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Abstract— In this work, we develop a data-based monitoring
and reconfiguration system for a distributed model predictive
control system in the presence of control actuator faults.
Specifically, we first design fault detection filters and filter
residuals, which are computed via exponentially weighted
moving average, to effectively detect faults. Then, we propose
a fault isolation approach which uses adaptive fault isolation
time windows to quickly and accurately isolate actuator faults.
Simultaneously, we estimate the magnitudes of the faults using
a least-squares method and based on the estimated fault values,
we design appropriate fault-tolerant control strategies to handle
the actuator faults and maintain the closed-loop system state
within a desired operating region. A nonlinear chemical process
example is used to demonstrate the approach.

I. INTRODUCTION

In chemical process industry, there is a trend towards

“smart” plants that are capable of highly automated control

with decision making at the plant level taking into account

environmental, health, safety and economic considerations

[1], [2]. Along with the move towards more automated plant

operation, improved methods of fault detection, isolation and

handling are necessary due to the issues raised by automation

itself. Fault tolerant control (FTC) is a field that has received

a significant amount of attention recently in the context

of process control and operations as a means for avoiding

disaster in the case of a fault; see, for example [3], [4].

FTC attempts to reconfigure a process control system upon

detection of a fault and isolation of its cause, in order

to preserve closed-loop system stability and performance.

Fault detection and isolation (FDI) methods can generally

be divided into two categories: model-based and data-based.

Model-based FDI methods generally rely on mathematical

models of the process developed either from first principles

or from system identification. With an accurate process

model, it is possible to accomplish fault detection and

isolation for specific process structures (see, for example,

[5], [6]). Data-based methods, on the other hand, rely on

process measurements in order to perform fault detection and

isolation. While many of these methods have been successful

in achieving fault detection, fault isolation remains a difficult

task, particularly for nonlinear processes.

On the other hand, within process control, there is a trend

towards distributed control architectures in which distributed

David Chilin, Jinfeng Liu, James F. Davis and Panagiotis D.
Christofides are with the Department of Chemical and Biomolecular
Engineering, University of California, Los Angeles, CA 90095-1592, USA.
Panagiotis D. Christofides is also with the Department of Electrical
Engineering, University of California, Los Angeles, CA 90095-
1592, USA. dchilin@ucla.edu, jinfeng@ucla.edu,
jdavis@oit.ucla.edu and pdc@seas.ucla.edu.

optimization-based controllers compute the manipulated in-

puts in a coordinated fashion. Model predictive control

(MPC) is a natural control framework to deal with the design

of cooperative, distributed control systems because of its

ability to handle input and state constraints, and also because

it can compensate for the actions of other actuators. In recent

literature, several distributed MPC (DMPC) methods have

been proposed that deal with the coordination of separate

MPCs that communicate in order to obtain optimal input

trajectories in a distributed manner; see, for example, [7],

[8], [9], [10]. In our previous work [11], we proposed a

DMPC architecture with one-directional communication for

nonlinear process systems. In this architecture, two separate

MPCs designed via Lyapunov-based MPC (LMPC) were

considered, in which one LMPC was used to guarantee the

stability of the closed-loop system and the other LMPC was

used to improve the closed-loop performance. In [12], we

extended the DMPC architecture developed in [11] to include

multiple distributed controllers and relaxed the requirement

that one of the distributed controllers should be able to

stabilize the closed-loop system. In [13], we developed an

FDI and FTC system for the monitoring and reconfiguration

of DMPC systems applied to general nonlinear processes in

the presence of control actuator faults. The FDI and FTC

system developed in [13] is based on process models and

the assumption that once a faulty actuator is isolated, it can

be reset to its zero state immediately.

In the present paper, we take advantage of both process

models and process measurements to develop a monitoring

and reconfiguration system for a distributed model predictive

control (DMPC) system in the presence of control actuator

faults. Specifically, we first design fault detection filters

and corresponding filter residuals, which are computed via

exponentially weighted moving average (EWMA), to ef-

fectively detect actuator faults. Then, we propose a fault

isolation approach which uses adaptive fault isolation time

windows to quickly and accurately isolate actuator faults.

Simultaneously, we estimate the magnitudes of the faults

using a least-squares method and based on the estimated fault

values, we design appropriate fault-tolerant control (FTC)

strategies to handle the actuator faults and maintain the

closed-loop system state within a desired operating region. A

nonlinear chemical process example is used to demonstrate

the approach.

II. NOTATION

The operator | · | is used to denote the absolute value of a

scalar and the operator ‖·‖ is used to denote Euclidean norm
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of a vector, while ‖·‖Q refers to the square of a weighted

Euclidean norm, defined by ‖x‖Q = xTQx for all x ∈ Rn.

The symbol diag(v) denotes a square diagonal matrix whose

diagonal elements are the elements of the vector v.

III. PROBLEM FORMULATION AND PRELIMINARIES

A. Class of nonlinear systems

We consider nonlinear processes described by the follow-

ing state-space model:

ẋ(t) = f(x) +
2

∑

i=1

gi(x)(ui(t) + ũi(t)) (1)

where x ∈ Rn denotes the set of state variables, u1 ∈ Rm1

and u2 ∈ Rm2 denote two sets of manipulated inputs, ũ1 ∈
Rm1 and ũ2 ∈ Rm2 denote the unknown fault vectors for u1

and u2, respectively. We consider that u1 + ũ1 and u2 + ũ2

take values in non-empty convex sets U1 ∈ Rm1 and U2 ∈
Rm2 , respectively. The convex sets U1 and U2 are defined

as follows:

U1 = {u1 + ũ1 ∈ Rm1 : ‖u1 + ũ1‖ ≤ umax
1 }

U2 = {u2 + ũ2 ∈ Rm2 : ‖u2 + ũ2‖ ≤ umax
2 }

where umax
1 and umax

2 are the magnitudes of the input

constraints. The system of Eq. 1 can be re-written in a

compact form as follows:

ẋ(t) = f(x) + g(x)(u(t) + ũ(t))

where g(x) = [g1(x) g2(x)], u(t) = [u1(t)
T u2(t)

T ]T and

ũ(t) = [ũ1(t)
T ũ2(t)

T ]T . We also assume that U is a suitable

composition of U1 and U2 such that u+ ũ ∈ U is equivalent

to u1 + ũ1 ∈ U1 and u2 + ũ2 ∈ U2.

We use the variable ũf,j , j = 1, . . . ,m1 + m2, to

model the possible faults associated with the jth element in

the manipulated input vector u. Under fault-free operating

conditions, we have ũ = 0, and hence, ũf,j = 0 for all

j = 1, . . . ,m1+m2. When fault j occurs, ũf,j takes a non-

zero value. We assume that f and g are locally Lipschitz

vector functions and that f(0) = 0. This means that the

origin is an equilibrium point for the fault-free system (ũ = 0
for all t) with u = 0. We also assume that the state x of the

system is available synchronously and continuously.

B. Fault-free control system design

We assume that there exists a nonlinear control law h(x)
which determines u1 (i.e., u1(t) = h(x(t))) and renders

the origin of the fault-free closed-loop system asymptotically

stable with u2(t) = 0. This assumption is essentially a stan-

dard stabilizability requirement made in all linear/nonlinear

control methods and implies that there exists a Lyapunov

function V (x) of the system whose time derivative is always

negative when u1 = h(x) is applied to the fault-free closed-

loop system [14], [15].

We adopt the DMPC architecture introduced in [11] to de-

sign the fault-free control system. In this DMPC architecture,

one LMPC is designed to determine u1 and is responsible

for the closed-loop stability; another LMPC is designed

to compute u2 and to coordinate with u1 to improve the

closed-loop performance. We will refer to the two LMPCs

computing u1 and u2 as LMPC 1 and LMPC 2, respectively.

The two LMPCs are evaluated in a sequential fashion (i.e.,

LMPC 2 is first evaluated and then LMPC 1 is evaluated) at

discrete time instants {tk≥0} with tk = t0+k∆, k = 0, 1, . . .
where t0 is the initial time and ∆ is a sampling time.

Specifically, the optimization problem of LMPC 2 at time

tk depends on the state measurement x(tk) and is formulated

as follows:

min
u2∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (2a)

˙̃x(t) = f(x̃(t)) +

2
∑

i=1

gi(x̃(t))ui(t), x̃(tk) = x(tk) (2b)

u1(t) = h(x̃(tk+j)), ∀ t ∈ [tk+j , tk+j+1), u2(t) ∈ U2 (2c)

∂V (x)

∂x
g2(x(tk))u2(tk) ≤ 0 (2d)

with L(x̃, u1, u2) = ‖x̃(τ)‖Qc
+ ‖u1(τ)‖Rc1

+ ‖u2(τ)‖Rc2

where S(∆) is the family of piece-wise constant functions

with sampling period ∆, N is the prediction horizon, Qc,

Rc1 and Rc2 are positive definite weighting matrices, j =
0, . . . , N − 1, x̃ is the predicted trajectory of the fault-

free system with u2 being the input trajectory computed by

LMPC 2 of Eq. 2 and u1 being the nonlinear controller

h(x) applied in a sample-and-hold fashion. The optimal

solution to this optimization problem is denoted u∗
2(t|tk).

This information is sent to LMPC 1. The optimization

problem of LMPC 1 depends on x(tk) and the decision made

by LMPC 2 (i.e., u∗
2(t|tk)). Specifically, LMPC 1 is based

on the following optimization problem:

min
u1∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (3a)

˙̃x(t) = f(x̃(t)) +
2

∑

i=1

gi(x̃(t))ui(t), x̃(tk) = x(tk) (3b)

u1(t) ∈ U1, u2(t) = u∗
2(t|tk) (3c)

∂V (x)

∂x
g1(x(tk))u1(tk) ≤

∂V (x)

∂x
g1(x(tk))h(x(tk)). (3d)

The optimal solution to this optimization problem is denoted

by u∗
1(t|tk).

Once both optimization problems are solved, the manip-

ulated inputs of the DMPC system based on LMPC 1 and

LMPC 2 are defined as follows:

uL
1 (t) = u∗

1(t|tk), u
L
2 (t) = u∗

2(t|tk), ∀t ∈ [tk, tk+1).

The fault-free closed-loop system of Eq. 1 under this

DMPC scheme with inputs defined by u1 = uL
1 and u2 = uL

2

maintains practical stability because of the two Lyapunov-

based constraints of Eqs. 2d and 3d [11].

C. FTC considerations

The presence of the control action u2 brings extra control

flexibility to the closed-loop system which can be used

to carry out FTC. Specifically, we further assume that the

control input u1 can be decomposed into two subsets (i.e.,
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u1 = [uT
11 uT

12]
T ) and that there exists a nonlinear control

law h2(x) = [h21(x)
T h22(x)

T ]T which determines u11

and u2 (i.e., u11 = h21(x) and u2 = h22(x)) and is

able to asymptotically stabilize the fault-free closed-loop

system with u12 = 0. This assumption implies that there

exist a Lyapunov function V2(x) of the system whose time

derivative is always negative when u11 = h21(x), u12 = 0
and u2 = h22(x) are applied.

Based on h2(x), we can design a backup DMPC system

to manipulate u11 and u2 to stabilize the closed-loop system

following the results developed in [12]. We still design

two LMPC controllers in the backup DMPC system. One

LMPC is used to manipulate u11 and the other one is used

to manipulate u2. In this backup DMPC system, the two

LMPCs coordinate their actions to maintain the closed-loop

stability. We refer to the LMPC manipulating u11 as the

backup LMPC 1 and the LMPC manipulating u2 as the

backup LMPC 2. The two backup LMPCs are also evaluated

in sequence.

The backup LMPC 2 optimizes u2 and is designed as

follows:

min
u2∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (4a)

˙̃x(t) = f(x̃(t)) + g1(x̃(t))[u11(t)
Tu12(t)

T ]T

+ g2(x̃(t))u2(t), x̃(tk) = x(tk) (4b)

u11(t) = h21(x̃(tk+j)), ∀ t ∈ [tk+j , tk+j+1) (4c)

u12(t) = 0, u2(t) ∈ U2 (4d)

∂V2(x)

∂x
g2(x(tk))u2(tk) ≤

∂V2(x)

∂x
g2(x(tk))h22(x(tk)).

(4e)

The solution to the optimization problem of Eq. 4 is de-

noted ub,∗
2 (t|tk). The backup LMPC 1 optimizes u11 and is

designed as follows:

min
u11∈S(∆)

∫ tk+N

tk

L(x̃(τ), u1(τ), u2(τ))dτ (5a)

˙̃x(t) = f(x̃(t)) + g1(x̃(t))[u11(t)
Tu12(t)T ]T

+ g2(x̃(t))u2(t), x̃(tk) = x(tk) (5b)

u11(t) ∈ U1, u12(t) = 0, u2 = ub,∗
2 (t|tk) (5c)

∂V2(x)

∂x
g1(x(tk))[u11(t)

T 0T ]T

≤
∂V2(x)

∂x
g1(x(tk))[h21(x(tk))

T 0T ]T . (5d)

The solution to the optimization problem of Eq. 5 is denoted

ub,∗
11 (t|tk). The control inputs of the backup DMPC are

defined as follows:

ub
11(t) = ub,∗

11 (t|tk), u
b
2(t) = ub,∗

2 (t|tk), ∀t ∈ [tk, tk+1)
ub
12(t) = 0, ∀t

The fault-free closed-loop system of Eq. 1 under the

backup DMPC control with inputs defined by u11 = ub
11,

u12 = 0 and u2 = ub
2 maintains practical stability of

the closed-loop system because of the Lyapunov-based con-

straints of Eqs. 4e and 5d [12].

To present the proposed method, in this work, we consider

control actuator faults that can be detected by appropriate

nonlinear dynamic fault filters via observing the evolution

of the closed-loop system state. In order to isolate the

occurrence of a fault, it is further required to assume that

the control actuator in question is the only one influencing

the observed “faulty” states (i.e., each fault has a unique fault

signature). For more discussions on systems having verifiable

isolable structures, please see [6], [16].

IV. FDI AND FTC SYSTEM DESIGN

In this section, we develop a combined model-based and

data-based FDI and FTC method for the closed-loop system

of Eq. 1 under the DMPC of Eqs. 2-3.

A. Design of fault detection filters and residuals

The DMPC system of Eqs. 2-3 is the control configuration

for the fault-free system of Eq. 1. We first design an FDI

scheme to detect faults in this control system. In this FDI

scheme, a filter is designed for each state and the design of

the filter for the pth, p = 1, . . . , n, state in the system state

vector x is as follows [6]:

˙̂xp(t) = fp(Xp) + g1p(Xp)u
L
1 (t) + g2p(Xp)u

L
2 (t) (6)

where x̂p is the filter output for the pth state, fp, g1p and g2p
are the pth components of the vector functions f , g1 and g2,

respectively. The state Xp is obtained from both the actual

state measurements, x, and the filter output, x̂p, as follows:

Xp(t) = [x1(t), . . . , xp−1(t), x̂p(t), xp+1(t), . . . , xn(t)]
T .

Note that in the filter of Eq. 6, the control inputs uL
1 (t) and

uL
2 (t) are determined by LMPC 1 of Eq. 3 and LMPC 2

of Eq. 2 as applied to the actual process based on the state

Xp, and are updated every control sampling time ∆ (i.e., the

sampling time instants {tk≥0}).

The FDI filters are only initialized at t = 0 such that

x̂p(0) = xp(0). The information generated by the filters

provides a fault-free estimate of the actual system state at

any time t and allows easy detection of the actual system

state deviations due to faults. For each state associated with

a filter, an FDI residual is defined as follows:

rp(t) = ‖x̂p(t)− xp(t)‖

with p = 1, . . . , n. The residual rp is computed continuously

because x̂p(t) is known for all t and the state measurement,

x, is also available for all t. If no fault occurs, the filter

states track the system states. In this case, the dynamics of

the system states and the FDI filter states are identical, so

rp(t) = 0 for all times.

In the practical case where sensor measurement noise and

process noise are present, the residual will be nonzero even

without an actuator fault. In order to reduce the influence

of process noise on fault detection, we define a weighted

residual rE,p, p = 1, ..., n, for each residual rp, calculated

at discrete time instants {ti≥0} with ti = t0 + i∆r, i =
0, 1, 2, .... The weighted residual is calculated using an
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exponentially weighted moving average (EWMA) method as

follows [17]:

rE,p(ti) = λrp(ti) + (1− λ)rE,p(ti−1) (7)

with rE,p(t0) = rp(t0) and the weighting factor λ ∈ (0, 1].
The parameter λ determines the rate at which previous data

enter into the calculations of the weighted residual. When

λ = 1, rE,p is equivalent to rp. The benefit of using EWMA

residuals is their ability to better capture smaller drifts in

the system and protection against occasional spikes. The

value of λ is typically set between 0.2 and 0.5 depending on

the sensitivity and responsiveness desired [17]. All further

mention of residuals will be in reference to the EWMA

residuals.

Also due to sensor measurement and process noise, fault

detection thresholds are necessary so that a fault is declared

only when a residual exceeds its specific threshold value.

The thresholds are based on historical process variance data

under no fault (normal) operating conditions and chosen to

the desired degree of confidence to quickly detect possible

faults. In some cases, the residual may deviate temporarily

due to normal process variance and should not be interpreted

as a fault. In these cases, it is important to properly confirm

that the residual is deviating because of a fault by waiting a

specified amount of time. This waiting time gives a certain

degree of confidence that a fault has occurred and reduces

the incidence of false alarms. In the detection of a fault,

three threshold values for each EWMA residual are used.

The threshold values for rE,p are calculated as follows [17]:

σp,k = r̄p + ksp

√

λ

2− λ
(8)

where k = 3, 4, 5 is a weighting factor, r̄p and sp are the

mean value and standard deviation of the pth residual (rp)

based on historical fault-free operation data, respectively. In

the remainder, we will refer to the threshold values of a

residual with k = 3, k = 4 and k = 5 as the first, the second

and the third threshold of the residual, respectively.

B. Fault detection and isolation using adaptive windows

In this subsection, we augment our previous FDI system

[6] to include an adjustable time window based on the rate

of change of the residual with the goals of reducing the

probability of false alarms, false isolation and achieving a

quicker fault recovery response.

On the occurrence of a fault, certain residuals directly

associated with the fault will immediately become nonzero at

different rates (or in the case where process noise and mea-

surement noise are present their thresholds will be exceeded

at different times depending on the fault’s magnitude). An

improvement over previous work is the use of EWMA

residuals in combination with adjustable fault isolation time

windows.

When there is a residual that exceeds its second threshold

and stays above it for a time period ∆td, then a fault is

declared. For example, if rE,p exceeds σp,4 at time tσp,4

and stays above σp,4 from tσp,4
to tσp,4

+∆td, then a fault

is declared. The waiting time ∆td is used to reduce the

incidence of false alarms, in particular, intermittent spikes.

Fault isolation is carried out simultaneously with fault

detection. Based on the rate of change of the first residual

which exceeds its second threshold, a time window over

which a fault may be isolated is calculated. If there is no

residual that goes up and exceeds its third threshold within

the time window, the fault is isolated at the end of the time

window. The isolated fault has a signature composed of all

the residuals that exceed their second threshold. If there is

at least residual that exceeds its third threshold within the

fault isolation time window, the fault is isolated at the time

the first residual exceeding its third threshold. For example,

if rE,p is the first residual that exceeds its threshold σp,4, a

time window, ∆tp, is calculated as follows:

∆tp = w(tσp,4
− tσp,3

) (9)

where w is a constant or a complex function of the model

and its current state, and tσp,4
and tσp,3

are the time instants

the residual rE,p exceeds σp,4 and σp,3, respectively. If from

tσp,4
to tσp,4

+∆tp, there is no residual that exceeds its third

threshold, the fault is isolated at time tσp,4
+ ∆tp with a

signature composed of all the residuals whose values exceed

their second thresholds. If from tσp,4
to tσp,4

+ ∆tp, there

is at least one residual that exceed its third threshold, for

example, rE,q exceeds σq,5 at time tσq,5
, then the fault is

isolated at tσq,5
.

C. Fault parameter estimation

After a fault has been isolated, the FTC system must know

the magnitude of the fault in order to target the corresponding

new operating point and properly stabilize the system in

the presence of the fault. To simplify the description of the

proposed method, we consider faults of constant magnitudes

in this work; however, faults with time-varying values can

be handled using the proposed method in a straightforward

manner.

When a residual (rE,p) exceeds its first threshold (σp,3),

we begin to collect the sampled system states as well as

the actual control inputs applied to the system. When the

fault is confirmed and isolated, a least square optimization

problem is solved to get an estimate of the magnitude of

the fault based on the collected sampled system states and

the actual control inputs. Specifically, we collect the sampled

system states, x(t), and record the actual control inputs (i.e.,

u1(t) = uL
1 (t) and u2(t) = uL

2 (t)) applied to the system for

tσp,3
to the fault isolation time tisolate with a sampling time

∆e. The magnitude of the fault ũf,j is estimated by solving

the following optimization problem:

min
ũf,j

M
∑

i=0

(x(tf + i∆e)− x̃(tf + i∆e))
2

(10a)

s.t. ˙̃x(t) = f(x̃(t)) + g(x̃(t))(uL(t) + d) (10b)

x̃(tf ) = x(tf ) (10c)

where uL(t) = [uL
1 (t)

T uL
2 (t)

T ]T is the actual control inputs

that have been applied to the closed-loop system from tσp,3
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to tisolate, M is the maximum integer satisfying M∆e ≤
tisolate − tσp,3

, d = [0 · · · ũf,j · · · 0]T is the fault vector,

and x(tf ) is the system state at the fault detection time. The

solution to the optimization problem of Eq. 10 is denoted

ũ∗
f,j , which is an optimal estimate of the actual fault ũf,j

from a least-square point of view.

D. FTC strategies

When a fault is detected, isolated and the magnitude

of the fault is estimated, suitable FTC strategies can be

carried out to keep the closed-loop system state within a

desired operating region. Because of the faults, the origin

(the operating point of the fault-free system) may be not

achievable because of the input constraints and the system

structure. In this case, we may operate the system at a

new operating point within the desired operating region. To

determine the new operating point xs, we propose to solve an

optimization problem. Specifically, when the fault is ũ∗
f,j , the

new operating point, xs, is obtained by solving the following

optimization problem:

min
xs,us

‖xs‖S (11a)

s.t. f(xs) + g(xs)(us + d) = 0 (11b)

us + d ∈ U (11c)

xs ∈ X (11d)

where S is a positive weighting matrix, d =
[0 · · · ũ∗

f,j · · · 0]T and X denotes the desired operating

state region. The objective of the above optimization

problem is to find an operating point within the desired

operating state region such that the distance (measured

by weighted Euclidean norm) between the new operating

point and the origin is minimized. We assume that the

optimization problem of Eq. 11 is always feasible which

implies that we can always find the new operating point xs

and the corresponding new steady-state control input values

us = [uT
1s u

T
2s]

T .

Note that the proposed method is only one of many

possible approaches to determine the new operating point

in the case of a fault. The basic idea of the proposed method

is to find a new operating point that stays as close as possible

to the original operating point (i.e., the origin x = 0).

Once we find the new operating point xs, we proceed to

design the FTC strategies for the fault-free DMPC system

(see Eqs. 2-3) in the presence of actuator faults. In general,

when there is a fault in the control system, it is impossible to

carry out FTC unless there is another backup control loop.

However, in the fault-free DMPC system, because of the

extra control flexibility brought into the whole system by u2

(LMPC 2), it is possible in some cases to carry out FTC

without activating new control actuators.

When there is a persistent fault in the loop of u2 which

is denoted d2, and the fault can be detected and isolated

in a reasonable time frame, it is possible to switch off the

controller LMPC 2 and only use u1 in the control system.

When LMPC 2 is switched off from the closed-loop system,

u2 is set by the fault (i.e., u2 = d2); and in the DMPC

scheme of Eqs. 2-3, only LMPC 1 is evaluated each sampling

time. In order to maintain the stability of the closed-loop

system, the design of LMPC 1 will need to be updated with

the new operating point and its corresponding new steady-

state control input values (i.e., the cost function L(x, u1, u2)
needs to be updated with xs and us in a way such that

L(xs, u1s, u2s) = 0), and updated with the fault magnitude

information (i.e., u2 = d2); the design of h(x) also needs

to be updated with the new steady-state information. The

control inputs determined by the updated LMPC 1 will be

referred to as u′
1(x).

This FTC strategy will maintain the closed-loop stability

if implemented quickly such that the state of the system is

still within the stability region of the backup controllers and

parameter estimation is sufficiently accurate, however, the

performance of the closed-loop system may degrade to some

extent.

When there is a fault in the subset u12 which is denoted

d1, the FTC strategy would shut down the control action

of u12 and reconfigure the DMPC algorithms to the backup

DMPC of Eqs. 4-5 to manipulate u11 and u2 to control the

process. In order to maintain the stability of the closed-loop

system, the designs of the two backup LMPCs and the design

of h2(x) needs to be updated with the new operating point

and corresponding new steady-state control input values; as

well as being updated with the fault magnitude information.

The control inputs determined by the updated designs will

be referred to as u′′
1(x) and u′′

2(x).
However, when there is a fault in the subset u11, it is

impossible to successfully carry out FTC without activating

backup actuators within the DMPC systems for the class of

nonlinear systems considered in this work.

The FTC switching rules for the system of Eq. 1 within

the DMPC system of Eqs. 2-3 are described as follows:

1) When a fault in the actuator associated with u2 is

isolated at tf , the FTC switching rule is:

u1(t) =

{

uL
1 (x), t ≤ tf

u′
1, t > tf

(12a)

u2(t) =

{

uL
2 (x), t ≤ tf

d2, t > tf
(12b)

2) When a fault in the actuator associated with u12 is

detected at tf , the FTC switching rule is:

u1(t) =











uL
1 (x), t ≤ tf

[

u′′
11(x)
d1

]

, t > tf
(13a)

u2(t) =

{

uL
2 (x), t ≤ tf

u′′
2(x), t > tf

(13b)

V. APPLICATION TO A REACTOR-SEPARATOR PROCESS

A. Process description and modeling

The process considered in this study is a three vessel,

reactor-separator system consisting of two CSTRs and a flash

tank separator as shown in Fig. 1. Its detailed description

and modeling can be found in [13]. Sensor and process noise
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Fig. 1. Two CSTRs and a flash tank with recycle stream.

TABLE I

THE DESIRED OPERATING STEADY-STATE xs .

T1 CA1 CB1 CC1

370 [K] 3.32 [kmol/m3] 0.17 [kmol/m3] 0.04 [kmol/m3]

T2 CA2 CB2 CC2

435 [K] 2.75 [kmol/m3] 0.45 [kmol/m3] 0.11 [kmol/m3]

T3 CA3 CB3 CC3

435 [K] 2.88 [kmol/m3] 0.50 [kmol/m3] 0.12 [kmol/m3]

were added to the simulations. The desired operating steady-

state is the unstable steady state, xs, whose values are shown

in Table I.

For this process, we have two sets of manipulated inputs.

The first set of manipulated inputs is the heat injected to

or removed from the three vessels, that is u1 = [Q1 −
Q1s Q2 − Q2s Q3 − Q3s]

T ; the second set includes the

inlet flow rate to vessel 2, that is u2 = F20 − F20s.

The variables Q1s, Q2s, Q3s and F20s denote the steady-

state input values of the inputs whose values are shown in

Table II. The control inputs are subject to the constraints

|Qi − Qis| ≤ umax
1 = 106 KJ/hr, (i = 1, 2, 3) and

|F20 − F20s| ≤ umax
2 = 5 m3/hr.

In the design of the fault free DMPC system for the

process, we consider a quadratic Lyapunov function V (x) =
xTPx with P = diag([20 103 103 103 10 103 103 103 10
103 103 103]) and design the controller h(x) as three PI

controllers with proportional gains Kp1 = Kp2 = Kp3 =
8000 and integral time constants τI1 = τI2 = τI3 = 10
based on the measurements of T1, T2 and T3, respectively.

Note that, in the absence of process noise and measurement

noise, this design of h(x) manipulating u1 can stabilize the

closed-loop system asymptotically without the use of u2.

Based on h(x) and V (x), we design LMPC 1 following Eq. 3

to determine u1 and LMPC 2 following Eq. 2 to determine

u2. In the design of the LMPCs, the weighting matrices

are chosen to be Qc = P , R1 = diag([(5 5 5) · 10−12])
and R2 = 100. The horizon for the optimization problem is

N = 4 with a time step of ∆ = 0.05 hr.

In addition, the set of control inputs u1 can be divided

into two subsets, u11 = [Q1 − Q1s Q3 − Q3s]
T and

u12 = Q2 − Q2s. The input combination u11 and u2 is

able to stabilize the closed-loop system which can be used

as the input configuration of the backup DMPC system of

Eqs. 4-5. In order to design the backup DMPC, we need

to design a second Lyapunov-based controller h2(x) which

manipulates u11 and u2. We also design h2 through PI

control law with proportional gains Kb
p1 = Kb

p2 = 8000,

Kb
p3 = −0.3 and integral time constants τ bI1 = τ bI2 = τ bI3 =

TABLE II

THE STEADY-STATE INPUT VALUES.

Q1s Q2s Q3s F20s

0 [KJ/hr] 0 [KJ/hr] 0 [KJ/hr] 5 [m3/hr]

TABLE III

EWMA RESIDUAL MEANS AND STANDARD DEVIATION.

r̄T2
r̄CA2

r̄CB2
r̄CC2

0.664900 0.013944 0.003421 0.003980

sT2
sCA2

sCB2
sCC2

0.464139 0.010351 0.002810 0.002960

10 based on the measurements of T1, T3 and T2, respectively.

The control design h2 can stabilize the closed-loop system

asymptotically with Q2 = 0 in the absence of process noise

and measurement noise. In the design of the backup DMPC

system, we choose V2(x) = V (x).
In order to perform FDI for the reactor-separator system,

we construct the FDI filters for the states affected directly by

the four manipulated inputs as in Eq. 6. The states affected

directly by the manipulated inputs are T1, CA2, CB2, CC2,

T2 and T3. The FDI residuals take the following form:

rTi
(t) = |T̂i(t)− Ti(t)|, i = 1, 2, 3

rCi2
(t) = |Ĉi2(t)− Ci2(t)|, i = A,B,C.

(14)

Based on these residuals, we design the EWMA residuals

with λ = 0.5 and the sampling time ∆r = 0.005. The mean

values and standard deviations of the EWMA residuals are

shown in Table III.

We consider two different faults in the following simu-

lations. First, we consider a fault in the heat input/removal

actuator to vessel 2, that is a fault in Q2. Because Q2 only

affects the state T2 directly and all the measurements are

continuously available, when there is an actuator fault in Q2,

only the residual corresponding to T2 exceeds its threshold.

The second fault we consider is a fault in the inlet flow

actuator to vessel 2, that is a fault in F20. Because the

control action F20 affects directly the states T2, CA2, CB2

and CC2, when there is an actuator fault in F20, more than

one residuals will exceed their thresholds. In the simulations,

∆td = 36 s, w = 3 and ∆e = 0.005 hr.

B. Simulation Results

Three different simulation sets are presented to show the

merits of isolating using the adaptive windows based on

EWMA residuals. For each simulation, the plant is initialized

at the desired steady-state xs (see Table I) and simulated to

5.0 hr with a fault being triggered at 1.050hr.

In the first set of simulations, a Q2 fault with a magnitude

of 20% of umax
1 is triggered at 1.050 hr (we will refer to

it as “small” Q2 fault). From the design of the system, the

Q2 fault directly affects the temperature in vessel 2 where

the residual for T2 begins to deviate. When the residual for

T2, rE,T2
, (see top left plot of Fig. 2) exceeds a chosen

confidence level (i.e., its first threshold σT2,3) at 1.065 hr, the

FDI system begins monitoring the rates of change of all the

residuals. The residual rE,T2
is the first to exceed its second
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Fig. 2. Case 1: Q2 “small” fault is isolated using longer waiting time
based on slow residual change of T2. The dotted lines correspond to the
1
st, 2nd,and 3

rd residual threshold, and the solid line correspond to EWMA
residual. The residual rE,T2

exceeds σT2,3 at 1.065 hr and σT2,4 at
1.070 hr where an fault isolation window is set to 3.6 min. The residual
rE,T2

exceeds σT2,5 at 1.075 hr and the fault is isolated at 1.085 hr.
The fault is estimated as 18.5 KJ/hr (actual 20 KJ/hr).
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Fig. 3. Case 1: Q2 “small” fault is isolated and control system is
reconfigured to stabilize the closed-loop system - Concentrations.

threshold σT2,4 at 1.070 hr. At time 1.075 hr, the FDI

system also calculates a time window of 0.05 hr = 3.6 min
to insure proper isolation of the fault. However, because

rE,T2
deviates quickly and exceeds σT2,5 at 1.075 hr, the

fault is isolated at 1.085 hr after waiting for 0.01 hr to

confirm it. The fault is also isolated at 1.085 hr with a fault

estimate of 18.5 KJ/hr (actual fault value is 20 KJ/hr).

The fault tolerant control system reconfigures and is able to

stabilizes the system near the target steady state by 1.500 hr
as shown in the concentration profiles in Fig. 3 and the

temperature profiles in Fig. 4.

In case 2, a Q2 fault set to a magnitude of 99% of

umax
1 is triggered at 1.050 hr (we will refer to it as “large”

Q2 fault). The larger Q2 fault will demonstrate the FDI’s

quicker response and improved robustness when used in

conjunction with fault tolerant control. In Fig. 5, the “large”

fault compared to a “small” fault of case 1 (Fig. 2) causes

the residual to deviate much quicker with the FDI beginning

to monitor at 1.060 hr with a calculated isolation window

of 36 s. The fault is isolated early at 1.070 hr soon after

the rE,T2
exceeded σT2,5, and the fault is estimated to be

100 KJ/hr (actual 99 KJ/hr). Figures 6 and 7 show that

the FTC system is able to stabilize the system at a new

steady-state after reconfiguration at 1.080 hr.

The purpose of the third case is to better illustrate the
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Fig. 4. Case 1: Q2 “small” fault is isolated and control system is
reconfigured to stabilize the closed-loop system - Temperatures.
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Fig. 5. Case 2: Q2 “large” fault is isolated using shorter waiting time
based on quick residual change of T2. rE,T2

immediately exceeds σT2,5

at 1.060 hr where the fault is isolated and estimated within the waiting
time of 36 s. The fault is estimated as 100 KJ/hr (actual 99 KJ/hr) at
1.070 hr
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Fig. 6. Case 2: Q2 “large” fault is isolated and control system is
reconfigured to stabilize the closed-loop system - Concentrations.
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Fig. 7. Q2 “large” fault is isolated and control system is reconfigured to
stabilize the closed-loop system - Temperatures.

3164



0 1 2 3 4 5
0

1

2

3

4

5

6

r E
,T

2

  
 

0 1 2 3 4 5
0

0.01

0.02

0.03

0.04

0.05

0.06

r E
,C

A
2

0 1 2 3 4 5
0

0.005

0.01

0.015

r E
,C

B
2

0 1 2 3 4 5
0

0.005

0.01

0.015

r E
,C

C
2

Fig. 8. Case 3: F20 fault demonstrates FDI system with multiple residual
exceed thresholds. T2 exceeds σT2,3 at 1.070 hr and σT2,5 at 1.075 hr
and rCB2

exceeds σCB2,3 at 1.070 hr. The fault is isolated when rCB2

exceeds σCB2,5 at 1.075 hr and the fault is estimated to be 3.2 m3/hr
(actual 2.9 m3/hr).
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Fig. 9. Case 3: F20 fault is isolated and control system is reconfigured to
stabilize the closed-loop system - Concentrations.

need for variable windows and minimum waiting times for

proper isolation. Since both actuator faults considered affect

the temperature in the second tank, the T2 residual is used

as the basis for determining the length of fault isolation time

window. In case 3 an F20 fault occurs with a magnitude of

59% of umax
2 . The T2 residual exceeds σT2,3 at 1.070 hr

and σT2,5 at 1.075 hr while the residual for concentration

of component B in the second tank exceeds σCB2,3 at

1.070 hr. The fault is isolated since rCB2
exceeds σCB2,5

at 1.080 hr and the fault is estimated as 3.18 m3/hr (actual

2.95 m3/hr). The profiles of the states as the fault occurs

and the FTC system reconfigures the control system is better

seen in Fig. 8. Figures 9 and 10 show that the FTC system is

able to stabilize the closed-loop system at a new steady-state

after reconfiguration at 1.080 hr.
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[12] J. Liu, X. Chen, D. Muñoz de la Peña, and P. D. Christofides,
“Sequential and iterative architectures for distributed model predictive
control of nonlinear process systems,” AIChE Journal, vol. 56, pp.
2137–2149, 2010.
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