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Abstract—A fundamental and open issue pertaining to 
human postural sway is how to deal with the uncertain, 
nonlinear and time-varying nature of human motor dynamics. 
To address the inherent limitations of the current methods, such 
as PID and model-based designs, a novel active disturbance 
rejection concept is introduced. In this new framework, the 
uncertainties, nonlinearities and changes in the dynamics of the 
plant are treated as disturbance to be rejected. A unique 
disturbance rejection observer is employed to estimate it and 
compensate for it in real time.  It is shown that the resulting new 
controller yields excellent performance even with significant 
uncertainties in the plant dynamics. Furthermore, such design 
strategy requires very little prior knowledge of the plant.   

Keywords— postural control; functional electrical stimulation; 
extended state observer; active disturbance rejection control 

I. INTRODUCTION 
Although people spend countless, seemingly effortless, 

hours standing during their lifetime, the task of maintaining 
balance is actually quite complex. To analyze this complex 
task of quiet standing, either ankle strategy or hip strategy can 
be used, with the former is usually used for small 
perturbations, and the latter for larger perturbations [1].  This 
paper will deal with ankle strategy, in which the body moves 
as a rigid mass around the ankle joints and hence is regarded 
as a single-link inverted pendulum with movement around the 
ankle joint.  

Spinal cord injury results in an interruption of the 
neurological pathway from brain to muscles. A complete 
lesion of the spinal cord in the back (thoriac level) results in 
the paralysis of lower limbs and loss of voluntary control of 
the muscles below the level of lesion. Paralyzed muscles do 
however retain their ability to contract, and they can be 
simulated by extraneous electrical signals, which can be used 
for therapeutic purposes. The ultimate goal in therapy is to 
restore postural balance artificially by stimulation of the 
ankle muscles in a way analogous to the mode in which 
normal people stand. Towards this goal, we need first to 
understand how muscles generate forces under stimulation, 
i.e. the dynamics of the muscle. Based on this understanding, 
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we need to design a control system that will provide the 
appropriate muscle stimulation signals to keep the person 
from losing balance.  

The pragmatic nature of this effort requires that a 
realistic and nonlinear model of ankle joint to be used, instead 
of the simplistic linear approximations commonly seen in 
literature concerning the control of postural sway. It is 
well-known that the real muscles are quite complex, 
nonlinear and time-varying in nature. A more realistic 
musculoskeletal model of this ankle joint would be crucial in 
understanding the muscle dynamics and in evaluating the 
performance of the controller that can provide artificial 
balance for the paraplegic patients. A control strategy must be 
devised to accommodate the nature of human postural sway 
that is unknown or uncertain in many ways. Many existing 
techniques may not be suitable for the human postural control 
problem because they require accurate mathematical model 
of the plant, which is usually unavailable. 

     A survey of control strategies for human postural sway has 
been given in [2]. Feedforward and open-loop control have 
been employed for functional electrical stimulation (FES) 
systems [3-5]. In these methods, stimulation parameters are 
calculated by the controller to generate a desired movement. 
Feedforward control has been used for various purposes, such 
as upper extremity movement including hand grasp [6-7], 
single-joint arm movements [8], and elbow extension [9]. It 
does not require sensors, which facilitates rapid movements 
and greatly simplifies controller implementation in humans.  
By itself, however, no corrections can be made if the actual 
movement deviates from the desired one and it requires a 
detailed system behavior [10]. Another class of approaches is 
feedback control. Feedback control has been extensively used 
for many FES applications [4, 10-13]. It uses sensors to 
monitor the output and to have the output behave as the 
desired one [10]. However, feedback control in clinical 
applications has been limited due to the requirement of 
body-mounted sensors [14]. The challenges come from the 
sensor signal quality and inherent delays in system response 
[4, 15]. Other advanced FES feedback controllers were 
investigated incorporating various techniques, such as 
combination of feedforward and feedback control [16, 17], 
reinforcement learning [18, 19], and artificial neural 
networks [20-22]. However, the tuning of these approaches is 
nontrivial, especially for nonlinear processes in the presence 
of significant dynamic uncertainties and disturbances 
[23-28].     

The purpose of this paper is to provide a practical solution, 
based on the active disturbance rejection concept, to the 
human posture control problem and show analytically how 
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this novel control technology achieves excellent performance 
for the uncertain, nonlinear, and time-varying dynamic 
systems. The stability characteristics of the proposed control 
approach is also analyzed. 

This paper is organized as follows. The nonlinear 
simulation model for human postural sway is discussed in 
Section II. The active disturbance rejection control design 
strategy is introduced in Section III. Comparison of different 
control approaches for systems with significant dynamic 
variations and external disturbances is presented in Section 
IV. Finally, some concluding remarks are given in Section V.  

II. NONLINEAR SIMULATION MODEL 
The human pastoral sway model considered in this paper 

is shown in Fig. 1. It includes the muscle properties which are 
interactively complex, but contribute substantially to the 
dynamic stability of the musculoskeletal system, as shown by 
Gerritsen et al. [29]. The ankle joint has three muscles, 
Tibialis Anterior at the front, Gastrocnemius and Soleus at the 
back. Gastrocnemius and Soleus can be combined into one as 
Triceps Surae muscle. This is valid as the knee is locked and 
so it does not make a difference that Gastrocnemius is a 
two-joint muscle.  
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Fig. 1. The human pastoral sway model using ankle strategy. 
 

Each muscle tendon is modeled as a three-component hill 
model and the muscle properties are taken from the work by 
McLean et al. [30]. Muscle activation dynamics was modeled 
as a first order differential equation. The model used here is 
taken from the cat’s hind limb model and replaced with the 
human ankle parameters.  

To describe the model in short, when muscle stimulation 
is given as an input to a muscle, it passes through a first order 
filter and results in the activation. This activation affects the 
force length relationship leading to the change in length, 
which in turn produces force in the muscle. The total force 
affects the acceleration of the ankle and hence the position.  A 
Simulink model is developed and the block diagram is shown 
in Fig. 2. 

From the open loop response (not shown here for 
brevity), it can be determined that the ankle joint represented 

by this model can lean in the forward direction by a maximum 
of 18.5o as the foot is locked to the ground. Similarly, it can  
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Fig. 2. The open-loop Simulink model block diagram. 
 

lean backward by a maximum of 1.35o. Beyond these limits, 
there is not enough muscle strength to recover the joint to the 
vertical direction (0o lean).  In practice, when the ankle joint  
exceeds a limit of around 8o and 1o in forward and backward 
directions, the hip strategy comes into picture. For the sake of 
simplicity, the hip strategy is ignored in the present paper, as 
the performance of the control system is of the main interest. 
For this purpose, it is assumed that the foot is locked to the 
ground and the maximum sway that the ankle joint can attain, 
among other performance considerations, is an important 
characteristic of closed-loop control system.  

The present model of the plant is highly nonlinear and 
time-varying with significant uncertainties, caused by 
dynamic variations in human muscles. These characteristics 
make model based control designs such as pole placement, 
feedback linearization, sliding model control and H2/H∞ 
control not feasible for this problem. Therefore the active 
disturbance rejection control (ADRC), which does not 
depend on accurate mathematical model, is proposed.  

III. ACTIVE DISTURBANCE REJECTION CONTROL 
The basic idea of the ADRC is to take the combination of 

internal dynamics and external disturbance of the system as 
the total disturbance and actively reject it in the control law. 
The concept of ADRC is introduced below. 

A. Active Disturbance Rejection Concept   
The general motion problem can be formulated as 

( ) ( ) ( ) ( )( ) ( ), , ty t f y t y t d t bu t= +&& &                   (1) 

where y  is the output position, and u  is the control signal, 

td  refers to the total disturbance including linear and 
nonlinear disturbances with unknown characteristics, the 
generalized nonlinear function ( ).f , simply denoted as f , 
represents the combined effect of internal dynamics and 
external disturbances. The concept of active disturbance 
rejection is if 

buyf −= &&                                       (2) 
can be measured or estimated, the control law 

bfuu )( 0 −=                                   (3) 
reduces the plant (1) to a simple double integral plant. 
Initially, assume all the three states, position, velocity, and 
acceleration, are measurable, then we have 
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which can be easily controlled by a PD controller. This design 
strategy proves to be effective for the human posture control, 
as shown later. In reality, the muscle model is more complex 
than depicted in (1) with additional state variables and highly 
nonlinear functions. In the above ADRC concept, most of this 
complexity can be treated as uncertainty, estimated in real 
time and canceled, making control design task a much 
simpler one. In practice, the acceleration signal is required for 
control. An accelerometer can be used on the patient’s belt to 
measure this signal [31]. The ADRC provides a similar 
functionality to acceleration feedback control. With the novel 
active disturbance rejection concept, a unique observer, 
extended state observer (ESO), is proposed to estimate f  in 
real time [32–34]. The concept of ESO is presented below. 

B. Extended State Observer Design   
Let 1 2 3, ,y y fξ ξ ξ= = =&  and T][ 321 ξξξξ = . Assuming 

f  is differentiable, the state space form of (1) is 

              A Bu Eh
y C
ξ ξ

ξ
⎧ = + +⎪
⎨

=⎪⎩

&                                       (5) 

where [ ]
0 1 0 0 0
0 0 1 , , 1 0 0 , 0 ,
0 0 0 0 1

A B b C E
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

3 fξ =  

is the augmented state, and .h f= &  A continuous ESO for (5) 
is designed as 

               ˆ ˆ ˆ( )
ˆˆ

A Bu L y y

y C

ξ ξ

ξ

⎧ = + + −⎪
⎨

=⎪⎩

&
                                (6) 

where [ ]TlllL 321=  is the observer gain vector. The 
observer gains are chosen such that the characteristic 
polynomial 3 2

1 2 3    s l s l s l+ + +  is Hurwitz. For tuning 
simplicity, all the observer poles are placed at oω− . It results 
in the characteristic polynomial of (6) to be 

         3
32

2
1

3 )()( oo slslslss ωλ +=+++=                      (7) 
where oω  is the observer bandwidth and 

2 33 3 .
T

o o oL ω ω ω⎡ ⎤= ⎣ ⎦  

C. Control Algorithm  
Once the observer is designed and well tuned, its outputs 

will track 1 2,  ,ξ ξ  and 3ξ  respectively. By canceling the 
effect of f  using 3̂ξ , ADRC actively compensates for f  in 
real time. The ADRC control law is given by  

( ) ( )1 1 2 2 3
ˆ ˆ ˆk r k r r

u
b

ξ ξ ξ− + − − +
=

& &&
                        (8) 

where r  is the desired trajectory, 1k and 2k are the controller 
gain parameters selected to make 2

2 1s k s k+ + Hurwitz. For 
simplicity, let 2

1 2,  2c ck kω ω= = , where cω  is the controller 

bandwidth. The closed-loop system for the system (1) 
becomes 
                   ( ) ( ) ( )3 1 1 2 2

ˆ ˆ ˆ .y f k r k r rξ ξ ξ= − + − + − +&& & &&                       (9) 

Note that with a well-designed ESO, the first term in the right 
hand side (RHS) of (9) is negligible and the rest of the terms 
in the RHS of (9) constitute a PD controller with a 
feedforward gain.  

The convergence for the estimation error of the ESO and 
the closed-loop tracking error of ADRC is shown below. 

D. Stability 
1) Convergence of the ESO 
Let ( ) ( ) ( )ˆ ,  1, 2,3i i it t t iξ ξ ξ= − =% . From (5) and (6), 

the observer estimation error dynamics can be shown as 
1 2 1 1

2 3 2 1

3 3 1.

l

l

h l

ξ ξ ξ

ξ ξ ξ

ξ ξ

= −

= −

= −

&% % %

&% % %

&% %

                                               (10) 

Now let us scale the observer estimation error ( )i tξ%  by 1i
oω − , 

i.e., let ( ) ( )
1 , 1, 2,3.i

i i
o

t
t i

ξ
ε

ω −= =
%

 Then (10) can be rewritten as 

( )
2

, t
o

o

h d
= A Bε ε

ξ
ε ω ε

ω
+&                                      (11) 

where 
3 1 0 0
3 0 1 , 0
1 0 0 1

A Bε ε

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

.  

Theorem 1: Assuming ( ), th dξ  is bounded, then there exist a 
constant 0iσ > and a finite time 1 0T >  such that 

( ) 1,   1, 2,3,  0i it i t Tξ σ≤ = ∀ ≥ >%  and 0.oω >  Furthermore, 

1
i k

o

σ
ω

⎛ ⎞
= Ο⎜ ⎟

⎝ ⎠
, for some positive integer k . 

Proof:  Solving (11), we can obtain 

( ) ( ) ( ) ( )( )
20

,
0 .oo

t tA tA t

o

h d
t = e e B dεε ω τω

ε

ξ τ
ε ε τ

ω
−+ ∫                  (12) 

Let  

( ) ( ) ( )( )
20

,
.o

t tA t

o

h d
p t e B dεω τ

ε

ξ τ
τ

ω
−= ∫                       (13) 

Since ( )( ), th dξ τ is bounded, that is, ( )( ), th dξ τ δ≤ , 
where δ  is a positive constant, it follows that 
 

( ) ( ) ( )1 1
3

o A t
i i i

o

p t A B A e Bεω
ε ε ε ε

δ
ω

− −⎡ ⎤≤ +
⎣ ⎦

             (14) 

for 1, 2,3.i =  Since 1

0 0 1
1 0 3 ,
0 1 3

Aε
−

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
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 One has  

( ) 11

2,3

1  
= .

3
i

i
i

A Bε
=−

=

⎧⎪
⎨
⎪⎩

                                     (15) 
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Since Aε  is Hurwitz, there exists a finite time 1 0T >  such 
that  

3

1
o A t

ij
o

e εω

ω
⎡ ⎤ ≤⎣ ⎦                                  (16) 

for all 1,  ,  1, 2,3t T i j≥ =  .  Hence 

3

1
o A t

i
o

e Bεω

ω
⎡ ⎤ ≤⎣ ⎦                                (17) 

for all 1,  1, 2,3t T i≥ = . Note that 1T  depends on .o Aεω  

Let
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One has              
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             (18) 

for all 1.t T≥  From (14), (15) and (18), we obtain 

( ) 3 6

3 4
i

o o

p t δ δ
ω ω

≤ +                                (19) 

For all 1, 1,2,3.t T i≥ =  Let ( ) ( ) ( )1 20 0 0sumε ε ε= + +  

( )3 0 .ε   It follows that 

( ) ( )
3

0
0o sumA t

i
o

e εω ε
ε

ω
⎡ ⎤ ≤⎣ ⎦                              (20) 

for all 1,  1,2,3t T i≥ = . From (12), one has  

( ) ( ) ( )0 .o A t
i ii

t e p tεωε ε⎡ ⎤≤ +⎣ ⎦                        (21) 

Let ( ) ( ) ( ) ( )1 2 30 0 0 0 .sumξ ξ ξ ξ= + +% % % %  According to 

( ) ( )
1

i
i i

o

t
t

ξ
ε

ω −=
%

 and (19)-(21), we have 

( ) ( )
3 4 7

0 3 4

   =

sum
i i i

o o o

i

t
ξ δ δξ

ω ω ω

σ

− −≤ + +
%

%                                 (22) 

for all 1,  1, 2,3.t T i≥ =   Q.E.D. 

It is shown above that in the absence of the plant model, 
the estimation error of the ESO (6) is bounded and its upper 
bound monotonously decreases with the observer bandwidth.  

The convergence of ADRC, where ESO is employed, is 
analyzed next. 

2) Convergence of the ADRC 
Let [ ] [ ]1 2 3, , ,  , T Tr r r r r r= & &&  and ( ) ( ) ( ) ,i i ie t r t tξ= −  
1, 2.i =   

Theorem 2: Assuming that h  is bounded, there exist a 
constant 0iρ >  and a finite time 3 0T >  such that 

( ) 3, 1,2, 0, >0i i oe t i t Tρ ω≤ = ∀ ≥ > and >0.cω  

Furthermore, 1
i q

c

ρ
ω

⎛ ⎞
= Ο⎜ ⎟

⎝ ⎠
 for some positive integer q . 

Proof:  From (8), one has 
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Let ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 3, , , , ,
TT
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Solving (25), we have 
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According to (25) and Theorem 1, one has  
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where 1 21sumk k k= + + . Let ( ) ( ) ( )
0

.e
t A tt e A dτ

ξϕ ξ τ τ−= ∫ %
%  

Define [ ]0 TγΨ = . It follows that 
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Since eA  is Hurwitz, there exists a finite time 2 0T >  such 
that 
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1
eA t

ij
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e
ω

⎡ ⎤ ≤⎣ ⎦                                              (30) 
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for all 3t T≥ . From (28), (29), and (33), we obtain 
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for all 3t T≥ . From (26), one has  

( ) ( ) ( )0 .eA t
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According to (31), (34)-(35), we have 
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for 3 ,  1, 2,t T i≥ = where 
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1 20
max c c isum

i
c c

e ω ω σ
ρ

ω ω

+ +⎧⎪= +⎨
⎪⎩

 

( )( ) ( ) ( )2 2

5 3

1 2 1 2 0 1 2
, .c c c i sum c c i
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eω ω ω σ ω ω σ

ω ω
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Q.E.D. 

It has been shown above that, with plant dynamics largely 
unknown, the closed-loop tracking error and its derivative are 
bounded and their upper bounds monotonously decrease with 
the observer and controller bandwidths. With the 
convergence of ESO and ADRC established, we now present 
the simulation test results. 

IV. COMPARATIVE STUDY 
In this section, the simulation results of ADRC and PID 

are used to evaluate their performance in the presence of 
dynamic uncertainties and disturbances. Both ADRC with 
direct measurement of states and ADRC with ESO are tested. 
Three cases are tested for the human postural system with the 
reference signal of 0 degree and the simulation results are 
shown in Fig. 3. Fig. 3(a) shows the performance of the three 
controllers under nominal condition, with the initial condition 
set at the angle of 0 degree. Fig. 3(b) shows the performance 
of the three controllers when the inertia is reduced by a factor 
of four. Fig. 3 (c) shows the performance of the three 
controllers when an external force of 20 Nm is introduced at 
t=12 s.  

The simulation results show that both ADRC with direct 
measurement and ADRC with ESO achieve high 
performance of robustness and disturbance rejection in the 
presence of dynamic uncertainty and external disturbances. 
Under the nominal condition of 0 degree reference, the 
ADRC with direct measurement shows the least amount of 
overshoot. Both ADRC approaches have small overshoots 
and the settling time of around 4 seconds, while it takes PID 8 
seconds to reach the steady state with a larger overshoot. 
When the inertia is decreased, ADRC approaches provide 
consistent responses without adjusting the tuning parameters. 
However, PID performs an oscillatory response, which 
indicates that it is sensitive to parameter variations. Fig. 3(c) 
demonstrates the excellent disturbance rejection performance 
of ADRC technology. Note that the maximum disturbance 
that ADRC approaches can tolerate is 100 Nm at a non-zero 
reference of 4o, while PID can tolerate no more than 60 Nm. 
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Fig. 3. (a) nominal condition, (b) with decreased inertia, (c) with a push of 20 Nm at t = 12 s.
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V. CONCLUDING REMARKS 
In this paper, a Simulink model is developed for a 

nonlinear dynamic ankle joint from a set of differential 
equations. A novel control concept, active disturbance 
rejection, is successfully applied to solve the human pastoral 
control problem with the uncertain, nonlinear, and 
time-varying nature of human motor dynamics. Stability 
analysis shows that the boundedness of the estimation and 
closed-loop tracking errors is assured. Furthermore, it is 
established that the error upper bounds monotonously 
decrease with the bandwidths. Simulation results demonstrate 
the effectiveness of the ADRC. 
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