
 

 

  

 
Abstract— In this paper the problem of model based control of 

a microscopic process is investigated. The unavailability of 

closed-form models as well as the ill-definition of variables to 

describe the process evolution makes the controller design task 

challenging. We address this problem via a fuzzy system 

identification of the dominant process dynamics. The data 

required for the system identification of such processes is 

produced employing atomistic simulations. A methodology is 

developed in which fuzzy logic for nonlinear system 

identification is coupled with nonlinear model predictive 

Control for control of microscopic processes. We illustrate the 

applicability of the proposed methodology on a Kinetic Monte 

Carlo (KMC) realization of a simplified surface reaction scheme 

that describes the dynamics of CO oxidation by O2 on a Pt 

catalytic surface. The nonlinear fuzzy model gives a good 

approximation to the system even without using filter for the 

system and the proposed controller successfully forces the 

process from one stationary state to another state. 

I. INTRODUCTION 

For many chemical and biological processes of industrial 

interest, performance is measured both with respect to 

product yield and quality. The elusive latter term is usually 

dependent upon enforcing the product microstructure within 

strict limits. Multiscale models are traditionally used to 

quantify process evolution across all relevant length scales 

and characterize product behavior within the current 

computational limitations. Even such models however, pose 

significant challenges both from an analysis and control 

point of view [1]. Such difficulties are attributed in part to 

the unavailability of closed form models to describe the 

process evolution at molecular-level detail and their 

computationally intensive nature that prevents their real time 

implementation. An industrially relevant example is thin film 

deposition processes widely used by the microelectronics 

and solar energy industries (such as the production of 

photovoltaic systems). Due to the complex process dynamics 

and the strict quality requirements, a significant amount of 
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research has focused on the design of feedback control 

structures. To circumvent the mentioned limitations, one of 

the proposed approaches identifies stochastic partial 

differential equation models to design the controller [2]. This 

approach however assumes specific structure to the nonlinear 

stochastic terms. Another approach relies on the off-line and 

subsequently the on-line identification of bilinear models for 

the process, which are then used for the controller synthesis 

[3]. To improve on the linear controllers an extension was 

proposed in [4], where the authors designed a nonlinear 

feedback controller to control the roughness of a one 

dimensional surface again employing stochastic KSE as the 

underlying process growth model. The proposed approach 

assumed a specific structure to the nonlinear stochastic 

terms. 

In [5] linear models were identified directly based on the 

output from KMC simulators. The linear controller that was 

designed based on the identified model was used to control 

the lower order statistical moments of microscopic 

distributions. In a different approach [6] the problem of non 

availability of closed form models was addressed by deriving 

a low-order state space model through offline system 

identification, based on finite set of ”coarse” observables. 

The identified state space model was used to design a 

receding horizon controller to regulate the roughness, during 

thin film growth, at a particular setpoint. The coarse 

observables in this work were identified from spatial 

correlation functions of the thin film surface to represent the 

dominant traits of the microstructure during a deposition 

process. In [7] a minimum set of  coarse spatially invariant 

parameters that accurately describe the dominant behavior of 

the deposition surface during thin-film growth under 

adsorption and surface diffusion  was identified  and  it was 

demonstrated that different deposition surfaces constructed 

through a stochastic reconstruction procedure, with identical 

values for these parameters, exhibit approximately identical 

coarse dynamic behavior. In a different approach ([8]) a 

method was presented to reduce the dimension and 

complexity of a class of probabilistic systems that can be 

particularly useful when the number of inputs and outputs is 

small and in [9] an approach was described in which targeted 

simulations are combined with systematic tools to elucidate 

the dynamics. 

Another approach deals with the feedback linearization 

problem of nonlinear systems described by microscopic/ 

stochastic simulators, in which the lack of a closed form 

model was circumvented by directly calculating the 
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quantities needed for design of nonlinear controllers from 

appropriately initialized microscopic simulations [10]. A 

shortcoming of this method however is that it is limited to 

stabilization and involves closed loop eigenvalue assignment 

constraints. In [11], [12] hybrid multiscale process models 

were used, where the continuum laws which are applicable at 

the macroscopic level were combined with computationally 

expensive microscopic laws, Kinetic Monte-Carlo (KMC) or 

Molecular dynamics (MD) to get the ”coarse” process 

behavior. Using the coarse variables nonlinear process 

models were identified offline through the solution of a 

series of nonlinear programs. Subsequently the identified 

models were used to design output feedback controllers. The 

methodology used in this approach is computationally 

intensive and involves offline process identification. 

To address the issues of both computational intensity and 

specific model structure, a methodology was developed in 

[22] where subspace algorithms for bilinear system 

identification were coupled with feedback linearization 

techniques for control of microscopic processes. Such 

models however are limited, since a one-to-one inputs-

outputs map is necessary to ensure model convergence. 

Industrially relevant processes though exist that exhibit 

complex behavior such as those that have pitch-fork 

bifurcations. To ensure the accuracy of the identified 

stochastic models an approach based on a combination of 

Takagi-Sugeno(T-S) fuzzy system identification with locally 

linear models is evaluated in the present work and nonlinear 

model predictive controllers are designed. 

This paper is organized as follows. In subsection II we 

present concepts from T-S Fuzzy Identification that has been 

used for nonlinear modeling of the system. In section III a 

nonlinear receding horizon controller is designed based on 

the identified nonlinear model. In section IV the information 

about the CO oxidation which is used as the example in this 

work is presented; in section V the results of system 

identification and controller design for the propose example 

are presented 

I. TAKAGI-SUGENO FUZZY MODELING 

Initially, Fuzzy modeling was based on considering expert 

knowledge using linguistic variables [13]. Subsequently, the 

concept of Fuzzy system identification using the available 

data from the system became the focus of interest [14]. 

Although the first fuzzy approaches were based on model-

free designs [15], gradually interest increased in model-

based fuzzy identification [16]. Once such models were 

developed, fuzzy model-based control approaches were 

investigated as an effective approach to address control 

design problems for nonlinear systems. Recently, the Takagi-

Sugeno fuzzy model-based identification became a widely 

used approach for nonlinear stochastic systems. 

The T-S Fuzzy structure is considered for identification of 

nonlinear models of the form [17] 

 

 

 

))(()(

))(),(()1(

kxgky

kukxfkx

=

=+
 

where f is a nonlinear function of x(k) and u(k), x(k) is the 

state of the system at time step k and u(k) is the manipulated 

input variable exerted on the system which drives the states 

of the system until the next step k+1, y(k)  is measurement 

vector, while g denotes a nonlinear function of x. In several 

cases, it is assumed that complete state information is 

available y (k) =x (k+1); this assumption is also made in this 

work, since KMC simulation data will be used. 

The rules defining fuzzy structure are defined according 

the following [18]: 
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Where the premise variables z (k) can be defined from the 

states x (k) and the manipulated variable u (k) at each step k.  

These parameters of z (k) are used for evaluating the 

membership functions for all rules in the fuzzy structure at 

each step. Fi are the fuzzy sets that are the defining each rule. 

In each step, based on the information about the states and 

the manipulated variable available in z (k) and by evaluating 

the membership function values, the contribution of each 

rule is defined as hi. The consequent parameters in this 

statement include the linear models for each rule. 

The membership functions are chosen to have Gaussian 

distribution shapes [18] i.e. 
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where i={1,...,R} defines the rule number i and j={1,.. .,n} 

defines the j
th

 variable of the premise. Using this membership 

functions structure, the amount of the contribution of each 

rule in the overall output in each step will be determined. 

The fuzzy system identification involves two main steps. 

The first step is the structure identification and the second 

step is parameter estimation.  

In the structure identification step, after determining the 

number of rules considered in the fuzzy structure, the 

membership function structures will be determined, which 

has been supposed to be Gaussian.  

After completing the two basic parts of the structure 

identification step, the overall output of the fuzzy model can 

be evaluated by the following equation: 
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In order to perform the second step of the fuzzy 

identification (parameter estimation), an optimization 

problem should be solved to achieve the parameters that 

would give the minimum value of the following equation: 
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In the presented work a Newton-based search algorithm 

was employed to solve the constrained optimization 

problem. Specifically, the Levenberg-Marquardt algorithm 

was employed, within the computational environment of 

MATLAB. Global optimization search algorithms may also 

be employed (such as genetic algorithms) at the expense of 

slower convergence rate to an optimum point. 

II. RECEDING HORIZON CONTROLLER SYNTHESIS 

A receding horizon controller design is combined to the 

identified fuzzy model to regulate the surface reaction at a 

desired level during the reaction process. In the design of the 

receding horizon controller, the objective is to dynamically 

force the system from an initial stationary state to a desired 

stationary state. 

Receding horizon control is based on the recursive 

solution of finite-horizon optimization problems with a 

receding final time, where the surface reaction model is now 

a constraint. In this approach, in each step of evolution of the 

reaction process, the states of the system in the next Np steps 

under the effect of the optimized manipulated variable in the 

next Nc steps are anticipated.  

The receding horizon control objective is to minimize a 

cost function J: 
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where Si is the i-th set point, xi is i-th controlled state 

variable, 
iβ∆ is the i-th change in the manipulated variable 

β , Np is the prediction horizon, Nc is the control horizon, 

sR is the weighting coefficient for minimizing the first term 

in (4) and 
βR  is the weighting coefficient for minimizing the 

second term in (4). Note that in the specific formulation there 

is no final time penalty, employing large enough prediction 

horizons to ensure stability of the controller [19], while 

also
cp NN >> . 

The problem is subject to the following inequality 

constraints:  
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As well as the fuzzy model predictions of the state evolution 

as equality constraints. Because of the nonlinear nature of 

the identified fuzzy model, the related receding horizon 

controller design is a nonlinear model predictive control 

(NMPC) [19]. 

In the receding horizon procedure, by having the current 

information about the state of the system and the value of 

manipulated variable and using the nonlinear model for the 

system, the next states of the system within the prediction 

horizon are estimated using the manipulated variables within 

the control horizon. Considering these prediction and control 

horizons, an optimization problem is solved to reach to the 

minimum of the cost function J in equation (4). After this 

optimization, the first value for the change in the 

manipulated variable 
1β∆  is applied to the system the same 

procedure is repeated to complete the next step. 

Depending on the desire to control the system to reach the 

set point as close as possible or the desire of having a smooth 

change in the manipulated variable, we can put more weight 

on the first term or second term in the cost function defined 

in equation (4) by changing the values of 
sR and 

βR . For 

example if the value of βR is increased, there is more weight 

for changing the manipulated variable on the cost function J, 

so we can achieve more smooth change in the manipulated 

variable β  by increasing 
βR . 

III. ILLUSTRATIVE EXAMPLE: CO OXIDATION 

We illustrate the system identification and control 

methodology presented in the section II on a KMC 

realization [20], [21] (using the stochastic simulation 

algorithm) of a simplified reaction model of the form 

ABBA →+ 2
2

1
 of CO oxidation by O2 on Pt catalytic 

surface. The process involves adsorption of A, dissociative 

adsorption of B2, and a second-order surface reaction the 

products of which desorbs immediately [22]. The mean-field 

Langmuir-Hinshelwood approximation equations for this 

process in the absence of adsorbate interaction would consist 

of a set of two ODES [23], 

BArBA

B

BArABA

A

K
dt

d

K
dt

d

θθθθβ
θ

θθγθθθα
θ

4)1(2

4)1(

2 −−−=

−−−−=
                   (5) 

where 
Aθ , 

Bθ  represent the surface coverage of CO, and O2, 

respectively, α , β are the rate constants for adsorption of 

CO and O2, respectively, γ  is the rate constant for CO 

desorption and 
rK  is the reaction rate constant. We 

employed β  as the manipulated input. The values of these 

parameters are taken to be α = 1.6, γ  = 0.04 and 
rK = 1 

[23]. Adsorption of molecules from the gas phase and 

desorption of molecules from the film surface are the 

dominant phenomena responsible for the evolution of the 

microstructure of the thin film. 

For a range of values of β , the system exhibits multiple 

steady states, where the first steady state (Table I) and the 

third steady state are locally stable while the second steady 

state is unstable [23]. These values are shown in Table I for 

value of 5.3=β . 

The probability of the lattice being in a specific 

configuration is given by the following master equation [25]: 
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Where ),( tP σ is the probability that the system is in state σ  

at time t and )',( σσW  is the probability per unit time of 

transition from configuration σ  toσ ′ . KMC provides a 

numerical solution of the above master equation through 

Monte Carlo sampling [24]. The solution of the master 

equation is achieved computationally by executing an event 

chosen randomly among various possible events (adsorption 

and desorption in the current case) based on the 

instantaneous event probabilities. 

 
Table I  

CO oxidation steady state values 

SS1 
1,,ssAθ  0.1394

4 
1,,ssBθ  0.6355

3 

 

SS2 
2,,ssAθ  0.6752

6 
2,,ssBθ  0.1145

2 

SS3 
3,,ssAθ  0.9710

1 
3,,ssBθ  0.0013

7 

 

IV. FUZZY SYSTEM IDENTIFICATION AND CONTROLLER 

DESIGN RESULTS 

In order to perform the fuzzy system identification using 

the approach presented in section II, it is necessary to define 

the parameters that contribute to the definition of the centers 

of the Gaussian membership functions
i

jc , and the related 

spans j
iσ . In this work these values include the states of the 

system (concentrations of CO and O2) and the manipulated 

input. To initialize the identification process, values are 

chosen for these parameters (
i

jc  and j
iσ ). The values of 

these parameters are part of parameter vectorϕ  in (3). The 

remainder ofϕ  includes the elements of the matrices Ai and 

Bi that are identified by solving the optimization problem.  

After fuzzy system identification phase, which is done 

based on the data from KMC simulation, a new set of data 

are created using KMC with different initial conditions and 

different manipulated variable. In this example initial 

conditions include the concentrations of CO and O2 and the 

manipulated variable is β , the rate constant for adsorption of 

O2. The values of β  is changed smoothly between 3 and 5, 

as shown in figure 1. We have exerted this gradually change 

of manipulated variable to reach to the evolution of the 

reaction process without sudden big changes in the 

manipulated variable.  

 

 

 

 

 
Fig.1. The changes of manipulated variable β in the KMC simulation 

 

The evolution of the identified fuzzy model with the new 

initial condition and β and the results of the KMC simulation 

are displayed in figures 2, 3, 4 for different initial values. 

The sampling step is every 4 seconds of the evolution of the 

process.  

 
Fig.2. evolution of 

Aθ and
Bθ , 4.00 =Aθ 3.00 =Bθ  

 

 
Fig.3. evolution of 

Aθ and
Bθ , 85.00 =Aθ 1.00 =Bθ  
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Fig.4. evolution of 

Aθ and
Bθ , 00 =Aθ 00 =Bθ  

 

The obtained data set is used to construct a model of T-S 

structure. Note that the T-S model is able to accurately 

capture the system evolution in all the presented cases, 

starting from different initial conditions as presented in 

figures 2, 3 and 4. Based on this model, an NMPC structure 

is designed where the prediction horizon, Np, is set to 20 

steps and the control horizon, Nc, is set to 6 steps. The 

weighting coefficient for difference between state and the set 

point is set to 2 and the weighting coefficient for 

manipulated variable change is set to 1.  

In our example, the objective is to decrease the surface 

coverage Aθ  of CO on the catalytic surface from the steady 

state 0.97 to the desired steady state 0.67. As shown in the 

figure 5, by using this controller, we successfully drive the 

system to the desired value. Note that this value is at an 

open-loop unstable steady-state, which defines the separatrix 

between two steady-states. 

 
Fig.5. The evolution of 

Aθ from initial steady state
Aθ  =0.97 to the set 

point  
Aθ  =0.67 

 

The temporal profile of the manipulated variable β  that 

was employed for achieving this goal is displayed in the 

figure 6. We observe that the manipulated variable β  attains 

values close to zero to drive the system to reducing the 

coverage and then β increases again. It is important to note 

that no chattering in β  is observed once the states reach the 

desired, open-loop unstable, steady state, even though the 

process is in itself fluctuating around the desired steady state, 

due to stochastic noise. 

 
Fig.6. manipulated variable β for driving the CO coverage from initial 

steady state
Aθ  =0.97 to the set point  

Aθ  =0.67  

 

The value of the cost J of equation 4 is displayed in 

figure 7. As shown in this figure, the value of cost J is 

reduced fast in the first steps of evolution of the system 

under controller effect and it reached values close to zero as 

the process is steered to the desired steady state. 

 
Fig.7. evolution of cost J after each optimization step in receding 

controller design procedure 

 

To evaluate the capability of the controller designed 

based on our nonlinear model to traverse bifurcation points, 

we also investigated cases where the objective was to drive 

the system to the lower, open-loop stable, steady state point. 

In figure 8 we present the temporal profiles of the 

system states, while the manipulated variable temporal 

profile is shown in the figure 9. It is observed in figure 8 that 

the controller can successfully drive the system from one 

open-loop stable steady-state to the other one in a smooth 

fashion, and the separatrix point is passed successfully 

during the process evolution. 
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Fig.8. The evolution of 

Aθ from initial steady state
Aθ  =0.97 to the set 

point  
Aθ  =0.13 

 
Fig.9. manipulated variable β for driving the CO coverage from initial 

steady state
Aθ  =0.97 to the set point  

Aθ  =0.13  

V. CONCLUSION 

In this contribution, the problem of model-based 

controller design for microscopic system was investigated. 

The problem was addressed via the identification of 

nonlinear models that were subsequently used for NMPC 

design. The model was constructed in this two step 

procedure using fuzzy system identification algorithms. The 

data required for this system identification were produced 

using KMC simulations. The proposed approach was 

illustrated on a KMC realization of the catalytic oxidation of 

carbon monoxide. The resulting models of the fuzzy system 

identification step captured the process evolution well, while 

the stochastic noise didn’t severely affect the model 

performance. Subsequently, a receding horizon controller 

was designed that successfully forced the system from an 

open-loop stable steady-state to a desired open-loop unstable 

steady state. Furthermore, the designed controller was 

successfully employed to force the system to traverse a 

separatrix and stabilize the system at a different open-loop 

stable steady-state. 
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