 Fat + eT2 Rat

= eT2 G̃ut + eT2 Rat + (eT2 −D21D
T
11e

T
1 )Fat.

(31)

Recall that D22 is unitary,

tr[cov(y2,t)] = tr[cov(eT2 G̃ut + eT2 Rat)+

cov((eT2 −D21D
T
11e

T
1 )Fat)]

≥ tr[cov[(eT2 −D21D
T
11e

T
1 )Fat]] (32)

where the equality holds if and only if the control law (25)
is applied. Therefore, the sum of variances of last n2 CVs
is minimized by (25) when 1) is achieved.

Remark 4: Block diagonal interactor is a special case of
block lower triangular interactor. In this case, minimum
variance of the CV groups are independent from one another.

Based on the MVC law (25), the conditional minimum
variance benchmark is given by

JMV,1 = tr(eT1 FΣaF
T e1) (33)
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for CVs with higher priority and

JMV,2 = tr[(eT2 −D21D
T
11e

T
1 )FΣaF

T (e2 − e1D11D
T
21)]

(34)
for CVs with lower priority when J1 is minimized.

V. SIMULATION RESULTS

In this section, an example is demonstrated.
Example 2: The following process is taken from [13].

G(q) =

(
q−1 0
q−1 q−2

)
and

N(q) =

( 1
1−q−1

1
1−q−1

)
where Σa = 0.01. Suppose the LP problem is

max
ȳ,ū

ȳ2

s.t. ȳ = Gssū+ d

0 ≤ ȳ1, ȳ2 ≤ 2

0 ≤ ū1, ū2 ≤ 5

where d is integrating white noise subject to (2) such that it
does not affect active set. There are two alternative solutions
(ȳ1, ȳ2)T = (0, 2)T and (ȳ1, ȳ2) = (0, 2)T . The middle
point of them (1, 2)T is selected as MPC setpoint. The only
active constraint is ȳ2 = 2. Reversing y1 and y2 to get y2

prioritized, we obtain

G′(q) =

(
q−1 q−2

q−1 0

)
and

N ′(q) =

( 1
1−q−1

1
1−q−1

)
The unitary interactor of G′(q) is

D′u =

(
−q2/

√
2 −q2/

√
2

−q/
√

2 −q/
√

2

)
and the corresponding feedback invariant term is

F ′u =

(
−(1 + q−1)/

√
2 (1 + q−1)/

√
2

−q−1/
√

2 −q−1/
√

2

)
.

The variance of y2 using MVC based on unitary interactor
is

var(y2) = var(y′1) = eT1 F
′
uΣaF

′T
u e1 = 0.02.

After partition G′(q) according to LP results, the (block)
lower triangular interactor is

D′tri =

(
q 0
q2 q−2

)
and feedback invariant term becomes

F ′tri =

(
q 0

q2 + q −q2 − q

)
.

The minimum variance of y2 based on block lower triangular
interactor is

var(y2) = var(y′1) = eT1 F
′
triΣaF

′T
trie1 = 0.01.

In this case, variance of y2 is reduced at the expense of
variance of y1, as can be observed from second row of F ′tri.

Control results of both controllers are illustrated in Fig.
1. Since y2 upper limit constraint is active, MVC based on
block-lower triangular interactor minimizes the variance of
y2 first and then minimizes the variance of y1. From Fig. 1,
we can see that the variance of y2 controlled by block-lower
triangular interactor based MVC is the smallest. This verifies
the conditional minimum variance property of the proposed
method. If the safety limit of y2 is chosen as ymax

2 = 2.3,
the violation rate of conditional MVC and traditional unitary
interactor based MVC are 0.2% and 1%, respectively.

Next, performance monitoring will be conducted on an
MPC. Since LP results are known, one may want to empha-
size more on y2. The weights for CV are chosen to be (1, 4),
and the weights for MV are (0.5, 0.5). Prediction and control
horizon are 5 and 2 respectively. Results are also shown in
Fig. 1. The variance of y2 is

Jy2 = 0.0150

as compared to
JMV,y2

= 0.01.

The ratio is JMV,y2/Jy2 = 0.67. It is concluded that this
MPC has the potential to improve in terms of y2 variance or
y2 upper limit violations.

VI. CONCLUSIONS

For the LP-MPC system, we prioritize CVs based on
importance of their constraints for performance assessment.
Since CV constraints are generally soft constraints, smaller
variance along normal direction of these constraints results
in less violations of the constraint limits. To achieve this, we
introduce block lower triangular interactor to construct the
conditional MVC law, whose output variance is minimized
with priority and used as the performance benchmark. The
method is illustrated by simulation results showing that tradi-
tional unitary interactor based method is unable to distinguish
the importance of CVs and that the proposed method is.
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Fig. 1. Control results of Example 2 in y1-y2 plane. Green markers
are results by MVC using unitary interactor; blue markers are results by
conditional MVC using block lower triangular interactor; and red markers
are the dynamic control results by an MPC.
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