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Abstract—Full-system testing for large-scale systems is often 
infeasible or very costly. Thus, when estimating system 
reliability, it is desirable to employ a method that uses 
subsystem tests, which are often less expensive and more 
feasible. This paper presents a method for bounding full-system 
reliabilities based on subsystem tests and, if available, full 
system tests. The method does not require that subsystems be 
independent. It accounts for dependencies through use of 
certain probability inequalities. The inequalities provide the 
basis for valid reliability calculations while not requiring 
independent subsystems or full-system tests. The inequalities 
allow for test information on pairwise subsystem failure modes 
to be incorporated, thereby improving the estimate of system 
reliability. We illustrate some of the properties of the estimate 
via an example application.  

I. INTRODUCTION 

It is often infeasible or very costly to assess the 
performance of complex systems1 through full-system tests. 
Further, full-system testing may sometimes involve the 
destruction of expensive system assets or is limited by 
operational policy. There is a critical need for alternate 
approaches to estimating full system reliability or other 
performance characteristics, especially for systems that 
require non-destructive tests such as bridges, machines, 
aircraft, satellites, and weapon systems. In addition to the 
need to minimize the number of full system tests, it is 
desirable to exploit valuable information from subsystem 
tests (which tend to be performed as part of the development 
of complex systems and are less expensive than full system 
tests) as a means of quantifying full system reliability. Of the 
various system performance characteristics, system 
reliability—the focus of this paper—is one that is usually 
difficult to quantify without the benefit of full system 
testing.  

Many approaches exist for quantifying system reliability 
from subsystem tests (see, e.g., [1], [2], [3], [4]). These 
methods, however, assume that the subsystems are 
statistically independent or that the system configuration is 
completely specified. Assuming subsystem independence or 
a particular subsystem configuration is often erroneous for 
complex systems, which may contain many interdependent 
subsystems that interact in subtle and not-so subtle ways (for 
the method in [4], however, this problem is overcome by 
developing a test program consisting of a mixture of full 
system and subsystem tests that is robust to system 
configuration mis-modeling [5]). Under the assumption of 
independence for a series system, reliability is calculated as 
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Complex systems are often thought of as systems of systems. To avoid 
the need to repeatedly refer to tests on systems, subsystems, components, 
processes, and other aspects of the full system as the key source of 
information other than full system tests, we will usually only refer to 
subsystem tests; subsystem tests in this context should be considered a 
proxy for all possible test information short of full system tests. 

the product of all the critical subsystem reliabilities. For 
such systems, reliability calculations that rely on 
independence can be misleading. 

To illustrate the effect of violating the independence 
assumption on the system reliability calculation consider the 
following simple example. Suppose the system consists of 
component subsystems Si, i = 1, 2, 3, …, 20, which fail if 
some parameter iX  exceeds a specified threshold, 2.5iX   
say. Assume that the iX ’s are zero mean, normal random 
variables with var( )iX

 
= 1 for all i and cov( , )i jX X

 
= 0.75 

when i  j. The probability of system failure is p = 1 − 
  2.5ii

P X   = 0.042. If it were assumed, erroneously, 
that the Xi’s were independent, then we would obtain p = 1 −  

 2.5ii
P X    0.117. Hence, in assuming 

independence, one would produce a probability of system 
failure that is greater than twice the true failure probability. 
If a significant number of the subsystem-to-subsystem 
covariances were negative (rather than positive as in this 
example), then a reliability calculation based on the 
assumption of independence would underestimate the 
probability of failure. Obviously, such errors can have 
potentially serious consequences in system design or 
analysis. 

We present a new method of quantifying system 
reliability that overcomes some of the major shortcoming of 
previous approaches. The method, called Inequality-Based 
Reliability (IBR), makes use of results from subsystem tests 
and (if available) full-system tests. IBR combines estimates 
of two quantities to bound system reliability: an estimate of 
an upper bound on the system failure probability (derived 
from the subsystem tests) and a point estimate of system 
reliability (computed from system-level tests). The IBR 
estimate is a combination of these two estimates defined to 
minimize a certain mean-square error. 

The upper bound estimate—which provides an initial 
upper bound estimate on the system failure probability—
makes use of information about the probability of failure for 
the individual subsystems and the joint probability of failure 
for specified pairs of subsystems. Pairwise failure 
probabilities are not required in order to employ the IBR 
method, but use of the pairwise information improves the 
upper bound estimate. The combination of the upper bound 
estimate with a full system probability of failure estimate is 
what distinguishes IBR from other methods of system 
reliability assessment. 

II. PROBABILITY INEQUALITIES 

We present probability inequalities and results useful in 
defining the IBR estimate (Section 3). Suppose that a system 
consists of m > 1 critical subsystems that have two states—
operating or failure. The system fails if one or more of its 
subsystems fails. In other words, the sub-systems can be 
viewed as being serially connected. Let Fi denote the event 
that subsystem i fails, pi its probability of failure, and 

iF F  the event of system failure. The probability p of 

system failure is     1 c
i ip P F P F    . 
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In general, p ≠  1
1 1

m
ii

p


  , since the Fi’s are not 

assumed to be independent. The exact expression for p 

contains sums and differences involving up to 2 1m   joint 

probabilities  J ii J
P P F


  , where the index set J varies 

over all the non-empty subsets of 1,2, ,m . For complex 

systems, obtaining estimates of all the joint probabilities will 
usually be infeasible. The IBR reliability estimate relies on 
upper bounds on p and requires, for its computation, at most 
pairwise failure probabilities; hence, it only involves the pi’s 

and   ,  1 ,ij i jp P F F i j m   . 

Upper bounds, for the probability of a union of sets, 
which depend on at most pairwise intersections, were 
derived in [6], [7], and [8] using graph-theoretic results. We 
briefly summarize the relevant results. 

Consider the set T    , : , 1 ,i j i j i j m    consisting 

of all possible edges between the vertices  1,2, ,m . A 

subset of T is a graph. 
 

Proposition 1. ([6], [7]) Suppose  is a graph, then 
 

  
,

,
i i ji

i j

p p p


  
 

(1) 

if and only if  satisfies the following two conditions: 
(i) for each 1, ,i m m  , there is a j i , 1 ,j m   

such that the edge  ,i j  belongs to  (i.e., each vertex is 

connected to at least one other vertex different from itself);  
(ii)  contains exactly m − 1 edges (i.e.,  has no cycles). 

Proposition 1 states that inequality (1) holds for spanning 
trees in T, which are graphs satisfying condition (i) and 
condition (ii) for m = m. By definition a spanning tree is a 
graph that consists of exactly m – 1 branches such that at 
least one edge is incident on each vertex. The proposition 
states that inequality (1) also holds more generally for all 
trees in T, which, by definition are spanning trees on a 
subset of the vertices  1,2, ,m . 

Denote the upper bound on the right side of (1) 
corresponding to a particular choice of  by ( )UBp  .  (The  
will sometimes be suppressed for convenience, when there is 
no chance of confusion.)  From (1) we have the following 
upper bound for p ([6], [7]): 

min ( )UBp p


  ,                           (2) 

where the minimum are taken over all trees in T.  Note that 
if    is a spanning tree and   is a tree contained in   then 

( ) ( )UB UBp p    .  Thus, spanning trees provide the best 

possible upper bounds over all trees.   
Figure 1. illustrates all possible upper bounds computed 

from (1) for a system consisting of three subsystems.  The 
set T consists of the edges {1, 2} , {1,3}  and {2,3} , which 
denote all possible pairs of subsystems.  The example 
pairwise probabilities are given in the figure.  Also, the 
system failure probability p is computed assuming that the 
simultaneous failure probability of all three systems equals 
0.01.  Each upper bound is greater than or equal to the true 
system failure probability (which equals 0.10) and is less 
than or equal to the well-known Bonferroni bound ii

p  = 
0.18.  Note that the minimum bound derived from (2) is 0.11 

and is obtained by taking the minimum of ( )UBp   over all 
trees   in T.  Note that any joint failure probability has the 
potential to improve upon the Bonferroni bound as 
illustrated by examining the bounds associated with the trees 
in T. 
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Example Pairwise
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p12 = 0.02

p23 = 0.03

p13 = 0.04

Figure 1.  Example upper bound probabilities in (1) corresponding to the 
spanning trees and trees for a system consisting of three subsystems.  

 
In most applications, estimates of the probability 
 i jP F F  will only be available for some pairs of events. 

It is of interest, then, to consider upper bounds in (1), or 
bounds derived from them, that use only a subset of the 
pairwise probabilities.  In particular, consider the following 
upper bounds derived from (1): 

 

 
 2i iji i j

p p m p     ([9]) (3) 

 

 , 1i i ii i
p p p       ([7]) (4) 

 

 
maxi iji i jj

p p p      ([10]) (5) 

 2

max
m

i iki k ii

p p p


     ([11]). (6) 

 
All the inequalities (1) – (6) improve on the Bonferroni 
inequality.  The upper bound (4), as will be shown, 
corresponds to a particular spanning tree, whereas the other 
bounds are derived from spanning tree inequalities.  

It is easy to see that (4) holds. Indeed, the index set 
consisting of {i, i +1}, i = 1,…, m−1, is a spanning tree. 
Hence, 
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 ,

maxi iji
i j

p p
 

    
  

    , 1i i ii i
p p   , 

from which (4) follows. We show next that the other 
bounds—(3), (5), and (6)—are greater than or equal to the 
least upper bound in (2). In particular, we have the following 
result: 

 

Proposition 2. Let   *
,

min i iji i j
p p p

   . Then, 

bounds (3), (5), and (6) satisfy: 
 

(i)  * max 2i ij i iji i j i i jj
p p p p m p         

(ii) *

2

max
m

i iki k ii

p p p


    

Proof. To prove (i), note that the graph 

  , : 1, ... , ,i j i m i j   is a spanning tree for each j; 

hence *
i iji i j

p p p   . This inequality implies 

* maxi ij i iji i j i i jj
p p p p p        , 

which, when averaged over j = 1, …, m, yields 

* 1
maxi ij i iji i j i j i jj

p p p p p
m         . 

The preceding inequality and the identity ijj i j
p    =  

2 iji j
p

 
complete the proof of (i).  

Last, to prove (ii), note that the index set consisting of 

 , , 2, ... ,ii k i m , is a spanning tree if for each i, 1  ik  < 

i, i = 2, 3, …, m, in which instance p

 

≤ 

,2
.

i

m
i i ki i

p p


   If, in addition ki is chosen so that 

 , ,max :1
ii k i jp p j i   , i = 2, 3, …, m, then 

,2 i

m
i i ki i

p p   = 
2

max
m

i i k iki i
p p  , from 

which the result follows. Q.E.D. 
Given an estimate ˆip  of ip  and ˆijp  of ijp , 1 ,i j m  , 

we can form an upper bound estimate ˆUBp  by substituting 
the estimates in the right-side of (2) (or (3) through (6) and 
taking the smallest of the four bounds). Also, note that 
inequalities (1) – (6) can be further adapted to use available 
estimates of the probability  i jP F F  by taking advantage 
of the fact that inequality (1) holds for all trees on the 
vertices  1,2, ,m . (See Figure 1. for example.) Typically, 
ˆip  would be computed simply as the ratio 
   # failures # trials  for subsystem i. The estimation of the 
joint probabilities ˆijp  is typically more challenging and 
problem-dependent. Usually their derivation will involve 
physical modeling and system identification together with 
subsystem tests. In particular, failure detection and fault 
isolation methods ([12], [13], [14], [15]) may provide a 
means of estimating such joint probabilities. Further, fault 
isolation methods are valuable in providing a means for 
determining the specific cause of a failure. 

Remark: Although the bound in (5) is sharper than (3), it 
is easier to derive uncertainties and confidence intervals for 

(3) than (5), since it does not involve finding a maximum. 
(See Section 3.C).   

III. THE IBR METHOD 

A.  Computation of the Estimate  

We now describe the IBR estimate. The approach 
recognizes the practical reality when one may have at least a 
few full system tests that contain valuable information to be 
combined with the subsystem tests. It is not necessary, 
however, to have full-system tests to implement the IBR 
approach. If full-system test results are available, the IBR 
estimate here is a weighted combination of the upper bound 
estimate ˆUBp  and the estimate p̂  based on full-system 
testing. (The estimate p̂  is usually computed simply as the 
ratio of number of failures to the number of tests.)  In the 
absence of full system testing—i.e., p̂  is unavailable— ˆUBp  
is defined to be the IBR estimate. 

Assume that ˆUBp  and p̂  are derived from independent 
data. For each , 0 ≤  ≤ 1, let ( )p   =  1 ( )UBp p    . 
For each , the quantity ˆ ( )p   = ˆ ˆ(1 ) ( )UBp p     is an 
(upper bound) estimator of p. The IBR estimate of p (based 
on p̂ , ˆUBp  and, hence, ) is obtained by suitably choosing 
. In particular, the IBR estimate is defined to be *ˆ ( )p


  = 

* *ˆ ˆ(1 ) ( )UBp p    , where *  is chosen so that *ˆ ( )p


  
minimizes the mean square error  2ˆE p p 

    over all  
such that  0 ≤  ≤ 1. In particular, as will be shown (see 
Section 3.3), *

* *ˆ ˆ ˆ( ) (1 ) ( ),UBp p p


     
 

where 
,  22 ˆUB UBUB E p p     , and 2 = 

 2ˆE p p   . In practice, estimates of 2 and 2
UB  would 

be used to form an estimate of * , say *̂ .  
 
B.  Discussion of the Estimate 

In this subsection, we provide justification of the loss 
function for defining the IBR estimate. According to the 
foregoing, the IBR estimate is the estimate of the form p̂  

that minimizes the mean square error  2ˆE p p 
   . What 

typically is of interest in practice is the error  2ˆE p p
   , 

where p is the true system reliability. However, this latter 

quantity depends on the bias term  2UBp p , which is 

unknown. 
Proposition 3 below establishes a bound on the error in 

using  2ˆE p p 
    

rather than  2ˆE p p
    to define 

the IBR estimate. 
 

Proposition 3. Let **p̂
  minimize  2ˆE p p

    and let 

*p̂
  =  * *ˆ ˆ1 UBp p   

 
 be the IBR estimate of p. Then  

      ** * *

2 2 2ˆ ˆ .UBE p p E p p p p
  

               
Proof. Observe that ˆp p

 
= ˆp p p p      = 

  1 UBp p   +  ˆp p  , which implies 

 222*
UBUB 
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       2 2 22ˆ ˆ1 UBE p p p p E p p  
            . 

If  **  minimizes  2ˆE p p
   , the last identity implies 

that

       
     

2 22 2
λ λ λ

2 2 2**

ˆ ˆ1 λ

ˆ1 min .

** ** **
**

UB

UB

E p p p p E p p

p p E p p 


              

      

Since 2(1 )
 
 1, we also have 

      2 22
λ λ λ

ˆ ˆ* * **UBp p E p p E p p     . 

Consequently, 

       

 

** * *

2 2 2 2**

2

ˆ ˆ  1

.

UB

UB

E p p E p p p p

p p

  
              

 
Q.E.D. 
Note that the right most term in the above is simply the 
square of the error in UBp . 

Next, we establish a connection between the IBR estimate 

*ˆ ( )p


  and the method of least squares by deriving the 

optimal value *  of . For the connection between IBR and 
least squares we prove the following result. 

 
Proposition 4. Let p̂  and ˆUBp  be unbiased, independent 

estimates of p and UBp , respectively. Then, 

(i)    * *ˆmin minp E p p  

     
 

, where the  values 

belong to a specified set of J of spanning trees. 

(ii) If  is the IBR estimate p, then  * 2 2 2
UB UB      , 

where 2
UB   =  2ˆUB UBE p p    

and 2  =  2ˆE p p   . 

Proof.  The proof of (i) is omitted since it is straightforward. 
Now consider (ii). First, 

 

   

     

   

     

2 22

22

22 22

ˆ ˆ

ˆ ˆ2 1

ˆ+ 1

ˆ ˆ     1 ,

UB UB

UB UB

UB UB

E p p E p p

E p p p p

E p p

E p p E p p

 
        

      
   

          
(7) 

where the last identity follows from the independence of p̂  
and ˆUBp . Using the method of Lagrange multipliers, it can 
be shown that the right-side of (7) attains its minimum at *  
=  2 2 2

UB UB    . Q.E.D.  
In practice, increasing the number of subsystem tests 

relative to the number of full system tests drives *  to zero 
and reduces the variability of the IBR estimate (decreases 
the uncertainty in the estimate). However, increasing the 

number of subsystem tests used to estimate subsystem or 
joint subsystem probabilities of failure cannot move the IBR 
estimate closer to the true unknown system probability of 
failure p, because ˆUBp  is a bound. Thus, increasing the 
number of subsystem tests relative to the number of full 
system tests moves the IBR estimate closer to a true 
unknown bound determined by the bounding method used to 
form ˆUBp . This and other properties of the IBR estimate are 
demonstrated via simulation in [16]. 

 
C.  Confidence Intervals 

We also derive confidence intervals for the IBR estimate 
in terms of the uncertainties in p̂  and ˆUBp . Because there is 
no known finite-sample distribution for *p̂

 , confidence 
intervals rely on the asymptotic distributions of the estimates 
p̂ , ˆ ip  and ˆ jkp . These confidence intervals are useful in 

expressing the uncertainty in *p̂
  as an estimate of *p̂

 . 
(As noted previously, the estimate p̂  of p is based on full 
system testing and is the total number of system failures in n 
trials.)  Assume that the other two estimates are based on 
individual and pairwise subsystem testing. Thus, ˆ jkp  is the 
ratio of the number of failures to the total number of trials 
that occurred when operating subsystems j and k 
simultaneously. (As noted in the previous section, the 
estimate ˆ jkp  may be derived by other means. See, e.g., 
[12].)  Let  denote p, ip , or jkp , and let  ˆ n  denote the 
estimate of , where n is the number of trials. Then 

   distˆn n     0, (1 )N    as n  . Again, fix 
 and let UBp  denote the bound on the right-side of (1), and 
let ˆUBp  denote its estimate. (As before, we suppress , since 
there is no chance of confusion.) 

The estimator ˆUBp  is asymptotically normal, 

 

    dist 2ˆ 0,UB UBn p p N   , 

 
where 2 =  ,

(1 ) (1 )i i ij iji j
p p p p    .  Two special 

cases of 2 for the inequalities in (3) and (4) are, 
respectively, 

2
2

4
(1 ) (1 )   andi i ij ijB i j

p p p p
m      

 
 

2
, 1 , 1(1 ) (1 )i i i i i iB i m

p p p p       . 

 
Using the asymptotic normality of ˆUBp  and p̂ , we can 

derive approximate confidence intervals about *p̂
  (similar 

to those obtained by [17]). The  100 1 %  confidence 
interval, where 0    1, is given by: 

 

    *
2* 2 * 2ˆ 1 1( )p z p p       ,  

 
where z is the upper 100 2  percent point of the standard 
normal distribution. Of course, in practice, estimates of 2 
would be used in the construction of the confidence limits. 
 
D.  Fictitious Test for Use Without Observed System 
Failures 

There are difficulties in getting a meaningful estimate of 
the failure probability when there are no observed failures in 

*ˆ


p
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the full system tests. This, in fact, will be a typical situation 
when the system has high reliability and the number of full 
system tests is small, both of which are expected for typical 
applications of IBR. Of course, this problem is not unique to 
IBR. Any non-Bayesian method will have problems in 
getting an estimate of a failure probability with an 
(unknown) true value that is non-zero when there are no 
observed failures! We show here how a fictitious (n+1)st 
full system test can be incorporated into the IBR framework 
when there are no observed failures in the full system tests.  
 It is clear that p̂  = 2̂  = 0 when there are no observed 
failures in the full system tests, where 2̂  is the estimate of 
2. Consequently, the IBR estimate is *p̂  

=  ˆ1 0 0 UBp    
= 0, which is not generally satisfactory. (Although this 
estimate is unsatisfactory in the application to a real-world 
system, it actually makes intuitive sense when considering 
that the variance estimate of 0 indicates “perfect” knowledge 
of p.)  We may address this practical shortcoming by 
focusing on the need for an upper bound to p. Assume a 
fictitious (n+1)st full system test that is a failure. This 
represents a “worst case” for the system, consistent with 
forming an upper bound to the failure probability. Now, we 
have p̂  = 1/( 1)n   and 2̂  = ˆ ˆ(1 ) /( 1)p p n   = 3/( 1)n n   
> 0. This strictly positive variance estimate allows for a 
meaningful IBR estimate to be formed. Note also that this 
variance estimate is biased upwards by the fact that p̂  is 
“too large.” This bias causes a slight down-weighting of the 
full system test information when forming *p̂ , which is 
correct in the sense that the fictitious failure would not likely 
have occurred in a real (n+1)st full system test. 

IV. IBR FOR SERIES-PARALLEL SYSTEM WITH 

REPEATED COMPONENTS  

It is possible to derive an expression for ˆUBp  = ˆ ( )UBp   

for specific systems. Consider, for example, a series-parallel 
system with arbitrarily repeated components. In such 
systems, the same component-type may appear multiple 
times in different subsystems. Different components are 
assumed to function independently; however, reliability 
estimates for components of the same type are estimated 
from the same data. Thus, the subsystem reliability estimates 
are dependent. 

A reliability estimate for systems that depend on pairwise 
subsystem failure probabilities was derived in [18]. The 
estimate in [18], however, provides a lower bound on the 
failure probability (see, e.g., [8]). It is desirable to have an 
upper bound on the probability of failure. The estimate in 
[18] can be modified to provide such a bound. 

The upper bound estimates for series-parallel system are 
given as follows. Suppose there are a fixed number of 
component types and that each subsystem is composed of a 
finite number of components, some of which are repeated in 
parallel. Following [18], let hq  denote the failure probability 

of the hth component type, ihk  denote the number of 

components of type h that are used in subsystem Si. The 
failure probability ip  of the ith subsystem is given by ip  = 

ih

i

k
hh S

q
 . Thus, from (1) 
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ˆ ˆ ˆ( ) ih jhih
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k kk
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i i jh S j S

p q q

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where ijS  = i jS S . If the component failure estimates are 

independent, the mean of ˆ ( )UBp   is computed 

straightforwardly from (8) as 
 

 
 1 ,

ˆ ˆ ˆ( ) ih jhih

i ij

m
k kk

UB h h
i i jh S j S

E p E q E q


  

            . 

 
Consider now the variance of the estimate in (8), which is 

required in the computation of the IBR estimate. In terms of 
the estimates ˆ jq , 
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where ijl ij lS S S   and injl inj lS S S  . The equation for 

the variance is an extension of the variance expression in 
[18] to upper bound estimates in (1). As with computation of 
the mean of ˆ ( )UBp  , the variance can be obtained in terms 

of the higher order moments of ˆ jq . 

V. EXAMPLE 

We illustrate the application of IBR for estimating system 
probability of failure on a military aircraft system. The 
example and data come from [19]. The aircraft system 
consists of nine subsystems that must function for the system 
to deliver an air-to-air missile. The subsystems include: 
flight structures, avionics, power, flight control, 
environmental, acquisition/fire control, launching, missile 
interface, and human intervention. Let S denote the entire 
system and 1 9,...,S S  denote the nine subsystems. The test 
data and failure probability of each subsystem (obtained 
from [19]) is listed in Table 1. Aircraft system level testing 
resulted in 14 failures in 205 tests giving the estimate of 
failure probability and variance p̂

 
= 0.068 and ̂  = 0.018, 

respectively. 
To form the IBR estimate, the variance of the failure 

probabilities must be computed. For the three subsystems 
that do not have any observed failures, the test data is 
augmented to include an additional test that is a failure (see 
Section 3.4). Adding the additional fictitious test does not 
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TABLE 1.  
SUBSYSTEM RELIABILITY TEST DATA AND ESTIMATES 

Subsystem 

iS  
Number of 

Tests 
Number of 

Failures 

Failure 
Probability 

Estimate ˆ ip  

1 130 1 0.008 
2 130 0 0.000 
3 130 1 0.008 
4 130 1 0.008 
5 130 0 0.000 
6 250 3 0.012 
7 130 1 0.008 
8 250 1 0.004 
9 330 0 0.000 

 
alter the interpretation of the upper bound estimate; with the 
additional tests the upper bound estimate is more 
conservative. Using the augmented test data the estimate of 
the Bonferroni upper bound and standard deviation are ˆUBp  
= 0.065  and UB  = 0.021, respectively. The estimate of the 
optimal weighting is *̂  = 0.576; the IBR method is giving 
more weight to the full system estimate because its variance 
is smaller. The IBR estimate (an upper bound on the system 
reliability) is *ˆ 0.067p   and the 90% upper confidence 
limit on the estimate is 0.084. 

The IBR estimate of the system reliability can be 
improved by including joint subsystem failure data. To 
illustrate this property we deviate from the example in [19]. 
We assume that failures in the avionics and power 
subsystems are highly correlated. Also, we assume that the 
systems are tested jointly 130 times and one joint failure is 
observed. By modifying the Worsley Bound, (4), so that 
only one joint probability is needed, the additional test data 
can be used to improve the IBR estimate. The new estimate 
of the upper lower bound and standard deviation are 
ˆ 0.057UBp   and UB  = 0.022, respectively. The estimate 

of the optimal weighting is *̂ = 0.608; the IBR method 
gives even more weight to the full system estimate because 
the lower bound standard deviation has increased from the 
example above. The new IBR estimate is *ˆ 0.064p   and 
the 90% upper confidence limit on the estimate is 0.082.  

VI. CLOSURE 

We describe above the IBR-based approach to estimating 
the reliability of complex system. The IBR method offers 
some convenient statistical properties while allowing for the 
use of full subsystem and subsystem test data to bound the 
estimate of the system reliability.  
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