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Abstract— Collective motion of a multi-vehicle testbed has
applications in weather monitoring and ocean sampling. Pre-
vious work in this field has produced theoretically justified
algorithms for stabilization of parallel and circular motions of
self-propelled particles using measurements of relative position
and relative velocity. This paper describes an observer-based
feedback algorithm for stabilization of parallel and circular
motions using measurements of relative position only. This
algorithm utilizes information about the particle dynamics and
turning rates to estimate the relative velocities. We describe
a laboratory-scale underwater vehicle testbed on which the
algorithm is being implemented.

I. INTRODUCTION

Motivation for pursuing coordinated, collective motion of

autonomous vehicles comes partly from biology. From ants

that collectively build their colonies to fish that school as

one unit for defensive and other purposes, it is apparent

that collective behavior is a beneficial component to many

groups. Although animals may utilize collective behavior to

achieve various results, multiple members help to reduce the

workload on each individual member.

Current study in the field of collective motion has pro-

duced various results. Researchers have extended the self-

propelled particle model used in [7] to handle more situa-

tions. In [6], control laws for self-propelled particles were

proven to stabilize synchronized, balanced, circular, and

symmetric circular formations in the presence of a time-

invariant flowfield. Taking another direction, [5] provided a

rotational acceleration controller for a self-propelled particle

using backstepping and proportional control. Another method

for creating collective motion utilized pursuit dynamics. In

[3], this concept was examined whereby a leader particle

performed a behavior and the others pursued the leader.

Another area of interest in the field of collective motion

concerns the stabilization of particle formations with limited

information. [9] discussed a flocking behavior of agents

whereby only a certain number of agents were informed of

the desired behavior. Flocking motion was achieved under

this restriction, as in [8], which discussed a self-propelled

particle system with limited communication between agents.

Another form of limited information can be a result of

limited sensing capabilities. One way to solve this problem is

This material is based upon work supported by the National Science
Foundation under Grant Nos. CMMI0928416 and CMMI0954361 and the
Office of Naval Research under Grant No. N00014-09-1-1058.

S. Napora is a graduate student in the Department of Aerospace
Engineering, University of Maryland, College Park, MD 20742, USA
snapora@umd.edu

D. Paley is an assistant professor in the Department of Aerospace
Engineering, University of Maryland, College Park, MD 20742, USA
dpaley@umd.edu

by estimating the unknown variable. [2] used this approach

for formation tracking utilizing sliding-mode estimators.

An additional field of research discusses real world ap-

plication of collective motion in order to demonstrate the

performance of a control algorithm. In order to study collec-

tive behaviors of particles, an effective testbed for analyzing

control algorithms consists of identical vehicles capable of

performing the control law. [1] described a testbed of LEGO

MINDSTORMS that produced parallel and circular motion

of vehicles around virtual beacons. The work described

below focuses on a laboratory scale testbed of underwater

vehicles for which inter-vehicle sensing is limited.

Parallel and circular motion has been achieved in self-

propelled particles with either first- or second-order rota-

tional dynamics. These models have assumed that every

particle is aware of the relative velocity of every other

particle in the group. Here, we do not assume that each

particle can sense relative velocities, only relative positions.

The contribution of this paper is to present theoretically

justified methods for (1) estimating the velocity of one

particle relative to another particle and (2) utilizing that

estimate in an observer-based feedback control to stabilize

parallel and circular formations. We provide simulations

to illustrate the performance of the estimation and control

algorithms.

The outline for the paper is as follows. In Section II,

kinematic and dynamic models of self-propelled particle

motion are described, including control laws that stabilize

parallel and circular formations using relative position and

relative velocity. In Section III, an observer-based feedback

control is derived using knowledge of relative position and

turning rate. Section IV describes an underwater vehicle

testbed that is being developed to demonstrate how this

control and estimation will function on a physical system.

Lastly, Section V summarizes the results and ongoing work.

II. BACKGROUND

In our study of collective motion, we consider parallel and

circular formations to be building blocks for more complex

motion. These cooperative motions have been achieved in

[7] using a particle model to represent each vehicle in a

group. We describe that model here, along with a dynamic

model that includes second-order rotational dynamics. For

each model, we include a description of parallel and circular

control algorithms.

A. First-Order Particle Model

A dynamic model that can be used to design collective

motion is a first-order particle model. This model assumes
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that each particle moves at a constant speed equal to one. The

position of particle k is rk = (xk, yk), and the orientation

of its (planar unit) velocity is θk. The steering control, uk,

is applied to the heading rate allowing the vehicle to change

course as indicated below:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = uk,

(1)

where k represents the kth particle in a group of size N .

Collective control laws have been designed for this model

resulting in parallel and circular formations.

A parallel formation is achieved when each particle has

the same velocity orientation. The following control achieves

this motion with all-to-all communication [7]:

uk = −K
N

N∑

j=1

sin(θj − θk) , φk(θ), (2)

where θ = [θ1 − θk, ..., θN − θk]. Note that the absolute

orientations of the particle’s velocities are not required for

control, but only the relative orientation.

Choosing K < 0 in (2) will produce straight-line motion

where all the particle trajectories are parallel [7]. Choosing

K > 0 yields balanced motion; this behavior occurs when the

sum of all particle velocities is equal to zero. Both motions

are illustrated in Fig. 1.

Fig. 1. Parallel motion (left) and balanced motion (right), where the particle
centroid is fixed.

A circular formation is achieved when each particle’s

turning rate and center of rotation are identical to the rest of

the group. The center of rotation can be defined in complex

notation as [7]

ck = rk + iω−1
0 eiθk . (3)

where rk is the complex position and ω−1
0 is the circle’s

radius. Using the center of rotation, the following control

produces a circular formation with all-to-all communication

[7]

uk = ω0(1 +K〈Pkc, e
iθk〉) , ψk(r,θ), (4)

where c = [c1, ..., cN ]T , r = [r1 − rk, ..., rN − rk], and

K > 0. Pk is the kth row of the projector matrix P =
IN×N − 1

N 11T , where 1 = [1, ..., 1]T ∈ RN . This formation

is illustrated in Fig. 2.

The circular control law can be expressed in terms of the

particle’s relative velocity orientations, θ, and the particle’s

relative positions, r.

Fig. 2. A simulation of five particles performing the circular control law
with random initial conditions.

B. Second-Order Particle Model

The first-order model is useful for studying various group

behaviors, but may not adequately represent the rotational

dynamics of an actual vehicle. Instead of controlling the

heading rate to change direction, a vehicle applies a moment

to control the rotational acceleration. Under this assumption,

each particle has the following dynamics:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = ωk

ω̇k = uk.

(5)

The control laws created for the first-order model can be

extended to the second-order model using a proportional

controller that drives the desired heading to the first-order

control laws. The parallel formation for this model becomes

[5],

uk = Kp(φk(θ)− ωk), (6)

where φk(θ) is defined in (2) and Kp > 0. Similarly, circular

motion can be achieved using the following control law [5]

uk = Kp(ψk(r,θ)− ωk), (7)

where ψk(r,θ) is defined in (4) and Kp > 0. The collective

behaviors produced by the first-order model are also exhib-

ited in this extended model.

III. THEORETICAL RESULTS

As mentioned previously, parallel and circular motion have

been achieved with both the first- and second-order models.

These models have assumed that every particle is aware

of the relative position and relative velocity of every other

particle in the group. Here we assume knowledge of relative

position and turning rate only.

A. Dynamic Model

Without loss of generality, we begin by examining a pair of

particles j and k. Fig. 3 shows particles j and k in an inertial

frame, I. Each particle’s position relative to the origin is

represented by the vectors rj and rk, respectively, while the

vector between the particles is represented by rj/k = rj−rk.

An inertial-frame representation is not necessarily known

to each particle. Particle k views the world from its own path

frame Bk = (k,xk,yk, zk) which moves with the particle

itself. xk is aligned with ṙk as shown in Fig. 3 and yk =

3997



x

y

k

j
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Fig. 3. Vectors utilized in dynamic model

zk × xk, where zk is out of the page. We express rj/k as

components in frame Bk as rj/k = xj/kxk + yj/kyk.

We begin by considering the inertial kinematics of j

relative to k. Taking the derivative of rj/k with respect to

the inertial frame and expressing the result in matrix notation

with respect to frame I yields

[
Ivj/k

]

I
=

[
Id
dt rj/k

]

I

= [ṙj − ṙk]I

=

[
cos θj − cos θk
sin θj − sin θk

]

I

.
(8)

In this equation, Ivj/k represents the velocity of particle j

with respect to k in the inertial frame. The subscript I refers

to the coordinate system in which this quantity is expressed.

For example,
[
Ivj/k

]

I
means that the velocity of particle j

with respect to particle k is expressed as vector components

in the inertial frame.

The inertial kinematics do not contain the relative orienta-

tion, θj −θk, which is needed to implement either controller

(2) or (4). To obtain the relative orientation, we rewrite

the inertial velocity in particle k’s path frame. The angular

velocity of Bk with respect to I is I
ω

Bk = ωkzk. The

velocity in the inertial frame can be expressed as components

in frame Bk using a 2x2 rotation matrix R to rotate by −θk:

[
Ivj/k

]

Bk
= R(−θk)

[
Ivj/k

]

I

=

[
cos(θk) sin(θk)
− sin(θk) cos(θk)

] [
cos θj − cos θk
sin θj − sin θk

]

I

=

[
cos(θj − θk)− 1
sin(θj − θk)

]

Bk

.

(9)

Although the resulting matrix contains the desired relative

orientation, the term on the left is not directly measurable

from the path frame. It can be related to the path frame

velocity, Bkvj/k, using the transport equation:

I d

dt
(rj/k) =

Bk d

dt
(rj/k) +

I
ω

Bk × rj/k. (10)

In matrix notation,

[
Ivj/k

]

Bk
=
[
Bkvj/k

]

Bk
+
[
ωkzk × rj/k

]

Bk
(11)

Using rj/k = xj/kxk + yj/kyk yields

[
cos(θj − θk)− 1
sin(θj − θk)

]

Bk

=

[
ẋj/k
ẏj/k

]

Bk

+ ωk

[
−yj/k
xj/k

]

Bk

. (12)

Solving for θj − θk yields

θj − θk = arctan

(
ẏj/k + ωkxj/k

1 + ẋj/k − ωkyj/k

)

. (13)

With this relationship, calculating particle j’s velocity

orientation relative to k requires knowledge of k’s turning

rate as well as the position and velocity of particle j with

respect to k. Assuming the relative position, rj/k, and turning

rate, ωk, is measured, each particle can estimate the relative

velocity, Bkvj/k, in the path frame, Bk, using the estimator

described next.

B. Velocity Estimation

Consider the case where particle k is estimating the

relative velocity of particle j in frame Bk. In this case, let

r̂j/k = x̂j/kxk + ŷj/kyk and Bk v̂j/k = ˙̂xj/kxk + ˙̂yj/kyk

be the position and velocity estimates, respectively. Also, let

△rj/k , r̂j/k − rj/k and △Bkvj/k , Bk v̂j/k − Bkvj/k

represent the estimation errors for position and velocity,

respectively. Note that we estimate the velocity of particle j

with respect to particle k in frame Bk. Choosing the estimator

dynamics

Bk d
dt (r̂j/k) = −K1△rj/k + Bk v̂j/k

Bk d
dt (v̂j/k) = −K2△rj/k,

(14)

where K1 > 0 and K2 > 0, yields the following error

dynamics:

Bk d

dt

[
△rj/k

△Bkvj/k

]

Bk
︸ ︷︷ ︸

,ėj/k

=

[
−K1 1
−K2 0

]

︸ ︷︷ ︸

,A

[
△rj/k

△Bkvj/k

]

Bk
︸ ︷︷ ︸

,ej/k

+

[
0

−Bkaj/k

]

Bk
︸ ︷︷ ︸

,gj/k(t)

.

(15)

When written in this form, we see the estimator is a

linear system ėj/k = Aej/k + gj/k(t), where gj/k(t) is a

perturbation.

Representing the equations in vector notation is useful in

order to study the stability of the system, but the second-

order model (5) and relative orientation relationship (13)

utilize Cartesian coordinates with respect to the frame Bk.

To be consistent, we can rewrite (14) as

Bk d
dt (x̂j/k) = −K1△xj/k + ˙̂xj/k

Bk d
dt (ŷj/k) = −K1△yj/k + ˙̂yj/k

Bk d
dt (

˙̂xj/k) = −K2△xj/k
Bk d

dt (
˙̂yj/k) = −K2△yj/k,

(16)

where △xj/k , x̂j/k−xj/k and △yj/k , ŷj/k−yj/k. x̂j/k
and ŷj/k represent the x and y position estimates, whereas
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˙̂xj/k and ˙̂yj/k represent the x and y velocity estimates,

respectively.

Lemma 1: The error in the velocity estimation due to the

perturbation, gj/k(t), can be reduced by choosing the gains

K1 > 0 and K2 > 0 such that the quantity

K1

K2
+
K2 + 1

K1K2
> 0 (17)

is minimized.

Proof: Consider the following Lyapunov function

V = eTPe (18)

where e ,
[
△rj/k △Bkvj/k

]T
. The matrix P is chosen

by solving the Lyapunov equation

PA+ATP = −Q (19)

where Q ∈ R2x2 is the identity matrix. For this system,

P =

[
K2+1
2K1

− 1
2

− 1
2

K2+K2

1
+1

2K1K2

]

. (20)

Taking the derivative with respect to time yields

V̇ = −eTQe
−Bkaj/k

(

−△rj/k + (K1

K2

+ K2+1
K1K2

)△Bkvj/k

)

.

(21)

The estimator assumes that the relative position is known;

therefore, the error in the position estimate is negligible.

As a result, (21) ensures V̇ ≤ 0 for ||e|| ≥ b, where

b is proportional to
(

K1

K2

+ K2+1
K1K2

)

||gj/k(t)||L. Therefore,

minimizing (17) will reduce the lower bound b.

C. Observer-Based Feedback Control

Let’s now consider an N -particle system that obeys the

second-order model (5). Each particle utilizes the estimator

(16) to determine the relative velocities of the other parti-

cles. These estimates are then used to calculate the relative

orientations of the particles using (13). Finally, each particle

implements the desired control using the relative orientations,

θ̂. The state-space representation of the combined system is:

ẋk = cos(θk)
ẏk = sin(θk)

θ̇k = ωk

ω̇k = Kp(ûk − ωk)
Bk ˙̂xj/k = −K1△xj/k + ˙̂xj/k
Bk ˙̂yj/k = −K1△yj/k + ˙̂yj/k
Bk ¨̂xj/k = −K2△xj/k
Bk ¨̂yj/k = −K2△yj/k,

(22)

with k, j = 1, ..., N and ûk represents the desired control

law.

Let

θ̂j − θk = arctan

(
˙̂yj/k + ωkx̂j/k

1 + ˙̂xj/k − ωkŷj/k

)

. (23)

and θ̂ = [θ̂1 − θk, ..., ̂θN − θk]. Note that the combination of

the control law and estimator further define the perturbation

in (15) as a vanishing perturbation1 because the particles

do not move in the body frame, Bk, when converged to

the desired formation. Since the particles are stationary, they

have velocity and acceleration, Bkaj/k, equal to zero.

For a parallel formation, ûk = φk(θ̂) in (22). Noting that

the parallel control law is a summation of sine terms and the

relative orientation calculation uses an inverse tangent, the

control law can be simplified using trigonometric identities

to

φk(θ̂) = −K
N

∑N
j=1

˙̂yj/k+ωkx̂j/k√
( ˙̂yj/k+ωkx̂j/k)2+(1+ ˙̂xj/k−ωkŷj/k)2

.

(24)

Implementation of the circular control law is achieved the

same way using ûk = ψk(r, θ̂) in (22). Note that the relative

orientation is used to calculate the centers of rotation (3) in

particle k’s path frame.

Proposition 2: The observer-based feedback control algo-

rithm described in (22) will stabilize the desired formation

as long as each particle’s turning rate and distance between

particles remains sufficiently small.

These conditions on the turning rate and distance come

from the perturbation term, gj/k(t). As shown in (15),

the perturbation is a function of the acceleration, Bkaj/k.

When derived, this term depends on the particle’s angular

rate, angular acceleration, relative velocity orientation, and

relative position. By reducing the distance between particles

and their turning rates, the acceleration term decreases, which

allows for more accurate estimations. With accurate estimates

of the relative velocity orientation, the particles converge to

the desired formation.

The state-space representation of the system has been

programmed to simulate the behavior of a group of particles.

Fig. 4 shows a simulation of the parallel control law, while

Fig. 5 displays a simulation of the circular control law. Both

simulations begin with each particle being given a random

velocity orientation, a random position, and zero turning rate.

Each particle also maintains N−1 estimates for the states of

the other particles as shown in (22). The particle’s position

estimates are initialized to their actual position in the body

frame, whereas the particle’s velocity estimates are initialized

to zero.

The plots for each simulation show the error in the

position and velocity estimates for each particle. There are

(N − 1)2 estimates shown because each individual particle

has N−1 estimators. Also, note that the error in the estimates

approaches zero as t→ ∞, which implies that each particle

determines the position and velocity of the other particles as

time goes to infinity.

IV. UNDERWATER VEHICLE TESTBED

The control laws and estimator have been designed using

an idealized modeling framework. This technique allows

higher level control laws to be studied for stability and

convergence without the need for a specific system model to

be utilized. However, these control laws need to be applied

1A vanishing perturbation is an additional term to a system that evaluates
to zero when the state of the system is at equilibrium [4].
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Fig. 4. A simulation of five self-propelled particles performing the parallel control law while estimating the other’s relative velocity. Each particle is
given a random starting position and velocity with control gains K = −1, Kp = 1, K1 = 10, and K2 = 100.
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Fig. 5. A simulation of five self-propelled particles performing the circular control law using their individual position and velocity estimates with ω0 = .5.
Each particle is given a random starting position and velocity with control gains K = 1, Kp = 1, K1 = 10, and K2 = 100.

to a physical system to demonstrate the usefulness of the

control law.

Taking this point into consideration, we are developing a

submarine testbed for experimental validation of motion co-

ordination algorithms. Each submarine is a radio-controlled

1:60 scale model of the U.S.S. Albacore and utilizes an

onboard microprocessor and sensors to steer the vehicle;

Fig. 6 indicates the current state of the testbed. (Additional

details are available in [10].) The microprocessor onboard

each vehicle serves two separate purposes. First, pitch and

yaw rates are stabilized to a desired rate via state-feedback

provided by gyroscopes fixed to the vehicle. Secondly, the

microprocessor serves as a wireless receiver for updated pitch

and yaw rates.

The pitch and yaw rates are updated using an underwater

motion capture system shown in Fig. 7. This system is

able to track the position and orientation of multiple rigid

bodies in real time. We utilize this knowledge to compute

the desired yaw rate from (2) or (4). The desired pitch

rate is determined by a proportional control to stabilize the

submarine’s depth. These desired rates are then transmitted

to each submarine where the onboard microprocessor takes

control of the submarine.

Tests using a single submarine have been used to validate

the second-order model under parallel (6) and circular (7)

control algorithms without estimation. These tests ensure that

the particle model adequately describes the rotational dy-

namics of a submarine and is sufficient to test the estimation

algorithm. Alongside the experimental data is a simulated

version with the same initial conditions for comparison.

Fig. 8 displays a single submarine performing the parallel

control law with a virtual particle traveling along the positive

x axis. The submarine is able to reorient itself in the general

direction of the formation before reaching the end of the tank.

The experimental result is similar to the simulated result, but

converges slower because the turning rate is limited by the

submarine’s dynamics.

Fig. 9 shows a single submarine performing the circular

control law in the tank with a virtual particle. The submarine

is circling the correct position, but does not achieve the

desired radius during the test.

V. CONCLUSION

This paper describes an observer-based feedback control

algorithm to stabilize parallel and circular formations using

a second-order particle model. Simulations illustrate the

results by reproducing the desired motion as well as relative

velocity errors that approach zero as time goes to infinity.

A submarine testbed is also described and will be used to

verify these algorithms on a physical system.

In ongoing research, we are formally analyzing the con-

vergence of the observer-based feedback control algorithm
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Fig. 6. The underwater vehicle testbed consists of six submarines that
operate in the Neutral Buoyancy Research Facility at the University of
Maryland and twelve underwater cameras used for motion tracking.

Fig. 7. The motion capture system’s runtime environment allows data to
be recorded and analyzed.

(Proposition 2). Real-time application of the parallel and

circular control laws is being implemented on the experi-

mental testbed. The control algorithms will be examined for

their ability to achieve desired motions using the underwater

motion-capture system.
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