
Pseudo-Polynomial Auction Algorithm for Nonlinear Resource Allocation

Ajay Kumar Bangla and David A. Castañón

Abstract— We study the problem of optimally assigning N
divisible resources to M competing tasks. This is called the
Nonlinear Resource Allocation Problem (RAP). Recently, we
proposed a new algorithm, RAP Auction [1], which finds a
near optimal solution in finite time. It works for monotonic
convex cost functions and has a simple computation structure.
In this paper, we propose an elegant extension which enables
RAP Auction to have pseudo-polynomial complexity.

I. INTRODUCTION

Let us consider the problems where heterogeneous re-
sources have to be allocated in continuous amounts to a
diverse set of tasks. The underlying performance of executing
a task is a nonlinear function of the bundle of resources
assigned to it. Problems of this type arise in diverse applica-
tions such as search theory [2]–[4], weapon target assignment
[5], [6], sensor management, and market equilibria [7] .

In [1], [8], we developed a new class of finite time algo-
rithms called RAP Auction for solving such problems. This
algorithm was inspired by success of the auction algorithm
for linear assignment problems. In essence, there is a price
for each task node and in each iteration, source nodes with
surpluses bid for their best tasks. The task node being bid for,
decides on how much resource to accept from the bidding
source node. This simple compute structure inherently makes
this algorithm suitable for distributed implementation. It
works for generalized monotonic convex functions including
non-differential or/and non-strictly convex functions.

RAPs are convex optimization problems on generalized
network (network with gains). Such network are usually
harder than their ordinary network counterparts because cy-
cles in generalized networks can generate or absorb flow. It is
the presence of such cycles that prevents RAP Auction from
having stronger complexity results than finite termination.
One resolution to this dilemma is to detect and resolve
cycles as proposed in [9]. However, this requires additional
bookkeeping and imposes a certain sequential bidding order.

In this paper, we propose a simple yet potent extension to
RAP Auction which enables it to have pseudo polynomial
complexity. This is achieved by addition of a single new
step without any need for cycle detection or additional
bookkeeping or imposing a bidding order. Thus it preserves
all the benefits of the existing computation structure. The
convergence proof for this simple extension is novel and
non-trivial.

This work was supported by AFOSR grants FA9550-07-1-0361 and by
ODDR&E MURI Grant FA9550-06-1-0324

The authors are with the Dept of Electrical & Computer Eng., Boston
University, ajay@bu.edu, dac@bu.edu

The remainder of this paper is organized as follows. In
section II, we formulate the RAP and briefly discuss duality
for RAP. Section III reviews RAP Auction algorithm. In
section IV, we propose our extensions to RAP Auction
and prove its convergence. Some numerical experience is
reported in section V. Section VI summarizes our results.

II. PROBLEM FORMULATION

Consider a bipartite graph G = (W,T,E), a triple,
consisting of a set of N source nodes, a set of M sink
nodes and a set of arcs, respectively. We are given, for
each source i ∈ W , a scalar si (supply of i), for each arc
(i, j) ∈ E, a positive scalar cij (gain of (i, j)) and at each
sink j ∈ T a non-increasing, closed, convex cost function
fj : <+ 7→ <. We now define the nonlinear Resource
Allocation Problem (RAP) as

min
x,z

f(z) :=
∑
j∈T

fj(zj) (1a)

subject to
∑
j∈Ti

xij = si ∀ i ∈W (1b)∑
i∈Wj

cijxij = zj ∀ j ∈ T (1c)

x ≥ 0, z ≥ 0 (1d)

where Ti = {j : (i, j) ∈ E} is the set of sinks connected to
the ith source, Wj = {i : (i, j) ∈ E} is the set of sources
connected to jth sink, x , {xij |(i, j) ∈ E} is the flow
vector, and z , {zj |j ∈ T} is the demand vector.

Introducing multipliers µi and pj (also called sink prices)
for the flow conservation constraints at the source W and
sink T nodes, respectively, we get the dual of RAP as

max
µ,p

q(µ,p)

where the dual function q is given by

q(µ,p) =
∑
j∈T

qj(µWj
, pj)− µ′s

and qj is defined as

qj(µWj
, pj) = inf

zj≥0
{fj(zj) + pjzj}

+
∑
i∈Wj

inf
xij≥0

{(µi − cijpj)xij} .

Strong duality, existence of both primal and dual optimal
solutions and existence of multipliers which satisfy Com-
plementary Slackness (CS) for any primal feasible solutions
were established in [8].

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 3880

Following [1], we say for any positive scalar ε, a triple
(x, z,p) is ε-CS iff (x,p) and (z,p) are ε-CSarc and CSsink,
respectively, where
• flow-price pair (x,p) is ε-CSarc if x ≥ 0, p ≥ 0, &

cijpj ≥ max
k∈Ti

cikpk − ε ∀ {i, j} ∈ E with xij > 0,

• demand-price pair (z,p) is CSsink if z ≥ 0, p ≥ 0, &

−f+
j (zj) ≤ pj ≤ −f−j (zj) ∀ j ∈ T

where f−j (zj) and f+
j (zj) are the left and right deriva-

tives of fj , respectively.
The intuition behind the ε-CS conditions is that a feasible
flow-price pair is ”approximately” primal and dual optimal if
the ε-CS conditions are satisfied as shown in this proposition
which was proved in [8].

Proposition 1: Let (x∗, z∗,p∗) be a flow-demand-price
triple satisfying ε-CS such that (x∗, z∗) is primal feasible,
then

0 ≤ f(z∗)− q(µ∗,p∗) ≤ ε s′1

where µ∗ is defined as µi , maxj∈Ti cijpj ∀ i ∈W .

III. RAP AUCTION ALGORITHM

RAP Auction is a primal-dual method. In a typical iter-
ation, prices have to be computed for given demands, and
demands for given prices which are CSsink consistent. So we
need a map Φj : Zj 7→ Pj where Zj = <+ is the demand
space and Pj = Φj(Zj) is the price space and its inverse
Θj : Pj 7→ Zj . We use the following notation to describe
the RAP Auction Algorithm:
• pmin , minj∈T inf Pj ≥ 0,
• εmin , ε/maxij∈E cij ,
• p(t),x(t), z(t) denote the price, flow and demand vec-

tors at the beginning of tth iteration, respectively,
• gi denotes the surplus of source i ∈W :

gi(t) , si −
∑
j∈Ti

xij(t) ∀ i ∈W.

At the start of the generic tth iteration we have flow-demand-
price vector triple (x(t), z(t),p(t)) that satisfies ε-CS, the
flow-demand pair (x(t), z(t)) satisfies (1c) and g(t) ≥ 0. A
generic iteration consists of two phases: the bidding phase
and the allocation phase, which we now describe.

Bidding Phase:

Select a source i ∈W with gi(t) > 0; if no such source can
be found, the algorithm terminates.

1) Compute the current value vij = cijpj(t) of each sink
j ∈ Ti. Find a sink j1 offering the best value

vbest = max
j∈Ti

vij ,

and a sink j2 offering second best value

vsec = max
j∈Ti\j1

vij .

2) Compute i’s bid price for j1 as

b =

{
(vsec − ε)/cij1 #Ti ≥ 2

pmin else
. (2)

3) Compute i’s bid surplus y = cij1gi.
4) Submit the bid {y, b} to sink j1.

When a sink, say j, receives a bid, it runs the allocation
phase. For ease of exposition, we use the following represen-
tation for previously accepted and still valid bids at a given
sink j:
• Bj = {bi1 , . . . , bin}: List of accepted bid prices in

decreasing order,
• Yj = {yi1 , . . . , yin}: List of flows received where yik

is an alias for cikjxikj(t) with bik as the corresponding
bid price,

• We use bi0 as an alias for pj(t).
A source ik’s bid {yik , bik} is valid if pj(t) ≥ bik and yik >
0. The state at sink j at the beginning of the allocation phase

Φj

bi1

λ

τ

pj

δ0

A

zj

B

Θj(bi1)

bin

b

bin'-1

bin''

D

C

E
Θj(bin'') Θj(bin'-1)

Θj(b)yi1Y
yin'' yin'-1

yin

δn'-1

Fig. 1: State of sink j at the beginning of allocation phase. ’A’
corresponds the current demand-price pair (zj(t), pj(t)) at the
beginning of the allocation phase. b and {bi1 , . . . , bin} correspond
to the current and old bid prices, respectively, with corresponding
flows {yi1 , . . . , yin}.

is illustrated in Fig. 1. As flow starts getting accepted from i
during the current iteration, the demand zj increases and the
demand-price pair slides to the right of ’A’ along the blue
curve. We call this mode of acceptance as absorption. Up
to δ0 of flow can be absorbed before reaching ’B’. This is
called the demand margin between successive prices pj(t)
and bi1 . In general, we define demand margin, δk, as

δk := Θj(bik+1
)−Θj(bik).

If y > δ0, then the demand-price pair will reach ’B’. At ’B’,
flow from i is accepted by reversing flow to i1. We call this
mode of flow acceptance as reversal. The price and demand
don’t change during this mode. If y ≥ δ0 + yi1 , then there
is completely reversal to i1. In this case, we say reverse arc
(j, i1) has saturated. Now between bi1 and bi2 upto δ1 can
be absorbed before reversing i2’s bid and so forth till either

3881

pj drops to b or surplus at source i is exhausted (exhausting
push). This logic is carried out during the allocation phase.

Allocation Phase:

Select a sink j ∈ T which received a new bid {y, b}.
1) If sink j has previously accepted bid from i

a) Update bi = b and re-sort Bj and Yj , accordingly.
2) Else insert b and 0 in Bj and Yj , respectively, in sorted

order and let n′ be the index such that i′n = i.
3) If y ≥ ymax where ymax =

∑n′−1
k=1 yik + Φj(b)− zj(t)

Non-exhausting push:
a) Reverse bids from {i1, . . . , in′−1} while accepting
ymax from i,

b) Set pj(t+ 1) = b and zj(t+ 1) =
∑n
k=n′ yik .

4) Else
Exhausting push: Determine sources {ik : 1 ≤ k ≤ n′′}
whose bids will be completely reversed where n′′ < n′.
ik’s bid is reversed if k < n′ and

∑k
l=1(yil+δl−1) ≤ y.

a) If y ≤
∑n′′

k=1(yik + δk−1) + δn′′

Allocation with complete reversals and absorptions:
i) Reverse bids from {i1, . . . , in′′} completely while

accepting y from i,
ii) Set zj(t + 1) =

∑n
k=n′′+1 yik and pj(t + 1) =

Φj(zj(t+ 1)).
b) else

Allocation with at least one partial reversal:
i) Reverse {i1, . . . , in′′} bids completely and bin′′+1

partially while accepting y from i,
ii) Set zj(t + 1) =

∑n
k=n′′+1 yik and pj(t + 1) =

bin′′+1
.

(Reversing bid to ik implies xkj(t + 1) = 0 and
deleting bik and yik from Bj and Yj , respectively.)

We showed that RAP terminates in a finite number of
iteration with a near optimal solution.

Proposition 2: The RAP auction terminates after finite
iterations with an ε-CS satisfying flow-demand-price triple
(x∗, z∗,p∗) such that (x∗, z∗) is primal feasible.
This was derived by first establishing the following lemmas:

Lemma 1: Every iteration preserves ε-CS, (1c), & g ≥ 0.
Lemma 2: After finite number of iteration, price drops by

at least εmin.

IV. REVISED RAP AUCTION

In this section, we illustrate why RAP Auction can’t have
stronger complexity bounds and then propose our extension.
First we define necessary terminology. At any iteration,
we can define the set A that contains arcs oriented in
the direction of flow change. In particular, for each source
i ∈W , A contains one forward arc (i, j) ∈ E such that if i
were to bid, it would bid for j, i.e.,

j = arg max
k∈Ti

cikpk,

and for each sink j ∈ T , A contains a backward arc for each
valid bid leveled with pj , i.e., if pj = bij , then (j, i) ⊂ A.

Now (W,T,A) defines the admissible graph G. This G can
be cyclic. Due to ε-CS, all such cycles are flow generating,
i.e, cycle gain ≥ 1 [8]. As illustrated in Fig. 2, the complexity

1

2

1

2

g₁>0

W T

g₂₌0

Fig. 2: Impact of cyclic admissible graph. Assume at t we
have this graph. In this iteration source 1 bids for sink 1
increasing x11 by g1 while reducing x21 by g1c11/c21. Next
2 bids for 2 increasing x22 by g1c11/c21 and reducing x12

by g1γ where γ = c22c11/c21c12, the cycle gain. After k
such circulations x21 and x12 are reduced by g1γ

k−1c11/c21

and g1γ
k, respectively. This sequence continues till one of

the reverse arcs saturates making the graph acyclic. Since
γ ≥ 1, this happens in order O(1/g1) iterations.

of resolving such cycles though finite can be arbitrarily large.
This prevents RAP Auction from having stronger than finite
termination.

We propose appending this step to the bidding phase which
resolves such cycles.

Bidding Phase (contd.):

5) Update all the valid bids of i

bi = (vbest − ε)/cij ∀ j ∈ Ti\j1 : bi ∈ Bj . (3)

The bid prices determine the sink prices at which flows have
to be reversed so as not to violate CSsink. In this new step,
the bidding source revises the bid prices for all its valid bids,
excluding the current bid as shown in Fig. 3. If its current
best value, vbest, has strictly reduced, then all its valid bid
prices are strictly lowered.

Values	 for	 source	
i	 at	 t1

vbest(t1)

ϵ
cij1

bij1
(t1)

vsec(t1)

Values	 for	 source	
i	 at	 t2

vbest(t2)

ϵ
cij1

bij1
(t1)

cij1
bij1

(t2)

Values	 for	 source	
i	 at	 t3

vbest(t3)

ϵ
cij1

bij1
(t1)

cij1
bij1

(t2)
cij1

bij1
(t3)

Fig. 3: Illustration of bid update step. Let t1 < t2 < t3 be
iterations in which i bids subsequently. In t1, i bids for j1
setting bij1 using (2). At t2, if i bids for some sink other
than j1 and vsec(t1) > vbest(t2), then bij1 is strictly lowered
in the bid update step. This step again revises bij1 at t3 if
vbest(t3) < vbest(t2).

Trivially lemma 1 continues to hold with this modification.
For the convergence result, we first have to re-derive lemma
2 under the new setting.

3882

Lemma 3: The number iterations between two successive
price drops is bounded by O(N2).

Proof: An iteration in which the prices don’t change
is called Non Price Reducing (NPR). Every NPR iteration
is exhausting and flow is completely accepted by reversal.
Let {1, 2, . . . , χ} denote a sequence of successive iterations
between two non zero price drops. In this sequence, let Ẇ =
{i1, . . . , iη} and Ṫ = {j1, . . . , jη} denote the sources and
sinks making and receiving bids, respectively such that i1
bids for j1, i2 bids for j2. Since more than one sources can
bid for the same sink, Ṫ may not contain all unique sinks. Let
Ġ = (Ẇ , Ṫ , Ȧ) denote the corresponding admissible graph.
If this graph is acyclic, then from Lemma 4, the number of
NPR iterations is bounded by

χacyclic(η) ≤ η(η + 1)/2.

However if there are cycles, for RAP Auction we only have
χ < ∞. With the new proposed bid update step, we obtain
a polynomial bound as we now show.

For each sink j ∈ Ṫ , let tj < 1 denote the latest price
reducing iteration, i.e., pj(tj)− pj(tj + 1) > 0. Assume that
set of sinks Ṫ is labeled such that tj1 ≤ tj2 ≤ · · · ≤ tjη .
For each sink j, we define its push list as set of following

i₁

i₂

j₁

j₂

iη jη

t₁

t₂

tη

ť₁₌₁

ťη₌t₂₊₁

ť₂₌t₁₊₁

Ẇ Ṫ

Fig. 4: Illustration of the admissible graph during a series of
NPR iterations. The arcs specify the direction along which
flow can changed according to the rules of the algorithms.
The push lists are Lj1 = {i2}, Lj2 = {iη}, . . . , Ljη = {i2}.

sources whose flows can be reversed

Lj = {i ∈ Ẇ |pj = bij}.

Now consider one such bid bij where i ∈ Lj . Then this bid
price hasn’t changed since tj +1. Due to the new bid update
step, this is either because the source i hasn’t bid again or
its best value hasn’t changed since tj+1. So for each source
i ∈ Ẇ , we can define

t′i =

{
0 i /∈ Lj ∀j ∈ Ṫ
min{j∈Ṫ |i∈Lj} tj else

.

Then all the bid prices of i haven’t changed since t′i + 1.
If i were now to bid for a sink j whose price has changed
after t′i + 1 (t′i ≤ tj), it means that the best value for i
has strictly reduced. Accordingly, in the new step 5, the bid
prices are strictly lowered and the corresponding reverse arcs
are removed from Ġ. For example in Fig. 4, i2’s bid prices
for its allocations to j1 and jη hasn’t changed since t1 + 1

and when it bids again, these bid prices are strictly lowered
removing (j1, i2) and (jη, i2) from Ġ. Such a source can’t
bid again in this sequence as it is exhausted in the current
iteration and its flow can’t be reversed without a drop in
prices. We call such a source as Single Push Source (SPS).

Fig. 5 is the biadjacency matrix of Fig. 4. Because of the
ordering of the sink nodes, all the SPSs correspond to rows
with negative lower diagonal elements. From this, it is easy

t1 t2 . . . tη
j1 j2 . . . jη

i1 1 0 . . . 0
i2 −1 1 . . . −1
...

...
...

. . .
...

iη 0 −1 . . . 1

Fig. 5: Biadjacency matrix for Fig. 4. The diagonal +1
elements correspond to the forward arcs and −1 off-diagonal
elements correspond to the reverse arcs. Negative lower
diagonal elements correspond to SPSs. Here i2 and iη are
SPSs.

to make the following observations:
1) Ġ is acyclic if it has no SPSs.
2) Every cycle in Ġ has at least one SPS.

When an SPS bids, then all the non-diagonal entries in its
row are set to zero. So there can be at most one circulation
in any cycle. Without the SPSs participating, the admission
graph is essentially acyclic and after all the SPSs have bid
once, Ġ becomes acyclic, i.e.

χ ≤ χacyclic(η − ηSPS) + ηSPS + χacyclic(η − ηSPS) ≤ (η + 1)2

where ηSPS is the number of SPSs. So finally we have χ is
O(N2).

Lemma 4: Number of iterations in an acyclic admissible
graph with η sources is bounded by η(η + 1)/2.

Proof: Let {1, 2, . . . , χacyclic} denote a sequence of
successive NPR iterations and Ġ = (Ẇ , Ṫ , Ȧ) the corre-
sponding admissible graph. If this admissible graph consists
of a single path (i1, j1, i2, j2, · · · , iη, jη), then the bound on
iterations can be calculated using a directed tree as shown
in Fig 6. If the admissible graph has multiple paths, then we
have to form directed trees for each path and merge these
trees to form a polytree as illustrated in Fig. 7. Let α(i)
denote the number of ancestors of node i and α , {α(i)|i =
1, 2, . . . , η}. Relabel the nodes such that α is in descending
order. We have this inequality

α(i) ≤ η − i

from the fact that in a directed acyclic graph if i is the
ancestor of j, then j can’t be the ancestor of i. χacyclic is
bounded by

η∑
i=1

{α(i) + 1} ≤ η +

η∑
i=1

{η − i}

= η(η + 1)/2.

3883

i₁

i₂

j₁

j₂

iη jη

Ẇ Ṫ

(a) Admissible Graph

i₁

i₂

iη

Ẇ

(b) Directed tree

Fig. 6: (a) Max. iterations on graph with one path. Assume
that all sources have non-zero surpluses and we have the bid-
ding sequence iη, iη−1, iη, iη−2, iη−1, iη, . . . , i1, i2, . . . , iη .
(b) shows the directed tree for this sequence. A node bids
reversing the flow to the its child which allows the child to
bid in the next iteration. So the max. number of times a node
can bid is the number of its ancestors + 1. After a max. of
η(η + 1)/2 iterations all the sources in Ẇ are exhausted.

i₁ j₁

i₂ j₂

i₃ j₃

Ẇ Ṫ

i₄ j₄

i₅ j₅

i₁

i₂

i₃

i₄

i₅

i₃

i₄

i₁

i₂

i₃

i₄

i₅

i₆ j₆

i₁

i₂

i₃

i₆ i₆

(a) (b) (c)

Fig. 7: (a) Admissible graph with 3 distinct paths. (b)
directed trees corresponding to different paths. (c) Polytree
obtained by merging. Max. number of times a node can bid
is the number of its ancestors + 1.

Lemma 5: The number of iterations before the price drops
by at least εmin is O(MN3).

Proof: Let ∆ = {1, 2, . . . , χ} denote this sequence of
iterations. Every iteration is exhausting and the bids made
during this sequence can’t be reversed. So each sink j can
only reverse flows of mj bids which satisfy

pj(1) ≥ bi1 ≥ · · · ≥ bimj > pj(1)− εmin
where {bi1 , . . . , bimj } ⊂ Bj .

Let n(t) be the number of sources with nonzero surpluses
and its variation

∇n(t) = n(t+ 1)− n(t). (4)

Let ∆j ⊂ ∆ be the subsequence during which sink j is bid
for. The subsequence of iterations during which n(t) strictly
increases is defined as

∆j
+ , {t ∈ ∆j : ∇n(t) > 0}. (5)

This happens if at least two flow reversals (one complete and
one at least partial) take place during a given iteration. Since
there are only mj bids which can be reversed, we have

#∆j
+ ≤ max{mj − 1, 0}

and the positive variation is also bounded as an arc once
saturated remains saturated.∑

t∈∆j
+

{∇n(t)} ≤ mj − 1. (6)

Based on the what happens during the allocation phase at
a sink node, an iteration can be classified as:

1) NPR: Flow is entirely accepted by reversal without any
price drop. So

0 ≤ ∇n(t) ∀ t ∈ ∆NPR (7)

where ∆NPR ⊂ ∆ is the subsequence of NPR iterations.
2) Price Reducing (PR): These are of two types:

a) Price Reducing with bid Reversal (PRR): These are
strictly price reducing with some flow reversal.

0 ≤ ∇n(t) ∀ n ∈ ∆PRR. (8)

where ∆PRR ⊂ ∆ is the subsequence of PRR itera-
tions. This can only happen in two ways, a price drop
followed by reversal (a bid starts getting reversed
for the first time) or vice-versa (a bid is completely
reversed). So each reversible bid can result at most 2
PRR iterations and

#∆j
PRR ≤ 2mj . (9)

b) Price Reducing Without bid Reversal (PRWR): In
such iterations, there is no reversal. So

∇n(t) = −1 ∀ t ∈ ∆PRWR (10)

where ∆PRWR ⊂ ∆ is the subsequence of PRWR
iterations.

From (5), (7), (8), and (10),

∆j
NPR

⋃
∆j

PRR = ∆j
+

⋃
{t ∈ ∆j : ∇n(t) = 0}.

So using (6)∑
t∈∆j

NPR

⋃
∆j

PRR

∇n(t) =
∑
t∈∆j

+

∇n(t) ≤ mj − 1. (11)

Now we derive a bound for PRWRs using (4) and the fact
that n(χ) > 0,

−n(1) ≤ n(χ)− n(1)

=
∑
t∈∆

∇n(t)

=
∑

t∈∆PRR
⋃

∆NPR

∇n(t) +
∑

t∈∆PRWR

∇n(t)

≤
∑
j∈T

(mj − 1)−#∆PRWR.

3884

TABLE I: Solution times (in seconds) for RAP Auction, Revised RAP Auction, CVX, and RWOA for solving randomly
generated search problems. Pedge is the probability of an edge between a source and sink.

N M Pedge Supply range Gain range ε RAP Revised RAP CVX RWOA
4 4 0.4 1− 7 0− 2.3026 0.01 0.00171 0.00219 0.15647 0.00130
4 4 0.4 1− 7 0− 2.3026 0.001 0.00602 0.00834 0.16417 0.00190
4 4 0.4 1− 7 0− 2.3026 0.0001 0.04508 0.06979 0.17767 0.00208

5 20 0.4 1− 7 0− 2.3026 0.001 0.04650 0.07731 0.98179 0.00372
20 5 0.4 1− 7 0− 2.3026 0.001 0.00404 0.00420 0.15637 0.00619

10 10 0.25 1− 10 0− 2.3026 0.001 0.01360 0.01949 0.17066 0.00480
10 10 0.5 1− 10 0− 2.3026 0.001 0.01587 0.02111 0.17749 0.00497
10 10 0.75 1− 10 0− 2.3026 0.001 0.02174 0.02819 0.15884 0.00370
10 10 1 1− 10 0− 2.3026 0.001 0.02960 0.03642 0.16027 0.00364

10 10 0.4 1− 10 0− 2.3026 0.0001 0.05600 0.07847 0.23108 0.01069
10 10 0.4 1− 10 1 0.0001 1.26861 1.41890 - 0.00202

10 10 0.4 1 0− 2.3026 0.001 0.01272 0.01752 0.34665 0.00870
10 10 0.4 1− 10 0− 2.3026 0.001 0.01345 0.01715 0.23284 0.00178
10 10 0.4 1− 100 0− 2.3026 0.001 0.00825 0.01030 0.23256 0.00510

Last inequality follows from (10) and (11). So

#∆PRWR ≤
∑
j∈T

(mj − 1) + n(1). (12)

From (9) and (12) we have for all the PR iterations,

#∆PR , #(∆PRR

⋃
∆PRWR)

≤
∑
j∈T
{3mj − 1}+ n(1)

≤ 3MN +N − 4M.

From lemma 3, we have a bound on the number of successive
NPRs iterations. So

χ ≤ #∆PR ∗max number of successive NPRs
≤ (3MN +N − 4M)O(N2) = O(MN3).

Proposition 3: The revised RAP auction algorithm termi-
nates in O(N3M2pmaxcmax/ε) where pmax , maxj∈T pj(1)
and cmax , max(ij)∈E cij .

Proof: The sequence pj(t) is a non increasing sequence
and lower and upper bounded by pmin ≥ 0 and pmax,
respectively. Every O(MN3) iterations the price of at least
one sink node drops by εmin. So maximum iterations is
O(N3M2pmax/εmin).

The proofs for lemmas 3, 4 and 5 assume strict convexity.
However this can be relaxed similar to how we generalized
lemma 2 in [8].

V. EXPERIMENTS

In [1], we benchmarked the original RAP Auction for
randomly generated instances of search theory problems [4]
where the cost functions are exponentials. These tests were
designed to study its performance relative to CVX [10], a
MATLAB based generic convex solver, and Resource-Wise
Optimization Algorithm (RWOA) [11] and the dependence
of this performance on network topology, arc gains, supply
and ε. In general, CVX was an order of magnitude slower
than RAP Auction which was slower than RWOA. RWOA

benefits from the fact that it has been customized for expo-
nential cost functions.

Continuing along this line, we now report the performance
for Revised RAP Auction. We have also improved the
performance of original RAP Auction by efficient sorting.
Table I lists the solutions times on MacBook Pro 4.1 running
OS X 10.6.4 operating system. The performance of revised
RAP Auction is only slightly more than the original RAP
Auction.

VI. CONCLUSIONS

We have successfully proposed an extension to RAP Auc-
tion which enables it to have provably pseudo-polynomial
complexity as opposed to finite termination. This extension
takes the form of a single additional step to the bidding phase
with negligible computation.

REFERENCES

[1] A. K. Bangla and D. A. Castañón, “Auction algorithm for nonlinear
resource allocation problems,” Proc. 49th IEEE CDC, Dec. 2010.

[2] B. O. Koopman, “The theory of search. iii. the optimum distribution
of searching effort,” Oper. Res., vol. 5, no. 5, Oct 1957.

[3] A. Charnes and W. W. Cooper, “The theory of search: Optimal
distribution of effort,” Mgmt. Sci., vol. 5, 1958.

[4] A. R. Washburn, “Finite method for a nonlinear allocation problem,”
J. Optm. Theory Appl., vol. 85, no. 3, pp. 705–726, June 1995.

[5] ——, “Sortie optimization and munitions planning,” Military Oper.
Res., pp. 13–18, 1994.

[6] R. K. Ahuja, A. Kumar, K. C. Jha, and J. B. Orlin, “Exact and heuristic
algorithms for the weapon-target assignment problem,” Oper. Res.,
vol. 55, no. 6, pp. 1136–1146, Nov 2007.

[7] N. R. Devanur, C. H. Papadimitriou, A. Saberi, and V. V. Vazirani,
“Market equilibrium via a primal–dual algorithm for a convex pro-
gram,” J. ACM, vol. 55, no. 5, pp. 1–18, 2008.

[8] A. K. Bangla and D. A. Castañón, “RAP Auction : Auction algorithm
for nonlinear resource allocation problems,” 2010, CISE Report,
Boston University.

[9] P. Tseng and D. P. Bertsekas, “An ε-relaxation method for separable
convex cost generalized network flow problems,” Math. Prog., vol. 88,
no. 1, pp. 85–104, June 2000.

[10] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 1.21,” http://cvxr.com/cvx, Aug. 2010.

[11] H. Luss and S. . K. Gupta, “Allocation of effort resources among
competing activities,” Oper. Res., 1975.

3885

