
 

 

  

Abstract— Linear mathematical models frequently provide 
good approximations to the input-output relations for real 
systems. However, ensembles of systems that are nominally 
identical cannot, usually, be adequately represented with a 
single model because real systems are stochastic. The 
randomness in real systems must be modeled if the randomness 
bears on critical behaviors of the system. The behavior of linear 
systems can be represented in parametric or non-parametric 
form; the latter framework is used, here. Among the 
frameworks available for characterization of system behavior, 
we choose the frequency response function (FRF). We choose to 
work with the FRF because many system attributes can be 
interpreted by inspection of the FRF, and it can be used 
directly for control design. This paper improves a previously 
developed Karhunen-Loeve expansion (KLE) representation 
for linear system behavior based on FRF data. The 
improvement yields a compact representation of the 
uncertainty inherent in an ensemble of systems and avoids the 
introduction of unwanted features in the system representation. 
This non-parametric, compact representation of the 
distribution of linear systems can then be used to characterize 
the performance and stability of a given feedback control law, 
as well as for control law design. 

 

                            INTRODUCTION 
he frequency response function (FRF) is often used to 
approximate the relation of inputs to outputs for a 

physical system that can be adequately represented as linear 
[1,2]. Use of the FRF is convenient because it permits the 
expression of a response as a linear algebraic function of an 
input in the frequency domain. Moreover, many system 
properties can be determined by visual inspection of the 
FRF. However, when it is necessary to represent the input-
output relationships of an ensemble of nominally identical 
systems, use of a single, deterministic FRF may prove 
inadequate.  Systems intended to be identical are often not 
identical and are better described in a stochastic framework.  
Similarly, data collected from a single system, tested under 
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different environmental conditions, may appear stochastic. 
Our motivation for considering system randomness is this. 

We frequently design a controller to control the behavior of 
a stochastic ensemble of systems. Typically, the controller is 
deterministic. It is designed to be stable and to optimally 
satisfy a control objective with respect to one realization 
from the ensemble of systems. It is critical to establish the 
probability of stability and the probability of achieving a 
control objective for an arbitrarily chosen member of the 
stochastic ensemble. Once the goal of establishing these two 
probabilities is achieved, the control system designer may 
consider the extended goal of controller optimization with 
respect to a measure of the joint probability of stability and 
satisfaction of the control objective [3-6]. 

There are many frameworks for expressing the 
randomness in signals and systems. For example, Ghanem 
and Spanos [7] developed a method for incorporating 
randomness into structural dynamic models using the finite 
element framework. Ghanem, et al. [8], model random 
structures with a functional analysis and polynomial chaos-
based probabilistic approach. Soize [9,10] uses random 
matrix theory for simulating model stochasticity; his 
approach accommodates both data and model uncertainties. 

The effects of system randomness in controller design 
have been addressed with design margins (e.g., classical gain 
and phase margins) bounded uncertainty representations 
(e.g., H∞, µ-synthesis) [11], and adaptive control [12]. 
Optimal estimation theory [13] deals with stochastic signals 
applied to deterministic systems. None of these approaches 
uses the stochastic characteristics (e.g., probability 
distributions) of dynamic systems directly in the controller 
design problem. 

In this work, we use a non-parametric representation of a 
linear system (the open-loop FRF) and consider it a random 
process for which we either have a probabilistic model or 
must create one.  We select the Karhunen-Loeve expansion 
(KLE) [14,7,15] to represent the FRF random process. It 
represents a random process as a mean function plus 
deviations from the mean. The deviations are products of 
shape functions, amplitudes, and randomizing factors. In 
order to use the KLE in a practical framework, it is 
necessary to express the joint probability distribution of the 
randomizing factors. This can be accomplished, 
approximately, with the kernel density estimator (KDE) 
[16]. In order to generate new realizations from the 
identified KLE, a means for generating random samples 
from the probability distribution of the randomizing factors 
is required; such a means is provided by the Markov chain 
Monte Carlo (MCMC) method [17]. 
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The KLE was developed in a previous paper [18], along 
with the KDE and the MCMC method, and applied to the 
problem of modeling the FRF as a random process. Direct 
application of the KLE to modeling real FRFs of stochastic, 
second order systems revealed shortcomings. In particular, 
some FRF realizations generated from the modeled 
stochastic source reflected unrealistic features with respect 
to the measured ensemble upon which the model was built. 
For example, some generated FRF realizations displayed 
what appeared to be more modes than the systems in the 
measured ensemble. The problem arises from the detailed 
representation embodied in the KLE. (An alternate approach 
to modeling the FRF as a random process was also proposed 
in [18], but it suffers from the requirement that parameter 
estimation be performed in a modal analysis-like framework; 
our hope is to avoid that type of parameter estimation.) 

Our goal in this study was to overcome the problems that 
occurred in [18], and we have developed a technique that 
does so based on a modified application of the MCMC 
technique for sampling from random processes. Our 
technique specifically incorporates additional information 
about the systems that is normally neglected. 

Section I summarizes the results developed in [18]. The 
shortcomings of the direct approach are described in Section 
II. A modification of the MCMC method for generation of 
random process realizations is described in Section III. 
Section IV discusses how the stochastic FRF model can be 
used to assess the probability of stability and the probability 
that a controller will achieve a control objective for a 
random structure. Section V presents an example application 
of the modified technique. 

I. REVIEW OF THE KARHUNEN-LOEVE EXPANSION AND 
SOME TOOLS REQUIRED TO USE IT 

The KLE [7,15] is a framework for the compact 
representation of multivariate, continuous-valued, 
continuous- or discrete-parametered (i.e., continuous or 
discrete time, frequency, or space) nonstationary random 
processes. Reference [18] developed the particular KL 
expansion that approximately represents a univariate, 
continuous-valued, discrete-parametered (frequency), 
nonstationary random process. The random process of 
interest is an  column vector of random variables 
denoted . (Subsequently the explicit dependence 
of  on f is omitted.) The random process mean is an  
column vector denoted , and its autocovariance 
matrix is a nonnegative definite matrix denoted . 
The KLE representation of the random process is: 

 
   (1) 

 
where   is a diagonal matrix of the 
dominant eigenvalues of , and a submatrix of 

, the diagonal matrix containing all the eigenvalues of 
;  is the matrix containing the corresponding 

columns from , the orthonormal matrix whose 
columns are the eigenvectors of . .  is a 

vector of zero-mean, unit-variance, uncorrelated random 
variables, whose joint distribution is to be approximated. 

The columns of  assume the role of shape functions 
characterizing underlying components that appear in 
realizations of . The elements in the diagonal matrix  
assume the role of amplitudes characterizing the relative 
contributions of the individual shapes in . The elements in 
the zero-mean, unit-variance, vector of uncorrelated random 
variables  are randomizing factors. 

Reference [18] shows that when the joint probability 
distribution of the elements in the vector  is known, then it 
can be used to establish the joint probability distribution of 
the elements in the vector , and vice versa. When measured 
data from the random process , denoted 

, are available the parameters of the KLE can be 
estimated. The estimates are denoted ,  and . Further, 
realizations of the random vector  that correspond to the 
measured realizations of  can be obtained. These are 
denoted . 

The ultimate goal of this investigation is to compute the 
probability of closed-loop stability and the probability of 
achieving a control objective. Our initial means for 
accomplishing this will be Monte Carlo analysis, therefore, a 
method is required for generating realizations of the random 
process . Development of such a capacity requires 
characterization of the joint probability density function 
(PDF) of the random vector , and reference [18] proposes 
to approximate that using the KDE. The KDE approximation 
to the joint PDF of  is  

 
  (2) 

 
where  is a user-selected smoothing parameter, and the 
symbol  refers to the 2-norm. 

The Metropolis-Hastings version of MCMC can be 
implemented using the KDE of (2) to generate realizations 
of the random process  with the following steps.  
1. Initiate sampling at a point in the space of . 
2. Generate another point in the space of  that is a 

random deviation from the initial point. 
3. Compute likelihoods of the points described in 1 and 2.  
4. Compare the likelihoods, probabilistically, to form a 

decision about whether the point in Step 2 is accepted or 
rejected as a realization of .  

Repeat Steps 1-4 as many times as desired to generate the 
required number of realizations of 

. Use these realizations in place of  in (1) to 
obtain generated realizations  . 

II. SHORTCOMINGS OF THE METHOD OF REFERENCE [18] 
The scheme described in Section I was used in reference 
[18] with the imaginary part of measured FRF data from a 
second order system to identify the KLE that approximates 
the random source of a measured ensemble, and then 
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generate realizations from the random source. (Only the 
imaginary part is needed because the real part is simply the 
Hilbert transform of the imaginary part for causal, linear 
systems.) Because of the inherent nature of KLE, some of 
the generated realizations of the imaginary part of the FRF 
had characteristics that made them implausible 
representations of the measured ensemble. Among other 
things, some of the generated realizations of the imaginary 
parts of the FRF had more peaks than the imaginary part of 
FRF in the measured ensemble.  

Figure 1 shows the ensemble upon which the analysis was 
based, in reference [18]. The ensemble includes the 
imaginary part of single-input/single-output (SISO) FRFs 
from twenty nominally identical structures. The FRFs are 
denoted . The FRFs are shown at 

 discrete frequencies. The frequency increment is 
. The system has five modes in the frequency 

range shown. Modal parameters vary randomly. 

 
Figure 1. Imaginary parts of the FRFs of 20 structures 

from a stochastic ensemble. 
 
Application of the analysis from Section I to the data in 

Figure 1 yields KDE parameter estimates ,  and , for the 
model of the imaginary part of the FRF. The number of 
terms retained in the model was , out of a possible 
20, and this yielded a 99% accuracy. 

When the estimated parameters were used with the model 
form of (1), the KDE of (2), and the MCMC method for 
generation of model realizations, the results shown as green 
in Figure 2 were generated. (The original ensemble is also 
shown in blue, to emphasize the contrast between the 
original ensemble and the synthesized ensemble.) 

Two things are wrong with the synthesized (green) curves. 
First, and easier to remedy, is the fact that the simulations, 
particularly near modes two, three and four, assume positive 
values when they should remain strictly negative, and vice 
versa. This problem is overcome by using a transformation 
of values in the imaginary parts of the FRFs, such as a 
logarithmic transformation, prior to KLE modeling, to assure 
that synthesized data maintain the correct signs. 

A second, and more important, problem is illustrated by 
the FRF imaginary part shown in Figure 3. (This is one of 
the elements of the generated ensemble shown as green in 
Figure 2.) It appears from the figure that there are multiple 
modes where the second, third and fourth modes appeared in 

Figure 1. The reason is not that the ensemble of random 
structures has more than five modes; rather, the reason is 
that (1) permits the superposition of components (shape 
functions times amplitudes) in combinations that should not 
occur. This is fundamentally a problem of the simulation of 
dependence in  in the KLE. It is possible to avoid this 
problem by introducing a mechanism to include information 
about the system, such as order; the following section 
describes how to do so. 

 
Figure 2. Imaginary parts of the FRFs generated using the 
KLE (green), and the imaginary parts of the FRFs from 

Figure 1 (blue). 

 
Figure 3. Imaginary part of one of the generated FRFs. 

III. MODIFICATION OF THE MCMC METHOD 
The first problem described in the previous section is treated 
as specified there; prior to estimation of the KLE 
parameters, the absolute value of the imaginary part of each 
of the measured data, , is 
computed. Then the common logarithm of the result is 
computed and the parameters estimated. This yields 
parameter estimates ,  and , as in the previous analysis. 
Use of the parameters in (1) yields a model for the 
transformed random process. The logarithmic transformation 
and that the absolute value operation must be inverted to 
obtain realizations of the imaginary part of the FRF. The 
first inversion is trivial. The second inversion requires 
tracking the signs of the imaginary parts of the FRF and 
using them in the second inversion. These operations yield 
MCMC-generated samples of the imaginary part of the FRF. 
Denote the generated FRFs 

. 
The latter problem described in Section II is attacked in 

the following way. During MCMC generation of FRF 
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imaginary parts the random variates, , 
corresponding to the measured realizations, 

, are used to guide the selection of random variates 
 corresponding to the 

. The fact that some of the 
 appear implausible indicates that some 

combinations of random variates in  yield 
unacceptable realizations. At present, we do not hope to 
decipher the source of the implausibility, directly, from 
observation of the , but it is entirely feasible to judge 
implausibility of a realization through observation of each 

. We require an algorithm to automatically judge 
whether or not a particular realization  is a 
plausible representation of the original, measured system. 
The entire ensemble of generated realizations, 

, is observed, and for each realization, 
, judged implausible (The NP in the superscript 

indicates “not plausible,” or implausible.), its corresponding 
vector of underlying random variates, , is saved; 
the collection of saved vectors forms the ensemble  

. The source of the vectors, so 
defined, has a joint PDF, and that PDF can be approximated 
with a KDE with the form of (2). The vectors 

 occupy a space denoted . We 
denote the space of vectors generated and not rejected during 
this initial round of MCMC simulation as . The 
collections  and  are mutually exclusive. 

To alleviate the second problem described in Section II, 
we perform MCMC sampling of the KLE, as before, but 
when a generated realization, , of the random vector  
is accepted by MCMC, its likelihood , computed 
from known realizations of  is compared to its likelihood, 

, in the space of the known realizations of 
. We accept  with probability 

 

  (3) 

 
(Either of both of the likelihoods can be weighted with a 
positive factor to emphasize one over the other in definition 
of the acceptance probability.) The probability always lies in 
the interval . When  is great compared to 

, the acceptance probability is high because 
 tends to be relatively far from the space of . 

When  is small compared to , the 
acceptance probability is low because  tends to lie 
within the space of . Denote the ensemble of vector 
random variates accepted during this step as 

. (The PR superscript denotes the 
realizations as “probable.”) These vectors form the space of 

. These are used in (1) to form the imaginary parts of 
the ensemble . 

IV. CONTROL OF STOCHASTIC SYSTEMS 
The framework developed in this paper interprets a linear 
stochastic system as one whose FRF ensemble consists of 
random functions. (This is not to be confused with a 
deterministic system excited by stochastic inputs and 
disturbances.)  Control of a linear system can be based on 
the system FRF, and, for example, deterministic controller 
design can be based on one system, , in the stochastic 
ensemble, or an estimated median behavior of systems in a 
measured ensemble. The controller would be designed to 
yield stable closed-loop behavior and to optimally achieve 
an objective in terms of a response measure. An important 
feature of the deterministic controller, relative to the 
stochastic system, is the probability that it yields stable 
control of members of the system ensemble, and the 
probability that it achieves the performance objective for 
members of the system ensemble. 

The development of the previous section permits 
approximation of the probability of stability of closed-loop 
response and the probability of meeting the performance 
objective for a deterministic controller applied to a 
stochastic plant. Once a controller is designed, its stability 
when used in closed-loop operation with a system with FRF, 

, can be analyzed. Consider an ensemble of systems with 
the FRFs , as developed 
in the previous section. Assess the stability of the controller 
when used in closed-loop operation with each of the systems 
in the ensemble. Let the event, , with outcomes  and , 
denote, respectively, the occurrences “closed-loop behavior 
unstable,” and “closed-loop behavior stable.” By analyzing 
the controller with each of the systems in 

, we are assessing the value of an 
outcome of , namely , and each  takes the 
value  or . The estimate of the probability that the 
deterministic controller yields stable control of the stochastic 
ensemble is 

  

  (4) 

 
Of course, the accuracy of the probability estimate 

improves with increasing . The development of Section 
III facilitates the generation of large numbers of FRF 
realizations so that arbitrary accuracy of the estimate in (4) 
can be achieved. 

A goal of controller design is to make a measure of 
closed-loop system behavior satisfy an objective. It may be 
desired to optimize a performance measure, , of the 
closed-loop system using the deterministic controller, i.e., 

. In addition, for the ensemble of plants it 
may be desired (or necessary) that a closed-loop measure of 
behavior satisfy . We can estimate the probability 
that  by assessing the measure of response for 
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each system, . As in the 
previous paragraph, we define an event, , with outcomes  
and , indicating, respectively,   , and 
the complement of that event. The collection of outcomes is 

, and the estimate of probability that the 
controller satisfies the design objective takes precisely the 
same form as (4). 

V. EXAMPLE 
An example, similar to the one in reference [18], is 
summarized. An ensemble of twenty nominally identical 
structures was modeled; the SISO FRF was estimated for 
each of the  structures. The imaginary parts of the 
FRFs are shown in Figure 4. The FRFs are shown at 

 discrete frequencies; the frequency increment is 1.2 
Hz. The system has five modes in the frequency range 
shown. Modal frequencies, modal damping factors, and 
modal amplitudes vary randomly. 

 
Figure 4. Imaginary parts of FRFs of 20 structures from the 

ensemble of a stochastic system. 
 

The imaginary parts of the FRFs were transformed 
through computation of their absolute values (not necessary, 
in this case, because the signals are all positive), and then 
computation of their logarithms. The plot of the log- 
transformed FRF imaginary parts duplicates Figure 4 when 
the vertical scale is linear.  

KLE parameters were estimated, as specified in previous 
sections, and 74 realizations of the transformed FRF 
imaginary part were generated via MCMC. A criterion was 
established to judge the plausibility of the generated signals 
and applied to each of the generated signals to form the 
ensemble . The criterion used, in the 
present case, simply counts the peaks in the generated 
signals, and rejects a generated signal as implausible when it 
had more than five peaks. (A peak occurs in the imaginary 
part of an FRF when the slope of the curve changes from 
negative to positive.) This is the additional information 
constraint we are imposing. Twenty-five of the realizations 
were judged implausible; . One of the implausible 
signals is shown in Figure 5. (It is plotted on linear axes to 
accentuate the features that lead to the judgment that it is 
implausible.) 

The additional MCMC sampling outlined at the end of the 
previous section was applied, using both the ensembles of  

and . Some scatterplots of elements from the vectors of 
of , , , and , are shown in Figures 6a and 
6b. A striking feature is that elements of the vectors from the 
four overlapping spaces appear substantially intermixed. 
This indicates that subtle features in the scatterplots shown, 
and features in scatterplots of other elements, not shown, 
enforce the exclusion of vectors from . 

 
Figure 5. One example of an implausible, generated 

transformed imaginary part of an FRF. 

 
Figure 6a. Scatterplot of second element versus first element 

in  (blue),  (red),  (cyan), and  (green). 
 
The data  were used in (1) to 

obtain the imaginary parts of the ensemble 
. The latter are plotted in Figure 7, along 

with the data from Figure 3 and realizations that come from 
the . Though they are not perfect representations of the 
original, measured data, the simulations appear to present 
plausible representations of the random source. Agreement 
could be improved by specifying a more stringent criterion 
for forming  . 

CONCLUSIONS 
The Karhunen-Loeve expansion was developed to model the 
source of frequency response functions of a stochastic 
system. Both the kernel density estimator and a modified 
Markov chain Monte Carlo method were developed for use 
in conjunction with the KLE. The current approach 
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augments an approach developed in a previous study. The 
effect of the augmentation is to eliminate adverse, unrealistic 
effects present in the earlier implementation. Further, the 
current approach introduces the idea that additional 
information can be brought into an MCMC analysis so long 
as the additional information can be quantifiably expressed. 

 
Figure 6b. Scatterplot of third element versus first element in 

 (blue),  (red),  (cyan), and  (green). 

 
Figure 7. Generated realizations of the imaginary part of the 

FRF from the first MCMC simulation (green), the second 
simulation (cyan), and data upon which the model is based 

(blue). 
 
The current technique yields realistic simulations of the 

frequency response function of a stochastic, second order 
system. 

Although the current work has developed a technique that 
is superior to methods previously available, much work 
remains to develop the KLE as a general purpose tool for 
stochastic system modeling and simulation for identification 
and control problems. Among other things, the direct 
representation of FRFs must be improved even more, 
perhaps, through finer definition of acceptable FRF features.  

Only the imaginary part of the FRF was modeled, here, 
and while the corresponding real part will normally be 
required, that is a matter of deterministic computation, for 
second order, linear systems, because the real and imaginary 
parts form a Hilbert transform pair. 

Finally, methods for modeling and generating FRF 
matrices that involve multiple input locations and multiple 

output locations must be developed. Then the stochastic 
FRFs can be used to design MIMO controllers to meet 
closed-loop performance and stability objectives which can 
be expressed stochastically. This will permit a probabilistic 
characterization of the performance and stability of the 
ensemble of closed-loop systems. 

The present work shows that in KLE there is ample 
promise that accurate, general-purpose FRF modeling will 
be realized. 
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