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Abstract— The persistent excitation issue is considered for 
MISO Hammerstein system identification using the subspace 
approach. A signal generator that provides deterministic 
persistently exciting (PE) sequences is developed. These are 
obtained by operating amplitude weighting and phase shifting 
on a discrete Dirac Comb signal of finite length. The proposed 
signal generation procedure presents quite interesting features 
e.g. the signals data samples are deterministic, weakly 
constrained, and their size do not need to be too large. 
Theoretically, the signal generator design relies on a technical 
lemma establishing the PE property for the considered 
identified systems. The effectiveness of the proposed class of 
exciting sequences is confirmed by simulation. 

I. INTRODUCTION 

LOCK oriented nonlinear models has been proven to be 
a quite interesting tool in capturing many biologic, 

chemical and electrical nonlinear systems behavior. Among 
these, the most popular models are those composed of a 
linear dynamical subsystem and a static nonlinear element 
connected in series namely Hammerstein and Wiener 
models. Several identification schemes have been developed 
for this class of systems following various approaches 
including e.g. frequency, stochastic, blind, iterative 
optimization and others (see e.g. Giri and Bai [1] and 
references therein). Presently, the focus is made on the State 
Space Subspace Identification approach which captured a 
particular attention in control systems community. This class 
of algorithms had been introduced and developed for MIMO 
linear systems during the nineties by P. Van Overschee and 
B. De Moor [2] and references therein, and extended a 
decade after to both SISO and MIMO Hammerstein and 
Wiener nonlinear systems by Lovera et al. [3], Gomez and 
Baeyens [4] and Naitali et al. [5].  

From a theoretical point of view, there is no denying that 
subspace algorithms are accurate and robust. However, to 
guarantee the consistency of the system parameter estimates, 
the input sequence applied while the identification 
experiment must be so that the virtual input sequence of the 
equivalent multivariable linear system is Persistently 
Exciting (PE) of appropriate order. 

In the present work, parametric identification of multi-
input single-output (MISO) Hammerstein systems is 
addressed based on the subspace approach. The focus is 
specifically made on the achievement of the PE property that 

guarantees the consistency of the subspace algorithm results, 
by using deterministic input sequences. To this end, a 
technical lemma is established showing that a class of PE 
input sequences for MISO Hammerstein systems can be 
generated by operating phase-shifting and amplitude-
weighting on a specific mother mono variable signal. The 
latter has been previously constructed by the authors for 
polynomial basis function (PBF) based subspace 
identification of SISO Hammerstein system [5]. Compared 
to white Gaussian noise (WGN) and multi-level pseudo 
random sequence (MLPRS), the proposed vector input 
sequence procedure presents quite interesting features: (i) 
there is no (theoretical) need to large set of input and output 
data samples; (ii) the design procedure provides the user 
with some freedom, accordingly, the sequence wave form 
can be shaped to meet some desirable requirements e.g. 
uniform excitation of the input variation range, keeping the 
system around an operation point. 
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The paper is organized as follows: the identification 
problem is formulated in section II. In section III, the 
estimation procedure is described. In section IV, the main 
theorem, that describes key design elements for generating 
PE sequences, is established. In section V The effectiveness 
of the proposed sequence design procedure is illustrated by 
numerical simulation.  

II. IDENTIFICATION PROBLEM FORMULATION  

A. Class of systems 

We are considering MISO nonlinear systems that can be 
well represented by the Hammerstein block-oriented multi 
channel model of Fig. 1. The model consists of m  channels 
each one being composed of a SISO Hammerstein system. 

 

 
Fig. 1. Multi-branch block-oriented nonlinear system 
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where ,  designate the denominator and 

numerator of the transfer function  that 

characterizes the dynamics of the linear subsystem of  the 

)( 1qAr )( 1qBr

)( 1qGr

thr channel;  is a function describing its static nonlinear 

element;  is the dimension of the multivariable nonlinear 
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the considered linear subsystems are BIBO stable. 
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B. Identification Problem Statement 

The identification problem at hand is to determine 
accurate parameter estimates of the linear and nonlinear 
elements of all channels, based on a given set of consistent 
input-output data of the system (1-5). Specifically, we seek 

the determination of the vector 


 that minimizes the output 
estimation error criterion i.e. 

 

)(minarg 2 


V


 (6) 







1

0

22 ),()()(
Ns

t

tytyV   (7) 

where  is the related search space and where  

designates the number of measured data samples. The main 
difficulties in such minimization problem are three folds: (i) 
the multivariable feature and its high dimensionality; (ii) the 
strong nonlinearity of the output error with respect to the 
unknown parameters vector ; (iii) the design of an input 
sequence ensuring the necessary PE requirement. 

n sN



III. SUBSPACE IDENTIFICATION OF HAMMERSTEIN BLOCK 

ORIENTED MULTI INPUT NONLINEAR SYSTEMS 

In this section, the subspace identification approach is 
extended to Hammerstein multi-channel systems (Fig. 1). 
This is performed in four steps: 

(i) The system model is reformulated as a series 
combination of a known MIMO static nonlinear subsystem 
and an unknown MISO linear subsystem whose inputs and 
output sequences are absolutely known.  

(ii) The state space matrices of the linear part are 
estimated using a subspace identification algorithm.  

(iii) Estimates of the state space matrices of all channels 
are recovered from those of the diagonal blocks of MISO 
linear subsystem matrices given by their canonical 
realization in the modal form. 

(iv) Finally, estimates of all channel nonlinearity vectors 
and input matrices are obtained the linear MISO subsystem 
input matrices estimates through singular values 
decompositions (SVD). 

A. Multivariable State Space Model 

The input-output model (1) can be given a state space 
representation of the form: 
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where  denote the )(txr
thr  channel state vector, 

, and stand for the state, 

input and output matrices of the linear dynamic subsystem 

of the 
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r  channel;  and rnr ( t ) )(tr  being real 

noise sequences standing for the state and output errors. 
 
Consequently, considering the column vector  )(turr  

as an intermediate input, the discrete state space equation of 
each channel can be expressed by:    
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Now, let be the vector input obtained by the 

concatenation of all function basis of all channel inputs i.e. 
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Then, it follows from (9), (12) and (13) that the initial 
system input-output model (1-5) can be compacted in the 
following state space form: 
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where: 
NN ,  and  designate the global 

state, input and output block-diagonal matrices of the linear 
part in (16), they are given by:  
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 and  are bounded and zero-mean 
equation errors. The new system model (17) shows that the 
initial multi-channel Hammerstein system (Fig. 1) includes 
two subsystems connected in series: (i) a fully known. static 
nonlinear operator  and (ii) an unknown linear 

subsystem represented by the triplet , with input 

 and output ; and which can be estimated by using 

the state space subspace identification Algorithm 
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B. Computing the Channels Matrices Estimates 

Let , , and  be the system 
matrices estimates provided by the robust version of the 
combined deterministic-stochastic subspace identification 
algorithm namely subid [2] of the linear multivariable 
system whose multivariable input is U and whose scalar 
output is  defined by (12) and (17) respectively, and let 

be a similarity matrix which transforms the 

system matrices estimates to the canonical state space 
realization given in the modal form (21-23). 
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Then, the state space matrices estimates of the thr channel 
can be retrieved from the multivariable state space matrices 
estimates as follows: 
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Theoretically, these formulas show that all channel 
parameters can simultaneously be identified from input 
output data. However, to be really effective the 
multivariable input  must provide the required PE 

properties to the virtual input . This is the subject of 

the next section where design elements of a class of PE 
deterministic pulse sequences are capitalized as a technical 
lemma.  
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IV. VECTOR INPUT SEQUENCE DESIGN FOR PE PURPOSE 

A. Persistent Excitation 

To guarantee the consistency of the parameter estimator 
described in subsections III.B, the virtual multivariable input 
sequence )(tU  must meet the PE requirement stated in the 

following definition [2]. 
 

Definition 1.  Let  )(tU be any real multivariable sequence 

of finite dimension M and ji ,120 U  the block Hankel matrix 

of  )(tU  having rows and columns. Then, the input 
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The input design issue is to determine a real vector input 
sequences  that provide the virtual input  with the 

necessary PE property. 
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The component at the -row and -column is explicitly 

given by: 
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and which can be forced to zero by making   0 kquc  

when   0 kpur  and vice versa, since that 
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  00, kr (38). Having (35), This amounts to let the 

integer  and the integer sequencei r  be such that the two 

equalities (52) do not simultaneously hold where the 

notation  stands for the congruence modulo .  )2 i
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Bearing this in mind and knowing that both p and q vary 
strictly between 0 and 2i-1, if (40) and (41) hold, it comes 
that the following double inequality (53) is satisfied,  

  (53)  i2)

Consequently (52) do not holds, therefore all the off 

diagonal blocks of  are zeros. Furthermore, to make 

possible the full rank property of  the number columns 

of the Hankel matrix 

TVV

UU
iR ,

2

ji ,120 U  must be enough large, 

i.e. . Consequently there exist mdij 2 mdij 20   and 

 such that , for any , and any 

, the covariance matrix is of full rank and 

which is equal to 2 , which establishes the lemma   ■ 
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C. Pulse Based Input PE Signals for Subspace 
Identification of MISO Hammerstein Systems 

Theorem. Consider the order linear input-output state 
space model of the MISO Hammerstein system (17) subject 
to the multivariable input signal U  defined on the 

interval , for some integers i  and , by: 

thN
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and where: 

 dk ,..,1  (56) 

the signal being defined, for some integer numbers 

and  ,    by:  
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where  )1r(r  (58) 

and where the real sequences    kms ,,1 k s,..,

(U

 of length are 

such that: 

d
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Then, the multivariable input signal (54) is PE for the 

system (17) provided that: 
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 (iv)  )1(2,)1()1(2max 00  mdimdijj   (63) 

� 
Proof: It was proved in [5] that, if  for all krkr ss  ,, ,kk   

and any mr ...,,1 , then the covariance matrix of the vector 

sequence ))((, turdr  defined by (55-56) is of full rank, 

provided that j is enough large so that any signal  

contains at least  pulses, i.e.: 
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Therefore since that   1, 00  ddr

r

, and that the arithmetic 

progression sequences   (58) is strictly increasing, all the 

conditions (38-41) of the lemma are satisfied provided that 
i2 . Consequently, and knowing that in the subspace 

identification it is assumed on one hand that the half number 
( ) of block rows of the input Hankel matrix must be strictly 
larger than the system order ( ), and on the other hand that 
its number of columns ( ) must be larger than the number 

of rows (

i
N

j

)1(2 mdi ) of the matrix concatenating the input 

and output Hankel matrices [2], there exist 10  Ni , 

i20  ,  2/)1 (*
0  mii  and 
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, such that for any 
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)(tU i2

,  and , the covariance matrix 

is of full rank ( ) and thereby the input sequence 

 is PE of order , which establishes the theorem ■ 

V. NUMERICAL EXAMPLE 

To confirm the usefulness of the above theorem we 
consider the following numerical example: 

21

21
1

11
811.0569.11

1166012510
)();2sin(

2

1
)(










qq

q. q. 
qGvvF 


 (66) 

21

21
1

22
9245.0778.11

072240074170
)(;

8
arctan

8
)( 















qq

q. q. 
qG

v
vF


  (67) 

21

21
1

3
2

3
8546.0714.11

06859007230
)()2exp()(










qq

q. q. 
qGvvvF  (68) 

A. Input sequence design 

The system (66-68) is excited by a 24-order PE sequence 
generated according to the proposed theorem by letting 

for24;36;12 *  ii 3m , and , yielding 2* n 7* d

21M , 528j  and a total number of samples 599sN . 

As mentioned in the theorem, any real sequence composed 
of different samples can be used to weight the samples the 
input sequences. Presently, the following simple alternated 
saw-tooth weighting sequence is used: 

)2)1(()1( 0,
 kims k

rkr   (69) 

where r  is a real number which chosen in accordance with 
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the input range of the thr input channel of the system. The 
input sequence thus defined as well as the resulting output 
sequence, are plotted in figure 3. 
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Finally, Fig.5 shows the true system output and the 

estimated model output, when both are excited by the input 
sequence generated in Subsection A. It is readily seen the 
estimated model matches well the true system. The above 
observations confirm the high accuracy of the subspace 
identification when the system is excited by sequences 
generated according to the input design theorem of Section 
IV.C. 

 
Figure 3 wave forms of the recorded input and output sequences 
 

B. Identification results 

   The robust version of the Subspace Algorithm (subid) is 
applied using the previously generated input and output data 
by letting and . The resulting estimates for the 

linear subsystems are the following: 
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The corresponding transfer functions are: 
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Fig. 5. True (-) and predicted (..) output sequences of the considered 3-
channels Hammerstein system 
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Fig. 4 shows the graphical characteristics of the system 

polynomial static nonlinearities and their estimates. It is seen 
that the estimated curves are quite close to the true curves. 
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