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Abstract— This paper considers optimal power flow control of a
fuel cell-battery hybrid vehicle (FCHV) powertrain having three dis-

tinct modal configurations (modes): electric motor propelling/battery

discharging, propelling/charging, and generating/charging. Each mode
has a distinct set of dynamics and constraints. Using component

dynamical/algebraic models appropriate to power management, the

paper develops a supervisory-level switched system model as an

interconnection of subsystems. Given the model, the paper sets forth a
hybrid model predictive control strategy based on a minimization of a

performance index (PI) that trades off tracking and fuel economy in

each operational mode. Specifically the PI trades off velocity tracking
error, battery state of charge variance, and hydrogen usage while

penalizing frictional braking. The optimization is performed using an

embedded system model and collocation with MATLAB’s fmincon to

compute mode switches and continuous time controls thereby avoiding
the computational complexity of alternate approaches based on, e.g.,

mixed integer programming. To demonstrate the approach, an example

FCHV following trapezoidal and sawtooth drive profiles is simulated.

PI weights are varied for reduced hydrogen use and higher final battery
charge to illustrate various performance trade-offs.

I. INTRODUCTION

The fuel cell-battery hybrid vehicle (FCHV) powertrain shown

in Fig. 1 is capable of operating in three power flow modes:

electric motor propelling and battery discharging; motor propelling

and battery charging; and motor generating and battery charging.

Past supervisory-level power control work either does not include

discrete-valued modes as a control input [1], [2], [3] or does so

at the expense of requiring mixed-integer linear programming to

find the control [4]. Mode control is integral to optimal power

management and, through the embedding approach [5], solvable

with traditional nonlinear programming. Herein, the switched power

flow problem is formed into an embedded optimal control problem

(EOCP) that simultaneously contains all three of the power flow

modes described. The EOCP solution is then parlayed into a specific

mode and its power control inputs using a projection approach

developed herein. Simulation results are presented for a mid-size

sedan FCHV following trapezoidal and sawtooth shaped drive

profiles.

II. POWER FLOW COMPONENT AND SYSTEM MODELS

Fig. 1 shows the powertrain components and their electrical

and/or mechanical interconnections. The component models are

tailored to supervisory-level power flow management as opposed

to detailed first principles models.

A. Components

1) Fuel Cell System: The H2/air fuel cell system (FCS) consists

of a proton exchange membrane stack and supporting balance of

plant components. The FCS used is similar to that in [1], [6], except

air is supplied from a low-pressure blower [7]. The FCS is capable

of producing 55 kW during normal operation at 80◦C and 12.5 kPa

gauge. The net output power flow is approximated by a first-order

lag equation:

dPfc,net(t)

dt
=

1

τfc

[−Pfc,net(t) + P max
fc,netufc(t)] (1)

where Pfc,net is the fuel cell net power, P max
fc,net is the maximum

available output power at the operating conditions, ufc ∈ [0, 1]
is the normalized actuation, and τfc is the time constant of the

power response. This approach is similar to the diesel engine model

adopted in [8]. The time constant for the controlled stack’s power

output in [1], [6] is estimated to be 0.25 s but rapid changes in

desired power promote fuel cell catalyst degradation and a reduced

life [9]. τfc is chosen as 1.375 s, ensuring the desired power

response is feasible and preventing potential damage to the fuel

cell by limiting the zero to 55 kW fuel cell response to an average

change of 10 kW/s.

The FCS input power is the rate of H2 chemical energy consumed

to provide the net output power:

PH2
(t) =

Pfc,net(t)

ηfc(Pfc,net(t))
(2)

where the efficiency from [1], [6], [7] is functionally approximated

with

ηfc(Pfc,net) =


















0.456
[

exp(−3.24 · 10−3Pfc,net)

− exp(−0.935Pfc,net)] , 0 ≤ Pfc,net < 41.5 kW

−2.88 · 10−5P 3
fc,net + 3.58 · 10−3P 2

fc,net

−0.150Pfc,net + 2.511, Pfc,net ≥ 41.5 kW.

(3)

2) Battery: The battery state of charge (SOC), W bat, dynamic

model is based on a validated empirical formula [10], [11] with

battery power input, Pbat; the formula is modified to include an

additional quadratic battery power term in the efficiency relation so

as to better represent the available battery data of the Lithium-Ion

module used herein. The model is linearized about P nom
bat to obtain

a model affine in the control input (to satisfy a condition for the

existence of an EOCP optimal solution [5]):

dW bat(t)

dt
=

1

W max
bat

{

dvb
2 (P nom,vb

bat )2 + 2dvb
4 (P nom,vb

bat )3

−
[

kvb ln(W bat(t) + dvb
1 ) + 2dvb

2 P nom,vb
bat

+dvb
3 + 3dvb

4 (P nom,vb
bat )2

]

Pbat(t)
}

(4)

where vb = 0, Pbat ≥ 0, for discharge and vb = 1, Pbat ≤ 0, for

charge, dvb
i are discharging/charging fit coefficients, and W max

bat is

the battery’s maximum rated storage energy. The battery pack is

composed of 27 Saft 10.8 V, 12 Ah Lithium-Ion modules [12],

[13] with W bat ∈ [0.4, 0.8], W max
bat of 3.8 kWh (13680 kWs
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Fig. 1. Fuel cell hybrid vehicle powertrain potential power flows: (�) electrical power produced, (�) electrical power consumed, (�) mechanical power
produced, (�) mechanical power consumed, (�) H2 input. (BOP is the balance of plant.)

in (4)), and maximum discharge/charge of 40.5/ − 40.5 kW while

above the minimum voltage limit. The dvb
i coefficients are obtained

from fitting ADVISOR [13] battery data: (discharging) d0
1 = 3.91,

d0
2 = −3.28 · 10−3, d0

3 = 2.57, d0
4 = 3.92 · 10−2, and k0 = −1;

(charging) d1
1 = 2.57 · 101, d1

2 = 5.20 · 10−3, d1
3 = −2.27,

d0
4 = 3.25 · 10−5, and k1 = 1; and the nominal discharge/charge

battery power is 10/ − 10 kW.

3) Electric Drive System: The electric drive system (EDS)

consists of a DC-AC inverter and permanent magnet synchronous

motor that act as either a motor or generator. The EDS is modeled

algebraically using input-to-output power efficiency maps. During

propelling

Pd,e(t) =P max,p
d,e (ωd)u

0
d(t) (5)

Pd,m(t) =ηp
d(Pd,m, ωd)Pd,e(t) (6)

and during generating

Pd,e(t) =ηg
d(Pd,e, ωd)Pd,m(t) (7)

Pd,m(t) =P max,g
d,m (ωd)u

1
d(t) (8)

where Pd,e/Pd,m is the drive electrical/mechanical power, ωd is

the angular shaft speed, ηp
d /ηg

d is the propelling/generating power

transfer efficiency, and uvd
d (t) ∈ [0, 1] controls the motoring, vd =

0, or generating, vd = 1, power input. The EDS is a UQM Power-

Phase 100 [14] with maximum mechanical power of 100 kW and

minimum electrical generating speed of 4.7 rad/s. Table I gives

approximate ηp
d and ηg

d extrapolated from manufacturer operational

data. Propelling ”efficiency” is nonzero at ωd = 0 which makes

the power management problem well-posed, i.e., nonzero power in

produces nonzero power out, however ηp
d(Pd,m, ωd = 0) = 0 is

typically expected. Thus, we assert ηp
d is valid for ωd > 5 rad/s,

the lower limit of the given data, and for the solvability of the

power management problem apply ηp
d ≈ 0.7 at ωd = 0 from the

fit of the data. In other words, we accept the nonzero propelling

efficiency at ωd = 0 to avoid a more complicated supervisory-level

EDS power flow model with the recognition that the ηp
d value at

ωd = 0 does not truly represent the actual efficiency of the drive at

this condition. Maximum propelling and generating input powers

TABLE I

EDS POWER EFFICIENCY

Parameter Propelling Generating

C1 -3.44·10−5 kW−2 -4.54·10−5 kW−2

C2 6.58·10−6 s/(rad kW) 6.74·10−6 s/(rad kW)

C3 -1.88·10−6 s2/rad2 -2.69·10−6 s2/rad2

C4 3.57·10−3 kW−1 3.85·10−3 kW−1

C5 6.99·10−4 s/rad 1.21·10−3 s/rad
C6 0.688 0.639

η
g
d
, η

p
d

= C1P 2
out + C2Poutωd + C3ω2

d
+ C4Pout + C5ωd + C6

η
g
d

= 0, 0 ≤ ωd ≤ 4.7

(in kW) are C1 functions of ωd derived from manufacturer data:

P max,p
d,e (ωd), P

max,g
d,m (ωd) =











C13ω
3
d + C12ω

2
d + C11ωd + C10, 0 ≤ ωd ≤ 50π

C24ω
4
d + C23ω

3
d + C22ω

2
d + C21ωd + C20,50π < ωd ≤ 200π

3

C32ω
2
d + C31ωd + C30,

200π
3

< ωd ≤ 150π.

(9)

For P max,p
d,e , ignoring Cij units, C13 = 5.75 ·10−6, C12 = −1.65 ·

10−3, C11 = 0.711, C10 = 3.58, C24 = 1.67 · 10−7, C23 =
−1.11 · 10−4, C22 = 2.08 · 10−2, C21 = −0.278, C20 = −43.29,

C32 = 1.60 · 10−4, C31 = −0.119, and C30 = 1.29 · 102. For

P max,g
d,m , C11 = 0.550, C23 = 1.10 · 10−5, C22 = −1.13 · 10−2,

C21 = 3.29, C20 = −1.94·102 , C30 = 100, and all other Cij = 0.

4) DC-DC Converters and Electrical Bus: The electrical bus

serves as the power transfer point between the FCS, battery,

and EDS. The FCS is connected to the electrical bus with a

unidirectional DC-DC converter while the battery is attached via

a bidirectional DC-DC converter. The converters are modeled with

constant efficiencies at the supervisory-level; these include any

electrical bus losses as well. Both ηdcc,fc and ηdcc,bat are set

to 0.92. The EDS is directly connected to the bus and any electrical

bus connection losses are assumed part of the converter efficiencies.

The result is that the electrical bus is treated as having unit power

transfer efficiency and the power flow across the bus is conserved.

5) Mechanical Transmission: The EDS’s motor output shaft is

connected to the traction wheels through a fixed ratio transmission.
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The power transfer relationship is

Pwhl(t) =

{

ηmtPd,m(t), vd = 0
−Pd,m(t)

ηmt
, vd = 1

(10)

where Pwhl is the propelling or regenerative braking power, and

ηmt is the transmission efficiency. Here, the transmission between

the EDS motor shaft and wheels is ideal with an efficiency of one.

The transmission gear ratio is 3.6, giving the motor speed to vehicle

speed as ωd = 3.6V/rwhl with wheel radius rwhl.

6) Vehicle: The vehicle consumes power during propelling or

can generate it while slowing. A point-mass, linear motion dynam-

ics model is applied:

dV (t)

dt
=

1

mv

(Fd(V ) + Frr(V, α) + Fb(α))

+
1000 [Pwhl(t) − Pbrk(t)]

mv(V (t) + ǫV )

Fd(V ) = − 0.5ρairAfrCdV (t)2sgn(V (t))

Frr(V, α) = − Crrmvg cos(α)sgn(V (t))

Fb(α) = − mvg sin(α)

(11)

where ρair is the ambient air density, Afr is the vehicle frontal

area, Cd is the drag coefficient, Crr is the tire rolling resistance, α
is the road grade angle, ǫV = 0.3 prevents division by zero when

stopped, and Pbrk(t) is the frictional braking power. The braking

power [8], [10] is equal to a velocity dependent maximum braking

power scaled by ubrk(t) ∈ [0, 1]:

Pbrk(t) = P max
brk (V )ubrk(t) (12)

P max
brk (V ) = 50 tanh

(

V (t)

5

)

. (13)

The vehicle is a mid-size passenger sedan: Afr=2.35 m2,

Cd=0.3, Crr=0.009, mv=1800 kg (1600 kg curb weight+200 kg

cargo), and rwhl=0.322 m. The vehicle parameters are averaged

from the Ford Fusion hybrid, Honda Accord hybrid and FCX

Clarity, and Toyota Camry and Prius hybrids.

B. System Modes

The power flow between components is capable of taking three

unique configurations: mode 0-motor propelling/battery discharg-

ing, mode 1-motor propelling/battery charging, and mode 2-motor

generating/battery charging. Each of the three system modes has

a unique set of dynamic and algebraic relations that describe the

power flow. The system power flow model is the mode-switched

amalgamation of all three modes. The mode switch (control) vector

v(t) = (v0(t), v1(t), v2(t)) dictates which mode relation set is

active; the components satisfy vi(t) ∈ {0, 1} and

v0 + v1 + v2 = 1 (14)

which restricts operation to a single mode at a time.

C. System Model

The dynamics from (1), (4), and (11) are combined into a

switched system representation using the components of the mode

control vector, v:






Ṗfc,net

Ẇ bat

V̇






=v0





ffc(Pfc,net, u
0
fc)

fd
bat(W bat, P

0
bat)

fV (V, P 0
brk, P 0

whl)



 + v1





ffc(Pfc,net, u
1
fc)

fc
bat(W bat, P

1
bat)

fV (V, P 1
brk, P 1

whl)





+ v2





ffc(Pfc,net, u
2
fc)

fc
bat(W bat, P

2
bat)

fV (V, P 2
brk, P 2

whl)



 .

(15)

Every mode has a set of dynamics associated with it that produce

the system response when that mode is active (mode switch equal

to one). The inputs to a mode’s set of dynamics are unique even

if it includes dynamics duplicated in other modes. For example,

the FCS response (1) is common to all modes and the input ufc

is not presented as mode specific, but u0
fc u1

fc, or u2
fc is applied

in the respective mode. These input distinctions are consistent with

the switching control and are necessary to the embedded control

problem (defined shortly). The continuous control inputs defined

for each mode are

u0 =[u0
brk, up0

d , u0
fc]

T
(16)

u1 =[u1
brk, up1

d , u1
fc]

T
(17)

u2 =[u2
brk, ug2

d , u2
fc]

T . (18)

Each mode also shares dynamic states, x, and there are six algebraic

power variables per mode: P i
bat, P i

brk, P i
d,e, P i

d,m, PH2
, and P i

whl.

Additionally, (2) is included with the system performance index

defined in the next section, as opposed to being part of the model, to

determine and ”minimize” H2 consumption during the optimization.

D. System Interconnections

The following constraints from the component development are

the interconnection equations [15] for each mode of operation.

The mode 0 algebraic constraints for the electrical bus (19), EDS

electrical (20) and mechanical (21), mechanical transmission (22),

and braking (23) are

P 0
d,e =ηdcc,fcPfc,net + ηdcc,batP

0
bat (19)

P 0
d,e =P max,p

d,e (V )up0
d (20)

P 0
d,m =ηp

d(P 0
d,m, V )P 0

d,e (21)

P 0
whl =P 0

d,m (22)

P 0
brk =P max

brk (V )u0
brk. (23)

The mode 1 algebraic constraints for the electrical bus (24), EDS

electrical (25) and mechanical (26), mechanical transmission (27),

and braking (28) are

P 1
d,e−

P 1
bat

ηdcc,bat

= ηdcc,fcPfc,net (24)

P 1
d,e =P max,p

d,e (V )up1
d (25)

P 1
d,m =ηp

d(P 1
d,m, V )P 1

d,e (26)

P 1
whl =P 1

d,m (27)

P 1
brk =P max

brk (V )u1
brk. (28)

The mode 2 algebraic constraints for the electrical bus (29), EDS

electrical (30) and mechanical (31), and mechanical transmis-

sion (32), and braking (33) are

−P 2
bat

ηdcc,bat

=ηdcc,fcPfc,net + P 2
d,e (29)

P 2
d,e =ηg

d(P 2
d,e, V )P 2

d,m (30)

P 2
d,m =P max,g

d,m (V )ug2
d (31)

P 2
whl = − P 2

d,m (32)

P 2
brk =P max

brk (V )u2
brk. (33)

III. CONTROL

A. Switched Optimal Control Problem

The switched optimal control problem (SOCP) is to determine

the active mode switching, vi ∈ {0, 1}, and continuous power
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flow control inputs for velocity profile tracking, fuel economy, and

battery health. Specifically, the MPC problem is

min
u0,u1,u2,v

J(x0, t0, u
0, u1, u2, v) (34)

subject to the constraints from (2), (14), (15), and (19)-(33), where

the performance index (PI) is

J =

∫ tf

t0

Cbat(W bat(t) − W bat,des)
2
dt

+

∫ tf

t0

CV (V (t) − Vref (t))2dt

+

∫ tf

t0

CH2

(

PH2
(t)

P max
H2

)2

dt

+

∫ tf

t0

Cbrk

2
∑

i=0

vi

(

P i
brk(t)

P max
brk (Vmax)

)2

dt,

(35)

and [t0, tf ] is the control prediction horizon. The penalty on P i
brk,

frictional braking, is included to promote battery recharging when

there is an excess of vehicle kinetic energy. Fuel use is minimized,

i.e., economy is maximized, through the PH2
cost term as PH2

is

directly proportional to the mass flow rate of H2.

Solving the above FCHV powertrain SOCP usually requires

mixed-integer programming [4], whose computational complex-

ity is NP-hard and exponentially increases with the number of

modes [16]. This approach is circumvented by recasting the

switched problem into the embedded (hybrid) optimal control

problem (EOCP).

B. Embedded Optimal Control Problem

The embedded optimal control problem (EOCP) is formed by

recasting the vi terms in v(t) ∈ {0, 1} × {0, 1} × {0, 1} as real

numbers in the interval [0,1]. This embeds the SOCP into a larger

family of systems. We denote the new switching vector by ṽ(t),

where ṽi ∈ [0, 1] and ṽ inheriting all other conditions on v(t) [5].

The EOCP objective becomes

min
ũ,ṽ

J(x0, t0, ũ, ṽ) (36)

over all constraints regardless of mode, where ũ contains the

continuous control inputs associated with the embedded system.

Bengea and DeCarlo [5] give sufficient conditions for an optimal

solution of the EOCP to exist: the dynamical system equations

(vector fields) are linear in the continuous control inputs and the

PI is convex in these same inputs. This is satisfied by the given

model and performance index. This means that there exists at least

a (possibly non-unique) global minimum.

References [5], [10], [16], [17], [18] demonstrate that the EOCP

is an effective and efficient means for computing solutions to

the SOCP as it is amenable to traditional nonlinear programming

techniques since the switched system trajectories are dense in the

embedded system trajectories. The latter means that either the

optimal EOCP solution contains the optimal SOCP solution or

that the embedded optimal solution can be approximated by an

SOCP solution to any arbitrary degree. (The point being that the

embedded solution is the infimum of any SOCP solutions.) If all

optimal ṽ ∈ {0, 1}, then the EOCP and SOCP solutions are the

same. However, if any optimal ṽ ∈ (0, 1), the construction of

the approximating SOCP solution must determine (i) which mode

should be active (termed mode projection), and (ii) the values of

the continuous control inputs in the projected mode of operation.

1) Mode Projection: The first step in approximating the optimal

EOCP solution with an SOCP solution is to project the embedded

modes within an interval onto a single active switched mode such

that vI = 1 and vi = 0 ∀i 6= I . To start mode projection, a decision

variable is calculated for each mode; it is the ṽi weighted 2-norm

of a power set that includes both the mode’s commanded powers

and unique, mode-specific powers:

N i = ṽi‖[P
i
fc,net, P

i
bat, P

i
brk, P i

d,e, P
i
d,m]‖2, i = 0, 1, 2 (37)

where P i
fc,net = P max

fc,netu
i
fc is introduced so as to include the

mode’s commanded (steady-state) fuel cell power. P i
whl is not

included because it is equal in magnitude to P i
d,m and doesn’t

provide new information. And PH2
and Pfc,net are absent as

they are not mode specific. The 2-norm is weighted by ṽi to

account for the relative affect of a mode’s powers on the embedded

system response. To choose the projected mode using the decision

variables, the N i are arranged into a nonincreasing sequence

{Na, Nb, Nc} and the active mode is selected as (i) a if Na > Nb;

(ii) the most recently active a or b mode if Na = Nb > Nc; (iii)

the previous sample interval’s active mode if Na = Nb = Nc.

2) Control Projection: With the modes selected, the applied

control inputs are found next to complete the suboptimal SOCP

solution. If a control input is not affected by ṽ, then it is applied

directly. However, if the EOCP solution for the control input j for

mode i, ũi
j , is scaled by ṽi in the system dynamics, then the applied

control in the selected mode is

ui
j = ṽiũ

i
j . (38)

If these controls will give negative Pbat in mode 0 or positive Pbat

in mode 1, then the nearest-valued, valid controls that do not result

in the constraint violation are used. Controls in inactive modes are

set to zero. This approach had been found experimentally (in a

variety of simulation studies with diverse systems) to yield the best

results short of resolving the optimization for the given mode or

mode sequence. Theoretical research is ongoing.

The projected control derived from the EOCP solution is desig-

nated the projected embedded control (PEC).

IV. RESULTS

The control of a FCHV with PEC is demonstrated with a mid-size

sedan following trapezoidal and sawtooth drive profiles (in Fig. 2).

EPA profiles have been simulated with equivalently good results but

are beyond the scope of this paper. Simulation results herein are

from a differential algebraic solution to the switched system driven

by the PEC inputs.

A. Problem Setup

The MPC prediction horizon is 2 s with a sample period of 1 s

which results in a series of locally optimal controls applied over

the length of the drive profile. The continuous system is discretized

using orthogonal collocation with triangular basis functions [16];

the PI is approximated using trapezoidal numerical integration. PI

weights are chosen to trade off fuel economy, battery maintenance,

and velocity tracking: Cbrk = 100, CH2
= 10, and CV =

150. Cbat varies with ∆W bat(t0) = W bat(t0) − W bat,des, the

difference between the most recent battery SOC and the desired

value:

Cbat =

{

600
(

1 + 2225|∆W bat(t0)|
)

, ∆W bat(t0) ≤ 0

0, ∆W bat(t0) > 0.
(39)

The desired battery SOC is 0.6. Below the desired SOC, battery

usage is increasingly penalized. Above the desired SOC, the battery
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Fig. 2. Simulated vehicle velocity over the trapezoidal drive cycle (upper)
and sawtooth profile (lower): (•) desired velocity, (—) simulated velocity.

is freely available for either usage or storage up to a maximum safe

SOC of 0.8.

The battery SOC penalty herein may result in a more conservative

local battery usage (and more fuel use) in comparison to keeping the

horizon length equal to the drive time remaining and only penalizing

the battery SOC deviation at the terminal time. In this case, the

controller has, in general, more choice of when to best use the

fuel cell to propel and/or charge the battery to reach the desired

final SOC. This approach is computationally more expensive and

requires a priori knowledge of the drive profile, which is not

assumed here.

Reference velocities are linearly extrapolated over the prediction

horizon from the vehicle speed at t(k) and the current driver

demand for t(k + 1).

Vref (t) = V (t(k)) +
Vref (t(k + 1)) − V (t(k))

t(k + 1) − t(k)
t (40)

Equation 40 takes advantage of the natural ability of the driver to

predict, through vision, near-term velocity requirements.

B. Drive Profile Tracking

Fig. 2 shows the excellent trapezoidal and sawtooth profile

tracking results achieved. The 2-norm normalized velocity tracking

error is 0.60% and 1.38% for the trapezoidal and sawtooth profiles

respectively.

The PI cost over the drive cycles for the EOCP and PEC

simulation are shown in Fig. 3. The curves verify the near optimality

of the PEC since the EOCP solution is always optimal.

1) Trapezoidal Drive Profile: Fig. 4 displays the EOCP and

projected mode values during the trapezoidal profile. Mode pro-

jection or suboptimal SOCP solutions are needed during approxi-

mately 40% of the drive cycle. The modes selected are reasonable

for the drive profile. During increasing velocity on [0,10]s, the

powertrain is propelling the vehicle while utilizing the battery to

help drive it, saving H2 while the battery SOC is still high. Next,

during the constant reference velocity segment, several different

modes are selected to keep the vehicle moving and also charge the

battery. Lastly, during the reference deceleration, vehicle kinetic

energy is favored as a charge source for the battery. A comparison

of N0, N1, and N2, the mode projection decision variables, on

[0,3]s and [19,20]s reveals the chosen mode’s N i to be at least
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Fig. 3. Simulated performance index cost over the trapezoidal drive cycle
(upper) and sawtooth drive cycle (lower) for the EOCP and simulated PEC
results: (—) EOCP, (•) simulation.
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Fig. 4. Trapezoidal profile embedded and projected mode values: (—)
projected, PEC; (•) embedded, EOCP; (– –) superimposed drive profile.

two orders of magnitude greater than the others. Over [10,15]s and

[22,23]s the nonzero decision values are closer, with the smallest

difference, 27%, on [11,12]s. During reference profile acceleration

and deceleration, modes 0 and 2 are the better choices, respectively;

but during constant velocity each mode is valuable.

Fig. 5 gives the FCS net power and battery SOC responses

for the embedded problem and simulation. During the simulation,

a maximum value of 49.6 kW is achieved, while the maximum

rate of increase is 10 kW/s. The low rate of power change helps

to extend the fuel cell life and reduce performance degradation

over time. The fuel economy during the simulated drive cycle is

2.15 kg H2/100 km. The simulated and EOCP FCS powers vary

the most from 10 to 15 s and 22 to 23 s, the same interval upon

which the nonzero mode projection decision values, N i, are least

different (recall the smallest difference is 27%). For other projection

times, when the applied mode’s N i is much greater than the rest,

the variation in powers is not as significant. This suggests that when

the nonzero N i are similar, it is harder to approximate the EOCP

FCS response when limited to a single mode. However, the battery

SOC of the embedded problem and simulation are nearly identical

at all times; it is less sensitive to mode projection. The initial battery
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drive profile.

SOC response shows that its usage is preferred over the fuel cell

when the SOC is near the desired value of 0.6. Also, the control

drives the battery SOC back toward the desired value using both

the fuel cell and vehicle kinetic energy when the drive profile does

not require acceleration. The simulation final SOC is 0.5889, a

difference of 1.85% from the W bat,des of 0.6.

Fig. 6 displays the battery power and frictional braking over the

trapezoidal drive cycle. Battery energy is drained while the vehicle

is accelerating during [0,10]s. The control takes full advantage of

the requested deceleration from 15 to 25 s, allocating the maximum

charging power to the battery for as long as it can. The embedded

problem and simulation battery powers are most different when

mode projection is used since battery power is a function of the

FCS and EDS control inputs, both of which change with projection.

Also, frictional braking only occurs during mode 2, when the battery

charge power limit is reached.

2) Sawtooth Drive Profile: Fig. 7 displays the projected and

embedded mode switching during the sawtooth drive profile.

Throughout the profile’s acceleration segments, the mode chosen

by the control is mode 0, propelling/discharging. While the vehicle
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Fig. 7. Sawtooth profile embedded and projected mode values: (—)
projected, PEC; (•) embedded, EOCP; (– –) superimposed drive profile.
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Fig. 8. Fuel cell system net power (upper) and battery SOC (lower)
response during the sawtooth drive cycle: (—) PEC simulation, (•) EOCP,
(– –) superimposed drive profile.

is slowing on [10,20]s and [30,40]s, the control takes advantage

of excess kinetic and chemical energy (from a reduced propelling

power need) to charge the battery, depleted during acceleration.

During mode projection, the applied mode’s N i is at least two

orders of magnitude greater than the rest on [0,3]s and five times

greater on [21,22]s and [37,38]s.

The FCS net power and battery SOC evolution are given in Fig. 8.

Here the fuel cell power has two definitive peaks that correspond

to the drive cycle velocity peaks at 10 and 30 s. In contrast to

the trapezoidal data, there is little variation between the embedded

problem and simulation FCS powers, probably due to the large

differences in N i and the isolated use of mode projection. As

with the trapezoidal profile results, when battery SOC is high,

it is the primary motive source and as the SOC falls, the FCS

contribution increases. The simulation fuel economy achieved is

2.13 kg H2/100 km with a final SOC of 0.5865, a 2.25% difference

from W bat,des.

Finally, Fig. 9 shows the battery and frictional braking power.

For the reference deceleration over 10 s to 20 s, frictional braking

is not needed since the sum of the FCS and EDS generated powers

does not reach the battery’s maximum charging power, i.e., does
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not saturate the battery’s ability to absorb excess power. However,

at the beginning of the second, steeper reference velocity decrease

on [30,40]s, the charging power is saturated and frictional braking

is required. The 50 kW maximum braking power is applied for 3 s

from the start of the interval. Reaching both the maximum charge

power and braking implies no further deceleration can occur during

this time. Again, the embedded problem and simulation battery

powers are most different when mode projection is used since

battery power is a function of the FCS and EDS control inputs,

both of which change with projection.

3) Performance Cost Trade-Offs: As mentioned earlier, the

weights in the EOCP cost function trade off conflicting require-

ments such as minimum fuel usage with minimum battery discharg-

ing. To illustrate this, CH2
was increased to 200 while the other

weights were left unchanged. Testing the trapezoidal drive profile

results in a final SOC of 0.5798, 2-norm normalized velocity error

of 1.00%, and 1.24 kg H2/100 km fuel economy. The increased

penalty on fuel usage leads to better fuel economy at the expense

of battery SOC maintenance and velocity tracking. Conversely,

doubling 2225 in the Cbat term gives a final SOC of 0.5939 with

a fuel economy of 2.50 kg H2/100 km and 2-norm normalized

velocity error of 0.85%. The fuel economy and velocity tracking

are degraded at the expense of battery SOC maintenance.

V. CONCLUSIONS

The EOCP mode embedding technique along with mode and

control projection methods set forth herein have together been suc-

cessfully applied in the context of MPC to the FCHV supervisory-

level power flow control problem as demonstrated using two drive

profiles. Three advantages result. First, traditional methods can

be employed to solve the EOCP for the minimum PI cost and

after projecting the controls onto the switched system, the cost

is nearly equal to that of the EOCP. Second, the use of MPC

allows the state measurements (through a detailed simulation) to

keep errors from propagating. Third, by adjusting weights in the

PI, trade-offs can be explored among vehicle velocity tracking,

fuel economy, and battery health (SOC). These initial investigations

gave good results with the same PI weights for the trapezoidal and

sawtooth profiles. Future work will consider adding grade changes

to the sawtooth profile, and exploration of the EPA drive cycles

and comparisons of these results to the Equivalent Consumption

Minimization Strategy [2], [3]. ECMS presumes perfect drive cycle

knowledge whereas we presume perfect state measurement and

extrapolate the future velocity over the MPC horizon. Additional

future work will focus on reducing the 3 s average EOCP solution

time; an EOCP has been solved as fast as 50 µs [17].
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