
Abstract- Using alarm deadbands is a common method for 

reducing the number of false and missed alarms and amount of 

chattering. Existing methods for designing alarm deadbands 

are quite general or need online computations. This paper 

studies the relation between optimal alarm thresholds and 

deadbands. Two equations are proposed to estimate the 

optimal threshold with respect to the deadband and history of 

the process variable.   

I.    INTRODUCTION 

Efficient monitoring of industrial processes directly 

affects cost reduction and better product quality. This is the 

reason that fault detection has gained much attention among 

researchers. There are many modern fault detection methods 

developed for model based fault detection and also signal 

based fault detection [1]. Despite this fact, engineers usually 

use the simplest method, which is comparing the signal with 

an alarm threshold, for detection of abnormalities in plant 

operations. In addition to the inappropriateness of this 

widely used fault detection method, improper design of 

alarm parameters has worsened the situation of alarm 

systems.   

Receiving an excessive number of alarms per day and 

even during normal operation of the plants has significantly 

reduced the usability of alarm systems. Configuring a high 

number of alarming variables is a primary cause of this 

problem. In distributed control systems (DCS) adding an 

alarm is easy; so, there are many redundant alarms 

configured in every industrial unit. 

 Receiving many redundant alarms (alarms with no 

usable information) and chattering alarms (alarms that 

transit between on and off state before settling [2]) cause too 

much pressure on the operators. Determining important 

alarms and the root problem is a hard task when the DCS 

screen is full of redundant, chattering and false alarms.  

Having many alarming variables also makes it hard to 

perform a proper alarm rationalization practice. As most of 

the standard methods for alarm rationalization are manual, it 

takes too much time to rationalize the alarms of any 

industrial unit. Thus, developing methods for design of 

alarm parameters that can be automatically used is of great 

value from the industry perspective.  

A common effective method for reduction of alarm 

chattering is using deadbands. An alarm deadband is defined 

as “the range through which an input must be varied from 

the  

 

 

 

 

alarm limit necessary to clear the alarm” [2]. Implementing 

a deadband in the system is in fact determining another limit 

for clearing the alarm. For example, for a high alarm, the 

alarm goes on when the variable is higher than the threshold 

and goes off when the variable is less than threshold-

deadband*threshold.   

 A proper deadband guarantees the least possible amount 

of chattering. Deadbands have the advantage of being 

available in many alarm systems. It doesn’t need any 

memory or special software implementation.   

A deadband is usually defined as a percentage of the 

threshold or the range of the variable. In guidelines a 

deadband is defined as a percentage of the operating range. 

In this paper, since we don’t know the range of the 

variables, “deadband” represents the percentage of the alarm 

threshold.  

There are some recommendations for deadband design 

in EEMUA [2] and ISA [3] standards. Table 1 show these 

recommended deadbands based on the type of the process 

variables. Following these provisions improves the alarm 

chattering. However, more improvement can be achieved by 

considering the history of the process variable and fine 

tuning the deadband or alarm threshold. 
Table 1 

Standard’s recommendations for alarm deadbands    

Signal type Deadband 

Flow 5% 

Temperature 1% 

Level 5% 

Pressure 2% 

Estimation of alarm deadbands is investigated in [4]. It 

is proposed to apply time series analysis methods to identify 

an ARIMA model for the process measurement [5]. The 

model should be used to predict the future values of the 

process measurement and its prediction intervals at the time 

of alarm occurrence. With the knowledge of possible future 

variable’s trend, a deadband is designed to cover the 

changes in the measurement due to the noise. Since process 

variables are very likely to have different structures during 

different modes of operation, an identification routine 

should be running on-line. However, it is not likely that 

industrial operators accept to set a varying deadband. Also, 

on-line running of the identification procedure requires 

processor and memory usage. So, an off-line method that 

estimates the optimal amount of deadband for every process 

variable with respect to its historical data is preferred.  

Another technique for designing deadbands or 

thresholds which is based on the ROC (Receiver Operating 

Characteristic) curve is proposed in [6]. A ROC curve is a 

plot of the probability of missed alarms versus the 
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probability of false alarms considering a fixed deadband and 

different thresholds. 

 False alarms happen when the process variable is within 

the normal range, but an alarm is raised for some reason. 

Missed alarms happen while the variable is out of the 

normal range but the alarm is off.  

It is proposed to plot the ROC curve for different 

deadbands and then choose the deadband and the 

corresponding threshold that satisfies some specified limits 

on the probability of false and missed alarms. Using this 

method needs some analysis to be done for every variable 

and it can’t be used to estimate the optimal deadband and 

threshold automatically. 

In this paper, the relation between deadbands and alarm 

thresholds is investigated with respect to statistical 

characteristics of process variables. Some expressions are 

derived and verified for estimating the optimal threshold 

with respect to the deadband. Also, an equation is derived 

that can be numerically solved for the optimal deadband.  

II.    OPTIMALITY DEFINITION 

Although qualitative definitions for alarm chattering are 

provided in standards, they can’t be used in deadband 

design targeting minimum chattering. Having a quantitative 

definition makes it possible to compare the effectiveness of 

different deadbands besides defining the optimality 

condition. The measure that is used hereafter is the 

chattering index proposed in [7]. This chattering index is 

based on time differences between successive alarms; the 

lower the time differences, the higher the chattering. The 

steps of calculating the chattering index from the alarm 

database are as follows. First, time differences between 

successive alarms are measured. The run length distribution 

of these time differences is constructed by counting the 

number of repetitions of every specific time difference. For 

instance, consider the process data in Fig. 1. Simulated data 

that are used here include one normal and one abnormal 

part. In Fig. 1, the first half of the data is the normal part and 

the second half is the abnormal part. The alarm threshold is 

set at the average of the means of the two parts of data. The 

run length distribution is plotted in Fig. 2.  

In general, run lengths closer to one second have the 

most contribution to alarm chattering while larger time 

differences might not be considered chattering at all. To 

highlight run lengths near one second in the chattering index 

and attenuate the effect of further time differences, a 

weighting function is multiplied to the run length. This 

function is chosen as the inverse of the time difference 

itself.  

The chattering index is then defined as the summation of 

alarm counts multiplied by the inverse of their 

corresponding run lengths and divided by the total number 

of alarm counts. In mathematical format the chatter index is 

written as

∑

∑

r

r

r

r

AC

r

AC

.  Where AC is the abbreviation of alarm 

count and r is the abbreviation of run length.  

The range of this chattering index is from 0% (no 

chattering) to 100% (reoccurring alarms at every one 

second). 

Using this chattering index, optimal deadbands and 

thresholds can be defined as the values that generate the 

least amount of chattering.  
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Fig.1. Simulated process data  
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Fig. 2. Run length distribution of simulated data in Fig. 1.  

Since reduction of false and missed alarm rates is 

another important factor in alarm design, another objective 

can be defined based on the ROC curve. For example the 

ROC curve for the data shown in Fig. 1 considering zero 

deadband is plotted in Fig. 3. The ideal point is the origin 

where the probabilities of false and missed alarms are equal 

to zero.  
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Fig. 3. ROC curve for the data in Fig.1 considering zero deadband 

In this work reduction of false and missed alarm rates 

are assumed to be of equal importance. So, the optimal 

threshold or deadband are the ones corresponding to the 

point in the ROC curve which has the minimum distance 

from the origin. An advantage of choosing this optimality 

criterion is that the optimal alarm parameters based on this 

criterion are usually very close to the optimal parameters 

based on the least number of alarms and chattering. By this 

definition the optimal deadband or threshold minimizes the 

summation of squared false and missed alarm rates 

((Pma
2
+Pfa

2
)

0.5
). Pma is the probability of missed alarms and 

Pfa is the probability of false alarms.  

The method for calculating these probabilities are 

discussed in [6]. As a brief explanation, suppose having a 

data set that has Gaussian distributions in its normal and 

abnormal parts. The probability distribution functions are 

plotted in Fig. 4. Also consider having a nominal alarm limit 

“L” and a nominal deadband limit “dbl”. If the signal goes 

beyond the alarm limit there would be an alarm which will 
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be cleared after the signal becomes less than the deadband 

line. 

The probability of false alarms, by applying a Markov 

chain method, is obtained as )/( 211 pppPfa += [6], where 

p1 is the area under the left curve shown in Fig. 4 from the 

threshold to 
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Fig. 4. Distribution of normal (left hand side) and abnormal (right hand 

side) parts of a simulated data 

infinity and p2 is the area under the same curve from minus 

infinity to the deadband line. p1 and p2 are mathematically 

written as 
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Here, µn and σn are the average and standard deviation of 

the normal part of the data, L is the alarm threshold, db is 

alarm deadband and erf(.) represents the error function ( 

∫
−

=
x

t
dtexerf

0

22
)(

π
).  

Probability of missed alarm is calculated by the same 

procedure considering distribution of abnormal part of the 

data and is obtained as )/( 211 qqqPma += , where q1, as 

shown in Fig. 4, is the area under the right curve from minus 

infinity to the deadband line and q2 is the area under the 

same curve from the threshold to infinity. q1 and q2 are 

mathematically written 

as
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Where µa, σa are the average and standard deviation of the 

abnormal part of the data. 

Optimal alarm parameters can be obtained by 

minimizing the following objective function, which can be 

done numerically: 

( ) 5.022
)( fama PPthJ +=   (1)  

While the distribution of the data is known, the objective 

function can be written as a mathematical expression.  

 

III.    EFFECT OF DEADBAND ON CHATTERING INDEX AND SUMMATION OF 

SQUARED FALSE AND MISSED ALARM RATES 
To investigate the effect of increasing the deadband on 

the chattering index, many simulations have been done. For 

instance, a simulated process data is plotted in Fig. 1. The 

first half of the data, which is the normal part, has Gaussian 

distribution with a mean of 2 and a standard deviation of 1. 

The second half of the data, which is the abnormal part, is 

again Gaussian distributed with a mean of 5 and a standard 

deviation of 1. Fig. 5 depicts the chattering index for 

different deadbands. The Alarm threshold is on the average 

of means of the normal and abnormal parts of the data (3.5 

here). As it can be seen in Fig. 5, increasing deadband over 

0.2 does not reduce chattering any further. This is almost 

always true for different data types and different thresholds. 

When the threshold is fixed, increasing the deadband more 

than a saturation level will have negligible effect in 

chattering reduction.   

In Fig. 6, chattering is plotted versus different thresholds 

ranging from 2 to 5 considering different deadbands. Fig. 6 

shows that by increasing the deadband, the optimal 

threshold (corresponding to least chattering) moves slightly 

toward the mean of the abnormal part of the data. So, to get 

the least possible chattering, the threshold should change 

according to a change in the deadband. 
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Fig. 5. Chattering versus deadband  
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Fig. 6. Chattering versus alarm thresholds for different deadbands 

 (for simulated data in Fig. 1.)  

Another similar simulation is performed on the same 

data that calculates (Pma
2
+Pfa

2
)

0.5 
for the same deadbands and 

same threshold range. The result is plotted in Fig. 7. The 

movement of the optimal threshold to abnormal part of data 

is also seen in this figure. By comparing Fig. 6 and 7 it is 

observed that optimal thresholds based on chattering and 

least summation of squared false and missed alarm rates are 

approximately equal. 
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Fig. 7. (Pma

2+Pfa
2)0.5 

versus alarm thresholds for different deadbands 

 (for simulated data in Fig. 1.)  

Same simulations have been done for another data set 

which is plotted in Fig. 8. The normal part of the data again 

has a mean value of 2 and a standard deviation of 1 while 

the mean value of the abnormal part is 5 with a standard 
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deviation of 2. Fig. 9 plots chattering versus thresholds for 

the same deadbands as in Fig. 6.  

By comparing Fig. 6 and 9, it can be seen that when the 

standard deviation of the abnormal data is larger, movement 

of the optimal threshold toward the mean value of the 

abnormal part of the data is slower.  
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Fig. 8. Simulated process data 
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Fig. 9. Chattering versus thresholds for different deadbands (for simulated 

data in Fig. 8)    

 

IV.    ESTIMATION OF OPTIMAL ALARM THRESHOLD 

As was shown, the optimal threshold changes for 

different deadbands. So, it is necessary to adjust the 

threshold with respect to deadband in the design of alarm 

parameters. Here, it is tried to find the optimal threshold 

with respect to deadband and statistical characteristics of 

process data. First the case of zero deadband is considered.  

As the optimal threshold is assumed to be the threshold 

which minimizes the summation of squared false and 

missed alarm rates, the derivative of the summation should 

be zero at the optimal threshold. So, the following equation 

can be solved to obtain the optimal threshold: 
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In the case of zero deadband p1+p2 and q1+q2 are equal to 

one. As a result 11, qppp mafa == and equation (2) 

simplifies to 
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Substituting the mathematical expressions of p1 and q1 and 

their derivatives, equation (3) becomes     
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As the equation can’t be analytically solved for the optimal 

threshold, an approximation is being used. For zero 

deadband the ROC curve is usually symmetric. So, the 

threshold corresponding to the minimum distance from the 

origin is very close to the threshold where the false and 

missed alarm rates become equal. Thus, the solution for 

p1=q1 can be used to approximate the solution of equation 

(3). The solution of p1=q1 is 

)4(
an

naanL
σσ

σµσµ

+

×+×
=  

This structure is considered in the curve fitting 

procedure to find the best estimation of the optimal 

threshold. Since p1, p2 and also q1, q2 have different 

definitions for high and low alarm cases, the equation for 

optimal threshold would be different in the two cases. So, 

curve fitting is performed separately for high and low 

alarms. The equation obtained for the high alarm case is 

)5(
8.02.1 an
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and the equation for the low alarm is 
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 For the case of nonzero deadbands analytical approach 

doesn’t generate any results even by considering 

approximations. For example, by substituting the error 

function in Pma=Pfa, with its Taylor series approximation, a 

very lengthy quadratic equation for the optimal threshold is 

obtained. Because of the complexity of the coefficients, it 

can’t be solved for the threshold.  So, curve fitting methods 

are used to find an equation in order to estimate the optimal 

threshold. 

About 150,000 data sets with different statistical 

characteristics and different deadbands were generated. The 

optimal threshold is obtained for each case by 

mathematically minimizing the summation of squared false 

and missed alarm rates. Nonlinear regression is used to 

estimate the parameters of the optimal threshold function. 

The structure of the function is inferred from the structure of 

equation (4) and the facts inferred from earlier simulation 

examples.  

As was mentioned, by increasing the deadband the 

optimal threshold moves toward the abnormal part of the 

data and its movement is slowed by increasing the standard 

deviation of the abnormal part of the data. So, some weight 

proper to the deadband should be given to the mean value of 

the abnormal part in equation (4) and smaller weight to its 

standard deviation in the denominator. The structure of the 

function for modeling is considered as  

a
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where 
71

αα − are parameters to be estimated. 

For the high alarm case the equation is obtained as 
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In Fig. 10 the optimal thresholds obtained by estimation are 

plotted versus the optimal thresholds obtained by 

mathematical optimization. 

 
Fig. 10. Estimated optimal thresholds by equation (7) versus the optimal 

thresholds obtained by mathematical optimization 

    

By fitting a linear model between optimal thresholds and 

estimated ones, their relation is obtained as 

L=0.995*ESTL+0.000 

Where L is the real optimal threshold and ESTL is the 

estimated one. 

The same procedure of modeling is performed for the 

case of low alarms. The equation for optimal threshold in 

this case is obtained as follows 
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Fig. 11 plots the estimated optimal thresholds versus the 

optimal thresholds obtained by optimization. The relation 

between optimal thresholds with their estimation is obtained 

as L=1.001*ESTL-0.014. 

 
Fig. 11. Estimated optimal thresholds by equation (8) versus the optimal 

thresholds obtained by mathematical optimization   

 

To see the closeness of estimated optimal thresholds to 

the optimal thresholds based on chattering, some simulation 

results are shown here. The statistical characteristics of the 

process data sets used in simulation are listed in Table 2.  

In simulations the deadband is varying between 0.0 and 0.4. 

For every deadband, the threshold is moving from the mean 

value of the normal part to the mean value of the abnormal 

part of the data. Optimal thresholds based on the least 

chattering and least summation of squared false and missed 

alarm rates are obtained in the simulations. The results are 

depicted in Fig. 12 and 13. Fig. 12 plots the estimated 

optimal thresholds versus the optimal threshold obtained by 

mathematical optimization of (Pma
2
+Pfa

2
)

0.5
.  Fig. 13 depicts 

the estimated thresholds versus the thresholds based on the 

least chattering. 
Table 2 

Statistical characteristics of simulated data sets  

µn µa σn σa 

1 3 0.5 0.5 

1 3 1 1 

1 3 1.5 1 

1 3 1 1.5 

1 2 0.5 1 

2 5 1 1 

2 5 1 2 

2 5 2 1 

2 5 2 2 

4 2 1 1.5 

4 2 1.5 1 
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Fig. 12. Estimated optimal thresholds versus the optimal thresholds 

obtained by optimization 
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Fig. 13. Estimated optimal thresholds versus the optimal thresholds based 

on chattering  

From Fig. 12 and 13 it is inferred that the optimal 

thresholds based on chattering are very close to the optimal 

thresholds based on the least distance from the origin in the 

ROC curve and the equations are successful in 

approximating the optimal thresholds based on both 

definitions. 
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V.    RELATION BETWEEN OPTIMAL DEADBAND WITH DATA 

CHARACTERISTICS AND ALARM THRESHOLD 

Here the optimal deadband is considered as the one that 

minimizes the summation of squared false and missed alarm 

rates. To see how the optimal deadband varies with respect 

to the alarm threshold, the result of a simulation is shown in 

Fig. 14. The simulated data set is plotted in Fig. 1. The 

alarm threshold is moving from the mean value of the 

normal part of the data to mean value of its abnormal part. 

For each threshold, the optimal deadband is mathematically 

obtained by minimizing (Pma
2
+Pfa

2
)

0.5
. The maximum value 

of deadbands is determined as 0.5.  
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Fig. 14. Optimal deadband versus the alarm thresholds for data in Fig.1 

 

From Fig. 14 it is seen that the optimal deadband starts 

increasing from zero when the threshold is at 3.2, which is 

less than the average of mean values of normal and 

abnormal parts of the data (3.5), and then has a linear 

relationship with threshold until it hits its maximum value.   

It is tried to analytically find the relation between 

optimal deadbands and thresholds. The derivative of 
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with respect to the deadband should be zero at 

the optimal deadband. So,   

)9(0
)(

)(
)(2

)(

)(
)(2

0
)(

)(

)(

)(

)(

)(

13
2121

23
21

2
1

2

21

12

21

1
22

=+++−

=
+

+
+

=
+

dbd

qd
ppqq

dbd

pd
qqp

dbd

qq

q
d

dbd

pp

p
d

dbd

PPd mafa

 

where 
22

)
2

)1(
(

1
)

2

)1(
(

2

2)(

)(
,

2)(

)(
a

a

n

n dbL

a

dbL

n

e
L

dbd

qd
e

L

dbd

pd σ

µ

σ

µ

σπσπ

−−
−

−−
− −

=
−

=   

By replacing p1, q1, p2, q2 and their derivatives with 

respect to the deadband in equation (9), a complicated 

equation is obtained that is highly nonlinear with respect to 

the deadband. The equation can not be solved analytically 

for the optimal deadband; but if the statistical characteristics 

of the data are known the equation can be numerically 

solved to obtain the optimal deadband. 

V.    DISCUSSIONS AND CASE STUDY 

For both low and high alarms if the difference between 

mean values of normal and abnormal parts of data is equal 

to or more than three times the sum of their standard 

deviations, even zero deadband generates small chattering. 

The presented simulated data sets were chosen to cover the 

cases with little distance between the mean values of normal 

and abnormal parts of data. It was seen that the equations 

are making acceptable estimations of the optimal thresholds. 

So, by using the equations, it is possible to minimize 

chattering and probability of false and missed alarms 

together.  

Even though the results of only Gaussian distributed 

data sets were presented in the paper, but the equations work 

with low errors when testing by data sets having other kinds 

of distributions.  

To verify the proposed expressions in practice, an 

industrial data set is considered. The data set, which is a 

flow measurement, is plotted in Fig. 13. The original low 

alarm threshold is set at 12 and the deadband width is 2.75 

(which implies deadband line on 14.75). It generates 75 low 

alarms in one hour and the summation of squared false and 

missed alarm is 0.024.  

By using equation (8), the optimal threshold for this 

deadband is obtained as 16.7. By adjusting the alarm 

threshold with the same deadband, the number of alarms 

reduces to 37 and the summation of false and missed alarm 

rates reduces to 0.0002.   
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Fig. 16. Industrial flow measurement.   

 

VII.    CONCLUSION 

In this paper the relation between deadbands and alarm 

thresholds was studied. It was shown that increasing the 

deadband for a fixed threshold is not very effective in 

reducing chattering and a better approach is to adjust the 

threshold according to the deadband. Two expressions were 

proposed to estimate the optimal threshold with respect to 

the deadband and statistical properties of the process 

variable. 
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