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Abstract— In this paper we study the problem of optimizing
contract offerings for an independent wind power producer
(WPP) participating in conventional day-ahead forward elec-
tricity markets for energy. As wind power is an inherently
variable source of energy and is difficult to predict, we explore
the extent to which co-located energy storage can be used to
improve expected profit and mitigate the the financial risk
associated with shorting on the offered contracts. Using a simple
stochastic model for wind power production and a model for
the electricity market, we show that the problem of determining
optimal contract offerings for a WPP with co-located energy
storage can be solved using convex programming.

Index Terms— Renewable Energy, Smart Grid, Energy Stor-
age, Electricity Markets

I. INTRODUCTION

Motivated by the dangers posed by global warming, there

is great interest in renewable energy sources. Electric energy

is the dominant form of energy consumption (accounting

for more than 50 % in the US). Wind and solar energy

are expected to become a much larger source of electric

energy to meet the renewable energy production targets in

many parts of the world [21]. These sources of electricity

production are inherently uncertain, variable, and largely un-

controllable. Together, these characteristics constitute major

challenges to the integration of these clean energy source

into the electricity grid at deep penetration levels [17], [20],

[18].

Electric energy storage represents one possible strategy

to mitigate the impact of the inherent variability and un-

certainty in wind and solar power. Indeed, hydro-power

has traditionally been used for such purposes [11], [31].

In this paper, we focus on the scenario in which wind

power producers (WPP) must sell their energy using contract

mechanisms in conventional forward electricity markets. Our

goal is to formulate and solve problems of optimal contract

sizing for such wind power producers with dedicated co-

located electric energy storage capacity. We explore the

impact of optimal storage operation on contract sizing and

profit. We start with a simple stochastic model for wind

power production and a model for the electricity market.
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We show that the problem of determining optimal contract

offerings for WPP with co-located energy storage reduces to

convex programming. We also show that the expected profit

acquired by the wind power producer for optimal contract

offerings is concave, non-decreasing in the parameter of

energy storage capacity – revealing that greatest marginal

benefit from energy storage is derived for a small amount of

storage capacity.

Energy storage devices such as pumped-hydro, com-

pressed air [24], sodium-sulfur batteries [32], etc. offer the

possibility of adding storage to to “firm” wind generation

power supply. Cavallo [8] wrote one of the earliest papers to

make the case for joint operation of wind energy and storage

(see [9] for a utility scale investigation of compressed air

energy storage with wind). Greenblatt et al [23] compared

gas turbines and compressed air energy storage in the context

of wind as part of baseload electricity generation (see also

[38] for a detailed report on CAES and wind energy).

Denholm and Sioshansi [13] have studied energy storage and

wind power in a transmission constrained system where they

compare the economics of siting the storage system near the

wind power generation site versus the load site. Electric and

plug-in hybrid vehicles also represent potential distributed

energy storage devices. Economic viability of compressed air

energy storage (CAES) in a wind energy system in Denmark

has recently been investigated in [27]. They also investigate

the operation of this joint storage wind energy system in the

Nordic spot and regulatory energy markets. They conclude

that such a system is economically viable depending on the

monthly payment from the regulating power market. A recent

paper by DeCesaro and Porter [10] presents a summary of

most wind integration studies to date.

Recently, Angarita et al [1] have investigated combined

wind-hydro bids in an electricity pool market. They for-

mulate a stochastic programming problem that accounts for

uncertainty in the wind availability and prices of electricity in

various markets. Using a “scenario based” approach to deal-

ing with the uncertainty, they develop a linear programming

solution which yields optimal offer curves and limits the risk

of profit variability. Our work is related to this investigation,

but employs analytical methods to yield computably optimal

solutions.

As storage is currently quite expensive and the level of

penetration of renewable energy is not very high, storage

is not considered to be necessary for integrating wind into

the electric grid for the 20% penetration levels ([17], p.229).

A full analysis of the economics of storage in the context

of renewable integration can be found in [12]. We note
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that there are large investments in new technologies for

energy storage research and development [16]. The Solar

Energy Grid Integration Systems-Energy Storage (SEGIS-

ES) project [40] represents a recent comprehensive effort

along this direction in the US. A recent review of battery

based storage technologies can be found in [14]. In their

report, Denholm et al conclude that “It is clear that high

penetration of variable generation (VG) increases the need

for all flexibility options including storage, and it also creates

market opportunities for these technologies. Evaluating the

role of storage with VG sources requires continued analysis,

improved data, and new techniques to evaluate the operation

of a more dynamic and intelligent grid of the future.” While

we present our results in the context of joint optimization

of wind and storage, we believe they can be generalized and

extended to the situation of joint optimization of storage with

the composite generation+load uncertainty in the grid.

The remainder of this paper is organized as follows.

Section II provides a brief over overview of electricity

markets. Section III delineates the mathematical models

(wind power production, energy storage, market) employed

in our analysis. Our main results are presented in section IV,

followed with concluding remarks in section V.

II. ELECTRICITY MARKETS

We assume that the wind power producer is part of a power

pool participating in electricity markets that are cleared by an

external entity, such as an ISO or RTO. A common trading

structure ([29], [30], [26]) consists of two successive ex-ante

markets: a day-ahead (DA) forward market and a real-time

(RT) spot market. The DA market permits participants to

bid and schedule energy transactions for the following day.

Depending on the region, the DA market closes for bids and

schedules by 10 AM and clears by 1 PM on the day prior to

the operating day. The schedules cleared in the DA market

are financially binding and are subject to deviation penalties.

As the schedules submitted to the DA market are cleared

well in advance of the operating day, a RT spot market is

employed to ensure the balance of supply and demand in

real-time by allowing market participants to adjust their DA

schedules based on more accurate wind and load forecasts.

The RT market is cleared five to 15 minutes before the

operating interval, which is on the order of five minutes.

For those market participants who deviate from their

scheduled transactions agreed upon in the ex-ante markets,

the ISO normally employs an ex-post deterministic settle-

ment mechanism to compute asymmetric imbalance prices.

This asymmetric pricing scheme for penalizing energy de-

viations reflects the energy imbalance of the control area as

a whole and the ex-ante clearing prices. For example, if the

overall system imbalance is negative, those power producers

with a positive imbalance with respect to their particular

schedules will receive a more favorable price than those

producers who have negatively deviated from their schedules,

and vice-versa.

For a more detailed analysis of electricity market systems

in different regions, we refer the reader to [6], [7], [37].

III. MODELS: WIND, STORAGE, AND MARKETS

A. Wind Power Model

Wind power is modeled as a discrete-time random process

{wn | n ∈ N}. For a fixed n ∈ N, wn is a continuous random

variable whose cumulative distribution function (CDF) is

assumed known and defined as F (w, n) = P{wn ≤ w}. The

random process {wn} takes on values in the unit interval

[0, 1], as wind power output is assumed to be normalized by

the farm’s nameplate capacity.

In the following results, we will be interested in time-

averaged distributions defined on integer intervals of length

N ∈ N. For example, the time-averaged CDF on the integer

interval {1, · · · , N} is defined as

F (w) =
1

N

N
∑

n=1

F (w, n) (1)

Also, define F−1 : [0, 1] → [0, 1] as the quantile function

corresponding to the CDF F . More precisely, for β ∈ [0, 1],
the β-quantile of F is given by

F−1(β) = inf {x ∈ [0, 1] : β ≤ F (x)} (2)

The quantile function corresponding to the time-averaged

CDF will play a central role in our results.

B. Energy Storage Model

Consider the following linear difference equation as a

dynamic model for a generic energy storage system [26].

en+1 = (1 + αh)en + h

[

ηinjPn,inj −
1

ηext
Pn,ext

]

(3)

subject to the following constraints

0 ≤ en ≤ e (4)

0 ≤ Pn,inj ≤ P inj (5)

0 ≤ Pn,ext ≤ P ext (6)

The energy contained in the storage system at time n
is denoted by en. The magnitude of the power extracted

(injected) from (into) the storage system at time n is denoted

by Pn,ext (Pn,inj). The parameter α ≤ 0 is the dissipation co-

efficient on the stored energy, while ηinj, ηext ∈ [0, 1] model

power injection and extraction efficiencies, respectively. The

discretization step size is denoted by h.

C. Market Model

In our analysis, we take the perspective of a wind power

producer (WPP) participating as a generator in an electricity

market for energy. We employ a market model that consists

of a single ex-ante DA forward market with an ex-post

financial penalty for deviations from offered contracts. In the

DA market, generators offer a portfolio of M time-ordered

contracts for the delivery of power the following day. The

contract portfolio C ∈ R
M
+ is structured as a sequence of
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M power levels that are piecewise constant on intervals,

typically, of length one-hour.

C =
[

C(1), · · · , C(M)
]

The time interval corresponding to contract C(m) is defined

as the integer interval

Nm = {N(m − 1) + 1, · · · , Nm} (7)

where |Nm| = N . It follows naturally that the contract value

Cn at time n is given by

Cn =
M
∑

m=1

1{n ∈ Nm}C(m) (8)

where 1{·} is defined to be the indicator function. See

Figure 1 for an example of a contract portfolio C (ex:

M = 24) offered in a day-ahead forward market. As the

power contracts are offered ex-ante, deviations naturally

occur between the offered contracts and the realized wind

power output.
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contract
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Fig. 1. Illustrative example of typical contract portfolio (dashed) offered ex-
ante in day-ahead (DA) market. Contract intervals are of length one-hour.
The wind power producer is subject to financial penalties for generation
shortfalls realized ex-post – i.e. when the wind power (solid) dips below
the offered contract (dashed).

The WPP receives a price p ($/MW-hour) – defined as the

clearing price in the forward market – for each offered

contract C(m). For uninstructed contract shortfalls (i.e. wn <
C(m) at time n) the generator pays at the imbalance penalty

price q ($/MW-hour) for the associated shortfall. We make

the following assumptions regarding prices and production

costs:

A1 The WPP is assumed to be a price taker in the forward

market, because the WPP capacity is assumed small

relative to the whole market.

A2 In this formulation p and q are assumed to be fixed and

known. However, this assumption can be relaxed to p
and q random and time varying without affecting the

tractability of the results as long as they are assumed to

be independent of the wind process wn.

A3 The WPP is assumed to have a zero marginal cost of

production.

For a given contract portfolio C, the profit acquired by the

WPP on the interval {1, · · · , NM} is defined as

Π(C, w) = h

M
∑

m=1

∑

n∈Nm

pC(m) − q
[

C(m) − wn

]+

(9)

where x+ := max{x, 0} and h is the discretization time

step. As wind power {wn} is modeled as a random process,

we will be concerned with the expected profit J(C):

J(C) = E Π(C, w) (10)

Here, the expectation is taken with respect to the random

wind power process w = {wn | n ∈ N}.

Remark 3.1: (Storage) The introduction of energy storage

will manifest in an augmented profit model in that the WPP

will have recourse capability to cover contract shortfalls by

drawing on stored energy. This scenario will analyzed in

section IV-B. �

IV. MAIN RESULTS

A. Contract Sizing without Energy Storage

We begin by defining a profit maximizing portfolio C
∗ as

C
∗ = arg max

C∈R
M

+

J(C). (11)

In the absence of any energy storage capability, the op-

portunities for energy arbitrage between contract intervals

evaporate and the decision of how much constant power

to offer on interval i is independent of the decision on

interval j for all i 6= j. Hence, the portfolio optimization

(11) decouples into M independent optimization problems:

C(m)∗ = arg max
C∈R+

J(C) m = 1, · · · , M (12)

The formulation in (12) has be carefully studied [4] and

is closely related to the newsvendor problem in operations

research [33]. The main result is presented here.

Theorem 4.1: [4] Define the time-averaged distribution

Fm(w) =
1

N

∑

n∈Nm

F (w, n)

An optimal contract C(m)∗ is given by

C(m)∗ = F−1
m (γ) where γ =

p

q
. (13)

Remark 4.2: Properties of the optimal quantile rule (13),

such as uniqueness, price elasticity of supply, and the effect

penalty pricing are explored in detail in [4]. �
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B. Energy Storage Formulation

As wind energy penetration levels increase, energy storage

will play a more dominant role in facilitating the firming of

wind power contracts in conventional electricity markets. We

now consider the scenario in which the wind power producer

(WPP) has a co-located energy storage device at it’s disposal.

As the capital cost of an energy storage system is quite

prohibitive, a fundamental question in this context arises:

what impact does energy storage capacity have on expected

profit and what are optimal contract offerings in this context?

We now formalize these questions as a constrained stochastic

optimal control problem.

Recall section III-B and consider the linear difference

equation (3) and constraints (4) - (6) as a model for the

energy storage system. The energy storage system interfaces

with the wind power producer through the power injection

(extraction) variables Pn,inj(Pn,ext). Define the storage de-

cision vector un = [Pn,ext, Pn,inj]
T
.

We assume that en and wn are observed. For a par-

ticular time n, all of the information from the past rele-

vant to the future is contained in the current storage state

en and all past observed wind power realizations wn :=
{wi | i = 1, · · · , n}. Hence, we consider storage operation

policies of the form

un = gn (en, wn) =

[

Pn,ext

Pn,inj

]

where gn is constrained to belong to the set of feasible

operation policies guaranteeing that constraints (3) - (6) are

satisfied. Let g := {gn | n = 1, · · · , NM} and let G denote

the set of all feasible operation policies g.

The expected profit corresponding to a particular opera-

tional policy and contract portfolio (g,C) is defined as

J(g,C) = (14)

E

[

h

M
∑

m=1

∑

n∈Nm

pC(m) − q
[

C(m) − wn + P g
n,in − P g

n,ext

]+
]

The superscript g is included to indicate the dependence on

the control policy g. A profit maximizing storage operation

policy and contract portfolio (g∗,C∗) are given by

(g∗,C∗) = arg maxC≥0

g∈G
J(g,C)

subject to (3) - (6)
(15)

In the proceeding sections (IV-C) - (IV-D), we explore

various properties of this optimal contract sizing problem

for a WPP with co-located storage.

Remark 4.3: (Optimal operational policy) For a given

contract portfolio C ∈ R
M
+ , it is straightforward to show

that a greedy storage operational strategy belongs to the class

of feasible optimal policies. The intuition is as follows. As

there is no holding cost associated with stored energy, it is

optimal to always inject the maximum allowed energy when

there is a surplus in generation (i.e. wk > Cn) relative to the

offered contract. Similarly, as there are no price arbitrage

opportunities, because the penalty price q is time-invariant –

when there is a shortfall in generation (i.e. wk ≤ Cn) relative

to the offered contract, the optimal policy is to extract the

maximum allowable energy from the storage needed to cover

the shortfall. More formally:

If there is a contract shortfall (i.e., ∆n = Cn − wn > 0),

g∗(en, wn) =

[

min
{

∆n, ηext

h
(en), P ext

}

0

]

(16)

If there is a contract surplus (i.e., ∆n = Cn − wn ≤ 0),

g∗(en, wn) =

[

0

min
{

−∆n, 1
hηinj

(e − en), P inj

}

]

(17)

Note that the optimal storage operational policy above is

stationary and causal. �

C. Contract Sizing with Energy Storage

In the day-ahead market, the WPP must offer a contract

portfolio C for the delivery of power at some future time

interval. We show that the problem of computing a profit

maximizing portfolio C
∗ is a convex optimization problem.

Theorem 4.4: (Convexity Property) Let g∗ be an optimal

operational policy for a fixed C ∈ [0, 1]M . Then J(g∗,C)
is concave in C.

Proof: Without loss of generality, we prove the result for

a single contract interval (M = 1, C = C ∈ [0, 1]). Define

the random profit criterion

Π(g, C, w) =

N
∑

n=1

phC − qh
[

C − wn + P g
n,in − P g

n,ext

]+

.

This next step does not hold in general. However in our

case, the expectation and maximization operators commute,

because – as indicated by equations (16) and (17) – our

stationary policy is optimal for each realization of the wind

process w.

J(g∗, C) = max
g∈G

E Π(g, C, w)

= E max
g∈G

Π(g, C, w)

Define z(C, w) = maxg∈G Π(g, C, w). We first prove

concavity of the optimal value z(C, w) in the parameters

(C, w). Consider the following linear programming (LP)
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formulation

y(C, w) = max
s,e,Pinj,Pext

N
∑

n=1

phC − qhsn (18)

subject to

e0 = 0

sn ≥ 0

sn ≥ C − wn + Pn,inj − Pn,ext

(3) − (6) ∀ n

where we have introduced a new slack decision variable s.

It is straightforward to show that z(C, w) = y(C, w) for all

(C, w).
Hence, showing concavity of z(C, w) in (C, w) is equiv-

alent to showing concavity of y(C, w). Let α ∈ [0, 1] and

define

Cα = αC1 + (1 − α)C2

wα = αw1 + (1 − α)w2

where C1, C2 ∈ [0, 1] and w1, w2 ∈ [0, 1]N . Moreover, let

the set of vectors
{

s∗(C, w), P ∗
inj(C, w), P ∗

ext(C, w)
}

be

optimizers of (18) for particular C, w. Concavity of y(C, w)
in (C, w) is proven as follows.

y(Cα, wα)

= phNCα − qh

N
∑

n=1

s∗n(Cα, wα)

≥ phNCα − qh

N
∑

n=1

[

αs∗n(C1, w1) + (1 − α)s∗n(C2, w2)
]

= αy(C1, w1) + (1 − α)y(C2, w2)

The inequality follows from the fact that

α





s∗(C1, w1)

P ∗
inj(C

1, w1)

P ∗
ext(C

1, w1)



 + (1 − α)





s∗(C2, w2)

P ∗
inj(C

2, w2)

P ∗
ext(C

2, w2)





is a feasible point for problem (18) with parameters

(Cα, wα). This feasibility holds because the parameters

(C, w) enter linearly through the constraints in (18).

We, thus far, have shown that z(C, w) = y(C, w) is

concave in (C, w). Clearly then,

J(g∗, C) = E z(C, w)

is concave in C, because a convex combination of concave

functions is concave. �

D. Value of Energy Storage Capacity, e

Storage capacity constitutes a large percentage of the

capital cost associated with many energy storage modali-

ties. Hence, in order to accurately amortize the the capital

investment in storage capacity over a period of time, it is of

vital importance to quantify the fiscal benefit to the WPP in

terms of storage capacity (i.e. J∗ as a function of e). This

relation can then be used to optimally size the storage system

so as to maximize return on investment. In Theorem 4.4,

we proved that the problem of computing optimal contract

offerings and the corresponding expected profit reduces to

convex programming – a result that naturally lends itself to

efficient computation of the return on investment curves.

In the following Theorem 4.5, we show that the optimal

expected profit (J∗ := J(g∗,C∗)) derived by the WPP –

with co-located storage of capacity e – is concave and non-

decreasing in the capacity e. This result reveals that the

greatest marginal benefit is derived from a small amount

of storage capacity. In fact, the marginal optimal expected

profit with respect to the storage capacity dJ∗/de can be

analytically computed for e small [5].

Theorem 4.5: The optimal expected profit J(g∗,C∗) is

concave and monotonically non-decreasing in the energy

storage capacity e.

Proof: Monotonicity is straightforward. Let ǫ > 0. With

a slight abuse of notation, let J∗(e) denote the optimal

expected profit corresponding to a system with storage

capacity e ≥ 0. Clearly, J∗(e + ǫ) ≥ J∗(e), as the set of

feasible solutions for problem (15) with capacity parameter

e is a subset of the feasible set corresponding to a capacity

parameter of e + ǫ. Concavity is proved analogously to

theorem 4.4. �

For completeness, we present the result [5] that quantifies

in closed-form the marginal expected optimal profit dJ∗/de
for small capacity e.

Consider a contract portfolio C ∈ R
M
+ with individual

contract duration of length N . Define the random variable

ξ(C) to be the number of times that the random process

{wn} crosses the associated contract sequence {Cn} from

above. The random variable ξ(C) can be interpreted as the

number of energy arbitrage opportunities associated with the

contract portfolio C.

Theorem 4.6: [5] Let γ := p/q. Assume that (1) the

energy storage system is non-dissipative (i.e. α = 0), (2)

no constraints on power extraction or injection, and (3)

e(0) = 0.

Then the marginal expected optimal profit with respect to

e at the origin is given by

dJ∗

de

∣

∣

∣

∣

e=0

= q ηinjηext E [ ξ(C∗) ] (19)

where C(m)∗ = F−1
m (γ) for m = 1, · · · , M .

Remark 4.7: (Intuition) The previous result has an in-

tuitive interpretation in that the marginal value of storage

capacity (for small amounts) is proportional to the expected

number of energy arbitrage opportunities. Consider a system

with small storage capacity ǫ > 0. Each time the wind

power process dips below the offered contract, the WPP has

the opportunity extract ǫ energy from its storage device and
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decrement it’s financial penalty by q(ηinjηext)ǫ. Clearly then,

the total expected financial benefit for small storage capacity

is roughly ≈ q(ηinjηext)E[ξ]ǫ. �

V. CONCLUSION

In this paper we have formulated and solved the problem

of optimal contract sizing for a wind power producer with co-

located energy storage participating in conventional electric-

ity markets. We have shown that the problem of determining

optimal contract offerings for a WPP with co-located energy

storage can be solved using convex programming. Our results

have the merit of providing key insights into the trade-offs

between a variety of factors such as energy storage capacity

and optimal expected profit. In the near term, we plan to

identify efficient computational methodologies for solving

the convex contract sizing problem outlined in this paper.

In our current and future work, we will investigate a num-

ber of intimately connected research directions: improved

forecasting of wind power, optimization of reserve margins,

firming of wind power, network aspects of renewable energy

grid integration and storage optimization, and new market

structures for facilitating integration of renewable sources.

We are also studying the important case of markets with

recourse where the producer has opportunities to adjust bids

in successive stages. We are also developing large scale

computational simulations which can be used to test the

behavior of of simplified analytically tractable models and

suggest new avenues for research applicable to real-world

grid-scale problems.
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