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Abstract— In this paper a new control methodology is pro-
posed for unstable linear time-delay systems with recycle. For
this kind of systems time delays are present in the forward
and backward paths increasing control difficulty. The strategy
is based on the observation that if some internal system signals
were known then it would be possible to remove the backward
dynamics. In this way, a controller feedback could be designed
by considering only the dynamics of the forward loop. To
carry out this strategy an asymptotic observer is proposed to
estimate the internal signals needed. Necessary and sufficient
conditions to assure convergence of the proposed observer-
predictor are given. An overall procedure for the proposed
methodology is provided and numerical simulations to illustrate
its performance are presented.

I. INTRODUCTION

Recycling processes are commonly found in chemical

industry. Recycling systems enable the matter and energy to

be recovered in an industrial process. For instance, a typical

plant configuration is formed by a reactor/separator process,

where reactants are recycled back to the reactor [1], [2], [3].

The so called snowball effect is observed in the operation

of many chemical plants with recycle streams. Snowball

means that a small change in a load variable causes a very

large change in the flow rates around the recycle loop.

Although snowballing is a steady state phenomenon and

has nothing to do with dynamics, it depends on the control

structure [4]. Disadvantages of snowball effect has drawn the

attention of some researchers. Luyben [5], [6], [7], studied

the effects of recycle loops on process dynamics and their

implications to plant-wide control. Taiwo [8], discussed the

robust control for recycling plants and proposed the concept

of recycle compensation to recuperate inherent process dy-

namics, i.e. dynamics without recycle. Scali and Ferrari [9],

analyzed the problem under same idea. Similar approaches

were extended by Lakshminarayanan and Takada [10], and

Kwok et. al [11].

Due to the snowball effect, control of systems with recycle

loops are somewhat difficult and interesting in their own.

Sometimes, transport delays that can not be neglected, are

present in recycled systems significantly increasing its con-

trol difficulty. It is known that when recycle loops and time

delays occur, exponential terms appear in forward and back-

wards paths. In state space representation recycled system
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with delay correspond to systems with delays on the input

and the state. Control problem of recycled system become

even more difficult when the forward path is unstable.

Model approximation has been proposed to remove the

exponential terms from the transfer function denominator

of a delayed system, such as the method of moments

[12], and Pade-Taylor approximations [13], [14], [15]. Other

techniques, such as the seasonal time-series model [11],

have been proposed to obtain an approximate model to

represent recycle systems. Del Muro et. al. [16] proposed

an approximate model to represent recycle systems by using

discrete-time approach. In turn, such approximate models can

be used for stability analysis or control design [17], [8], [9],

[18], [19], [20], [21], [22], [23].

In this work the problem of recycled system composed of

an unstable first order plant in the direct path and a stable

system of order n in the recycle loop is addressed. The

work is organized as follows: Section II presents the problem

formulation and the class of the systems considered in this

work. The general idea of the solutions is also outlined in

this Section. Here the need of an observer-predictor arises.

Section III presents the control proposed. This Section is

divided in three parts. Firstly a preliminary result concerning

the stability of a class of input delay systems is presented.

Then a scheme to estimate some internal signal of the system

is proposed. Based on the estimation of the necessary internal

variables the overall control scheme is presented in the last

part of Section III. Some simulations results are described

in Section IV. Such results illustrated the performance of

the control here proposed. Finally Section V presents some

conclusions.

II. PROBLEM FORMULATION

Let us consider the class of recycling system shown in

Figure 1, which can be described as,

Y (s) =
[
Gd GdGr

] [U(s)
Y (s)

]
(1)

with,

Gd = G1(s)e
−τ1s =

b

s− a
e−τ1s (2a)

Gr = G2(s)e
−τ2s =

N(s)

D(s)
e−τ2s (2b)

where Gd(s), and Gr(s) are transfer functions of the forward

(or direct) and backward (or recycle) paths, respectively;

τ1, τ2 ≥ 0 are the time delays associated to Gd(s), and

Gr(s). a, b ∈ R, with a > 0, that is Gd is unstable; N(s)
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Fig. 1. A process with recycle

and D(s) are polynomials on the complex variable s. U(s)
is the process input and Y (s) is the process output.

The closed-loop transfer function of system (1) is given

by

Gt(s) =
D(s)be−τ1s

(s− a)D(s)− bN(s)e−(τ1+τ2)s
(3)

Note that exponential terms appear explicitly in numerator

and denominator of Gt(s). Stability of (3) is determined by

the roots of its characteristic equation

Q(s) = (s− a)D(s)− bN(s)e−(τ1+τ2)s = 0 (4)

More precisely, the overall path U(s) → Y (s) is stable if and

only if all the roots of Q(s) are contained in the open left-

half complex plane. It is well known that the transcendental

term in Q(s) induces an infinite number of roots preventing

the use of classical control design techniques and stability

analysis methods.

Let us to describe some ideas behind the methodology

proposed. With reference to Figure 1, if signal ω2 were

known, then we could set

U(s) = R1(s)− ω2(s) (5)

obtaining the system shown in Figure 2. Then it would be

possible to design R1(s) as R1(s) = (R(s)− ω1(s)) J(s)
like in Figure 3. Since ω1 and ω2 are internal system signals

an observer-predictor scheme to estimate these variables is

developed in the following section.

Fig. 2. System of Fig. 1 after applying U(s) given by (5)

III. OBSERVER-PREDICTOR BASED CONTROL

A. A preliminary stability result

In this section a preliminary result on the stability of an

unstable first order system plus time delay is presented. This

Fig. 3. A control structure for the system of Fig. 2

result will be used later in the proof of the observer-predictor

convergence.

Lemma 1: Consider the unstable input-output delay sys-

tem
Y (s)

U(s)
= G(s)e−τs =

b

s− a
e−τs, a > 0 (6)

with a proportional output feedback

U(s) = R(s)− kY (s) (7)

There exist a proportional gain k such that the closed loop

system
Y (s)

R(s)
=

be−τs

s− a+ kbe−τs
(8)

is stable if and only if τ < 1
a

.

Proof: The proof use the well known fact that a discrete

time model derived from a continuous time system is equal

to its continuous counterpart if the sampling period T → 0.

It is carried out by discretizing the system and then showing

that all the poles remain inside the unitary circle when the

sampling period tends to zero iff τ < 1
a

.

Discretizing model (6) using a zero order hold and a

sampling period T = τ
n

with n ∈ N, it is obtained,

G(z) =
b

a

(eaT − 1)

zn(z − eaT )
(9)

Model (9) in closed loop with the (discretized) output

feedback (7) produces the characteristic polynomial,

p(z) = zn(z − eaT ) + k
b

a
(eaT − 1) (10)

Let us to analyze the root locus of (10). Open loop system

has n poles at the origin and one at z = eaT , since there are

not finite zeros there exist n+ 1 branches to infinity, n− 1
starting at the origin and two starting at a point located over

the real axis between the origin and z = eaT . This point can

be found by considering,

dk

dz
=

d

dz

[
−
zn(z − eaT )
b
a
(1− eaT )

]
= 0,

producing the equation,

(n+ 1)zn − nzn−1eaT = 0,

that has n − 1 roots at the origin and one at z = n
n+1e

a τ

n .

If the starting point over the real axis is located inside the

unit circle, the closed loop system could have a region of
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stability, otherwise the system is unstable for any k.

The corresponding property of the associated continuous

system (6)-(7) is obtained by considering the limit as n →

∞, this is,

lim
n→∞

z = lim
n→∞

n

n+ 1
ea

τ

n = 1. (11)

Since this limit point is located on the stability boundary, it

is not difficult to see that if aτ < 1 (i.e., τ < 1/a) the limit

tends to one from the left and then, there exist k that places

the breaking point inside the unitary circle. In the case that

aτ ≥ 1 it is not possible to stabilize the system by static

output feedback (i.e., the limit tends to one from the right

and a couple of poles are outside the unitary circle).

For the remaining n − 1 poles, from the corresponding

characteristic equation for the continuous case obtained by

considering n → ∞, it is obtained,

lim
n→∞

p(z) = lim
n→∞

[
zn(z − eaT ) + k

b

a
(eaT − 1)

]

= lim
n→∞

[
zn(z − ea

τ

n ) + k
b

a
(ea

τ

n − 1)

]

= (z − 1) lim
n→∞

zn

(12)

Therefore, in this case, it is confirmed that one pole is located

at z = 1 and we can note that the rest of them are at the

origin. From the above developments, it is clear that when

one pole is located in a neighborhood of the point z = 1, all

the other poles are in a neighborhood of the origin. Then, we

can finally state that the system can be stabilized iff aτ < 1.

Stability of (8) has been previously studied in the litera-

ture. Lemma 1 can also be proved using classical frequency

domain, D-decomposition or even by the classical Pontryagin

Method [24], [25], [26], [27], [28]. The proof presented here

is a simple one and its main idea (discretizing) can be applied

to other kind linear time delay systems. Furthermore it allows

to easily establish the following result.

Corollary 2: Consider system (6)-(7) with τ < 1/a. Then,

a k that stabilizes the closed loop system, satisfies a/b < k <
a/b+ σ, for some σ > 0.

Proof: Analyzing the root locus associated to the

discrete system, it is possible to see that the open loop system

has n poles at the origin and one at z = eaT without finite

zeros. Then, there are n− 1 branches going to infinity and a

pair converging to a point on the real axis located between

the origin and z = 1(stability region). Note that if k = 0
the system is unstable. The gain k that takes the systems

to the border of the stability region (z = 1) is obtained by

evaluating k for z = 1, this is,

k = −
zn(z − eaT )
b
a
(1− eaT )

∣∣∣∣∣
z=1

=
a

b
(13)

Then by Lemma 1 the proof is concluded.

B. Prediction Strategy

To estimate ω1 and ω2 in Figure 1 the observer-predictor

depicted in Figure 4 is proposed. Its convergence is estab-

lished in the following result.

Fig. 4. Observer predictor proposed

Theorem 3: Consider the observer-predictor scheme

shown in Figure 4, with Gr a stable transfer function. There

exists constant k such that

lim
t→∞

[ωi − ω̂i] = 0, for i = 1, 2, (14)

if and only if τ1 < 1/a.

Proof: A state space representation of the observer-

predictor scheme shown in Figure 4 is

ẋ(t) = Ax(t) +A1x(t− τ1)

+A2x(t− τ2) +Bu(t) (15a)

y(t) = Cx(t− τ1) (15b)

with,

x(t) =
[
xd(t) xr(t) x̂d(t) x̂r(t)

]T

y(t) =
[
y(t) ŷ(t)

]T

B =
[
Bd 0 Bd 0

]T

A =




Ad 0 0 0
0 Ar 0 0
0 0 Ad 0
0 0 0 Ar




A1 =




0 0 0 0
BrCd 0 0 0
BrkCd 0 −BdkCd 0
BrCd 0 0 0




A2 =




0 BdCr 0 0
0 0 0 0
0 0 0 BdCr

0 0 0 0




C =

[
Cd 0 0 0
0 0 Cd 0

]

where x ∈ R
n is the state vector, u ∈ R is the input, y ∈

R
2 is the output, τ1 ≥ 0 and τ2 ≥ 0 are the time delays

present in the system. Ad ∈ R
n×n, Bd ∈ R

n×1, and Cd ∈
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R
1×n are matrices and vectors parameters that corresponds

to the forward loop in the process, and Ar ∈ R
n×n, Br ∈

R
n×1, and Cr ∈ R

1×n are matrices and vectors parameters

that corresponds to backward path in the process, x̂(t) is the

estimation of x(t).
Defining the state prediction errors exd

(t) = x̂d(t)−xd(t),
exr

(t) = x̂r(t) − xr(t), and the output estimation ey(t) =
ŷ(t)−y(t), it is possible to describe the behavior of the error

signals as,



ėxd
(t)

ėxr
(t)

ey(t+ τ1)
eω2

(t+ τ2)


 =




Ad 0 −Bdk Bd

0 Ar 0 0
Cd 0 0 0
0 Cr 0 0







exd
(t)

exr
(t)

ey(t)
eω2

(t)


 (16)

Note that,

ey(t) = Cdexd
(t− τ1) (17)

eω2
(t) = Crexr

(t− τ2) (18)

System (16) can be rewritten as

ėxd
(t) = Adexd

(t)−BdkCdexd
(t− τ1)

+BdCrexr
(t− τ2) (19a)

ėxr
(t) = Arexr

(t) (19b)

Since Ar is a Hurwitz matrix, the stability of system (19)

can be analyzed by considering the partial dynamics

ėxd
(t) = Adexd

(t)−BdkCdexd
(t− τ1) (20)

or equivalently,
[

ėxd
(t)

ey(t+ τ1)

]
=

[
Ad −Bdk
Cd 0

] [
exd

(t)
ey(t)

]
(21)

Consider now a state space realization of system (8). It is

easy to see that this dynamics can be written in state space

form as,
[

ẋ(t)
y(t+ τ1)

]
=

[
Ad −Bdk
Cd 0

] [
xd(t)
y(t)

]
+

[
Bd

0

]
u(t) (22)

Comparing (22) and (21) it is clear that Lemma 1 can be

applied to system (21). Hence the result of the theorem

follows.

C. Proposed control scheme

Based on the estimation of internal signals ω̂1, ω̂2 we

proceed to implement the ideas exposed in Section II using

ω̂1 and ω̂2. The complete control scheme is proposed in

Figure 5. The proposed methodology can be summarized as

follows:

1) Make sure that the conditions of Theorem 3 are

satisfied, that is, Gr(s) a stable transfer function and

τ1 < 1/a for the unstable first order delayed plant.

2) Tune the parameter k using Corollary 2.

3) Design of a controller J(s) based on the free delay

model of the forward path G1(s). A PI or PID control

based strategy can be considered.

4) Finally, implement the general control structure as it

is shown in Figure 5.

Fig. 5. Proposed control schema

IV. SIMULATION RESULTS

In this section, some academic examples show the per-

formance of observer based control strategy previously pro-

posed.

Example 4: Consider the recycled time delay system of

the form (1) with,

Gd =
5.3

s− 1
e−0.8s, Gr =

1

s+ 2
e−2s. (23)

Following the procedure above described, it is obtained a

proportional gain k = 0.21. Instead of a single controller

J(s), the free delay direct path can be stabilized by a two

degree of freedom PI [29], obtaining a general feedback of

the form,

U(s) = R(s)Gff (s)−Gc(s)(ω̂1(s)− ey(t))− ω̂2(s) (24)

with

Gff (s) = 1.2

(
0.3 +

1

s

)
and Gc(s) = 1.2

(
1 +

1

s

)
.

(25)

To evaluate the output signal evolution, it was considered a

positive unit step input and a step disturbance D(s) acting at

t = 30 sec. In Figure 6, the continuous line shows the output

response when the exact knowledge of the model parameters

is assumed; the dashed line presents the output signal when

the time delay in the forward path is increased by 6%. Figure

7, shows an experiment where D(s) = 0 and the error output

initial condition ey(0) is 0.1.

From figures 6 and 7 it can be seen the observer predictor

convergence and the well behaved of the control based on

estimated signals.

Example 5: Consider now the recycled system (1) with,

Gd =
1

s− 0.25
e−2s, Gr =

10

(s+ 1)(s+ 2)
e−2s. (26)

In this case, the proportional feedback (7) is implemented

by considering k = 0.3. The general control feedback (24)

is obtained by considering,

Gff (s) = 1.5

(
0.4 +

1

4s

)
and Gc(s) = 1.5

(
1 +

1

4s

)

(27)

4907



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time

y
(t

)

 

 

Ideal Conditions

Process−forward path time delay variation τ =0.85 

Fig. 6. Output signal in example 4
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Fig. 7. Estimation error ey(t), example 4

Like in the previous example, a step disturbance D(s) =
−0.05 is introduced at t = 40 sec. Figure 8 shows the

evolution of the output signal with zero initial conditions

(continuous line) and the case when the initial condition in

the recycle path is set at 0.01. Figure 9 shows the output error

signal eω2
(t) when D(s) = 0 and a small initial condition

of magnitude 0.07 is presents in the backward path. Again,

figures 8 and 9 the observer predictor convergence and good

control performance is obtained.

V. CONCLUSIONS

Unstable processes with significant time delay and recycle

loop is a challenging control problem. This work presents

explicit conditions for the construction of an stabilizing

observer based controller scheme for such class of systems.

The observer-prediction strategy allow to estimate some

internal variables of the process that are used to: i) remove

the dynamics of backward loop in the recycling process

and ii) design a stabilizing control law for the free delay

model of the forward path. The methodology is evaluated by

numerical simulations. The overall controller which includes

a PI with two-degree of freedom is capable to reduce the

output overshooting as it is shown in simulations.
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Fig. 8. Output signal in example 5
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Fig. 9. Estimation error eω(t), example 5
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