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Abstract— This paper addresses the problem of regulating a
discrete-time linear uncertain and time-varying system to the
origin. It is shown that, based on an interpolation technique, by
minimizing an appropriate objective function, how feasibility
and a robustly and asymptotically stable closed-loop behavior
can be achieved. It is shown that the control is a piecewise
affine and continuous function of the state. Several simulations
demonstrate the performance of our results.

I. INTRODUCTION

The problem of controlling a linear discrete-time system
with state and control constraints has seen many solutions.
One is vertex control [1], others include implicit and explicit
Model Predictive Control (MPC), see e.g. the text books
[2], [3]. The vertex control solution was extended to the
uncertain plant case by [4] and [5], while MPC is not
readily extendable without great conservativeness or on-line
computational burden.

A weakness of vertex control is that the full control range
is exploited only on the border of the feasible positive invar-
ianr set in the state space, and hence the time to regulate the
plant to the origin is much longer than e.g. the time-optimal
one. A way to overcome this is to switch to another, more
aggressive, local controller, e.g. a state feedback controller
uo = Kx when the state reaches the maximum feasible state
set of the local controller. The disadvantage of this solution
is that the control action becomes non-smooth [6].

Noting that the vertex control Lyapunov level curves are
polyhedra parallel with the border of the vertex control
feasible set polyhedron, we postulate a polyhedral feasible
set for the local control. Then we suggest a smooth convex
interpolation between the vertex control action uv and the
local control action uo for the current state x, in the form
u = cuv + (1 − c)uo, 0 ≤ c ≤ 1, whereby c is minimized
in order to give maximal control action. We show that with
this objective function there exist a Lyapunov function for
the system controlled by the interpolated controller u, and
hence stability is proved.

It is shown that from a computational point of view the
minimization of c can be done by linear programming.
In a companion paper it is further shown that that the
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minimization can be done off-line, yielding a polyhedral
partition each with its affine control law. Thus, our controller
can be compared with explicit MPC where the feasible set
in the state space is also partitioned in polyhedra each of
which with its own affine state feedback control law.

The difference between the new improved vertex control
and explicit MPC is that while the explicit MPC is optimal
with respect to the chosen criterion for one nominal plant
case, the improved vertex control is proved to be stable
for a given set of plants or for a time-varying plant, and
is considerable simpler with much fewer polyhedral subsets
and less on-line computational burden.

Our approach could also be compared to the barycentric
interpolation in [7] which however yields a non-linear control
law over the polytopic partition of the state space.

Several simulated examples illustrate our results.

II. PROBLEM STATEMENT

Consider the problem of regulating to the origin the
following discrete-time linear time-varying system:

x(t+ 1) = A(t)x(t) +B(t)u(t) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are respectively the
measurable state and the input, and with given matrices Ai

and Bi, the matrices A(t) ∈ Rn×n and B(t) ∈ Rn×m satisfy A(t) =
∑s

i=1 αiAi, B(t) =
∑s

i=1 αiBi,
αi ≥ 0,∀i = 1, . . . , s,∑s

i=1 αi = 1.
(2)

Remark 1: A(t) and B(t) given as
A(t) =

∑v
i=1 αiAi, B(t) =

∑r
i=1 βiBi,

αi ≥ 0,∀i = 1, . . . , v,
βi ≥ 0,∀i = 1, . . . , r,∑v

i=1 αi = 1 and
∑r

i=1 βi = 1.

(3)

may be translated into the form of (2) as follows,

x(t+ 1) =
∑v

i=1 αiAix(t) +
∑r

j=1 βjBju(t)
=
∑v

i=1 αiAix(t) +
∑s

i=1 αi

∑r
j=1 βjBju(t)

=
∑v

i=1 αi(Aix(t) +
∑r

j=1 βjBju(t))
=
∑v

i=1 αi(
∑r

j=1 βjAix(t) +
∑r

j=1 βjBju(t))
=
∑v

i=1 αi(
∑r

j=1 βj(Aix(t) +Bju(t)))
=
∑v,r

i=1,j=1 αiβj(Aix(t) +Bju(t)).

Consider the polytope Pc, the vertices of which are given
by taking all possible combinations of {Ai, Bj} where
i = 1, . . . , v and j = 1, . . . , r. From

∑v,r
i=1,j=1 αiβj =∑v

i=1 αi

∑r
j=1 βj = 1, it is clear that {A(t), B(t)} can be

expressed as a convex combination of the vertices of Pc.
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Both the state vector x(t) and the control vector u(t) are
subject to polytopic constraints:{

x(t) ∈ X,X = {x : Fxx ≤ gx}
u(t) ∈ U,U = {u : Fuu ≤ gu}

∀t ≥ 0 (4)

where the matrices Fx, Fu and the vectors gx, gu are
assumed to be constant with gx > 0, gu > 0 such that the
origin is contained in the interior of X and U .

III. ROBUST LINEAR STATE FEEDBACK SYNTHESIS

The aim of this section is to find a linear feedback
controller:

u(t) = Kx(t) (5)

that robustly asymptotically stabilizes (1) for some interior
subset X0, U of (4), X0 ⊆ X . Then the closed-loop is

x(t+ 1) = (A(t) +B(t)K)x(t) (6)

It is well known that the existence of a common quadratic
Lyapunov function, namely of a positive-definite Q−1 for the
parameterized linear matrix inequalities (LMI), see [8],

(A(t) +B(t)K)TQ−1(A(t) +B(t)K)−Q−1 ≺ 0 (7)

assures the satisfaction of the inequalities

x(0)TQ−1x(0) > x(1)TQ−1x(1) > . . .
> x(t)TQ−1x(t) > . . . > 0

and therefore stability is guaranteed. Here AT denotes the
transpose of matrix A and P ≺ 0(� 0) denotes that matrix
P is negative definite (positive definite).

The expression xT (A(t)+B(t)K)TQ−1(A(t)+B(t)K)x
can be treated as a function of t and reaches the maximum
on one of the vertices of A(t), B(t) in (2), so the set of LMI
conditions to be satisfied to check stability is the following:

(Ai +BiK)TQ−1(Ai +BiK)−Q−1 ≺ 0, i = 1, . . . , s (8)

By pre- and post-multiplying both sides by Q and making
the substitution R = KQ, one gets

(QAT
i +RTBT

i )Q−1(AiQ+BiR)−Q ≺ 0, i = 1, . . . , s
(9)

By applying Schur complements, one obtains(
Q QAT

i +RTBT
i

AiQ+BiR Q

)
� 0, i = 1, . . . , s (10)

This is an LMI condition. If a solution Q does exist, then

K = RQ−1 (11)

is a suitable robust control for the unconstrained case.
Remark 2: Condition (10) is necessary and sufficient for a

polytopic system to be quadratically stabilizable with linear
state feedback control [8].

Remark 3: The results reported by Kothare et al [9] can,
in principle, be employed to take into account the constraints
on control and state (4). However we do not pursue this idea
further in this paper and concentrate on a synthesis procedure
which allows the constraints to be active.

IV. INVARIANT SET CONSTRUCTION

A. Maximal robustly admissible set

For some given K from (11) denote H(t) = A(t) +
B(t)K, and Hi = Ai +BiK,∀i = 1, . . . , s.

Definition 1: (Robustly positively invariant set) The set
Ω is a positively invariant set with respect to x(t + 1) =
H(t)x(t) if and only if

∀x ∈ Ω⇒ Hix ∈ Ω,∀i = 1, . . . , s (12)

Definition 2: (Robustly admissible set) The set Ω is a
robustly positively admissible set for the system (1) with a
feedback controller u = Kx and with respect to constraints
(4) if and only if the trajectories x(t) of the system (1),
starting from any point x0 ∈ Ω satisfy

x(t) ∈ X, Kx(t) ∈ U (13)

The largest positively invariant admissible set is generally
called the maximal admissible set (MAS)[10].

It is well known that the existence of a stabilizing feedback
controller u = Kx for (1) implies the existence of a
contractive ellipsoid which in turn implies the existence of
a polyhedral invariant set [11], and a finitely determined
maximal polyhedral invariant set for which a constructive
procedure is described in [11]. The MAS is denoted:

Ω = {x : Fwx ≤ gw} (14)

B. Robustly positively invariant set for any u ∈ U
Recall the following definitions [12]:
Definition 3: (Robustly positively controlled invariant

set) Given the polytopic system (1), the set Φ is invariant
if for any x(t) ∈ Φ there exists a control u(t) such that
x(t+ 1) ∈ Φ.

Definition 4: (Pre-image set) Given the polytopic system
(1), the one-step pre-image set of the set P0 = {x : F0x ≤
g0} is given by all the states that can by brought in one
step into P0 by a suitable control. The pre-image set, called
P1 = Pre(P0), can be shown to be

P1 = {x ∈ Rn : ∃u ∈ U : F0(Aix+Biu) ≤ g0} (15)

Remark 4: It is clear that if set Φ is contained in its pre-
image set then Φ is invariant.

Define PN as the set of states, that can be steered to the
MAS Ω 14 in no more than N steps along an admissible
trajectory, i.e. one that satisfies (4). PN can be generated
recursively by the following procedure.

Procedure 1: Invariant set computation.
1) Set k = 0 and P0 = Ω
2) Define

Pk+1 = Pre(Pk)
⋂
X

3) If Pk+1 = Pk, then stop and set PN = Pk. Else
continue.

4) If k = N , then stop else continue.
5) Set k = k + 1 and go to the step 2.
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It is clear that if Ω is an invariant set, then for each k, it
holds that Pk−1 ⊂ Pk, and therefore Pk is an invariant set
and a sequence of nested polytopes. Note that the complexity
of PN does not have an analytic dependence on N and may
increase without bound, thus placing a practical limitation
on the choice of N. Denote

PN = {x : FNx ≤ gN} (16)

V. INTERPOLATION BASED CONTROLLER WITH LINEAR
PROGRAMMING

The purpose of this section is to show how an interpolation
technique can be used together with linear programming.

A. Vertex control law [1]

Given a positve invariant polytope PN ∈ Rn. This
polytope can be decomposed as a sequence of simplices P k

N ,
each formed by n vertices x(k)

1 , x
(k)
2 , . . . , x

(k)
n and the origin.

These simplices have following properties:
• P k

N has nonempty interior,
• Int(P k

N ∩ P l
N ) = ∅ if k 6= l,

•
⋃

k P
k
N = PN ,

Fig. 1. Vertex control law and vector field

Denote by X(k) = (x(k)
1 x

(k)
2 . . . x

(k)
n ) the square ma-

trix defined by the vertices generating P k
N . Since P k

N

has nonempty interior, X(k) is invertible. Let U (k) =
(u(k)

1 u
(k)
2 . . . u

(k)
n ) be the matrix defined by the admissible

control values at these vertices. For x ∈ P k
N consider the

following linear gain Kk:

Kk = U (k)(X(k))−1 (17)

Remark 5: By the admissible control value we understand
any control action, that keeps the state inside the invariant
set. Generally one would like to maximize this control action
which may be done by the following program.

J = max ‖u‖p s.t.
{
FN (Aix+Biu) ≤ gN , ∀i = 1, . . . , s,
Fuu ≤ gu.

(18)
where ‖u‖p is the p -norm of the vector u. Due to the
properties of the positive invariant set, (18) is always feasible.

Theorem 1: The piecewise linear control u = Kkx is
feasible for all x ∈ PN .

Proof: A proof is given in [1]. Here a simpler proof is
proposed.

For all x(t) ∈ PN there exists an index k such that x(t) ∈
P k

N , and x(t) can be expressed by convex combination of
vertices of P k

N : x(t) =
∑n

i=1 αix
k
i , which is equivalent with

x(t) = X(k)α

and by consequence α = (X(k))−1x(t), α ≥ 0 and∑n
i=1 αi ≤ 1. For feasibility one has to ensure ∀x(t) ∈ PN :

Fuu(t) ≤ gu and x(t + 1) = A(t)x(t) + B(t)u(t) ∈ PN .
With simple manipulations

Fuu(t) = FuU
(k)(X(k))−1x(t) = FuU

(k)α

=
n∑

i=1

αiFuu
k
i ≤

n∑
i=1

αigu ≤ gu

and

x(t+ 1) = A(t)x(t) +B(t)u(t)
= A(t)(X(k))α+B(t)U (k)α

=
n∑

i=1

α(A(t)xk
i +B(t)uk

i )

∀i = 1, n we have A(t)xk
i + B(t)uk

i ∈ PN , it follows that
x(t+ 1) ∈ PN �

Theorem 1 states that for any x ∈ PN , by using the vertex
control law, one has recursive feasibility. Moreover, in [1]
and [4] it was proved that the resulting closed loop system
with this controller is also asymptotically stable.

B. Interpolation via linear programming

Any state x(t) in PN can be decomposed as follows:

x(t) = cxv(t) + (1− c)xo(t) (19)

where xv(t) ∈ PN , xo(t) ∈ Ω and 0 ≤ c ≤ 1.
Consider the following control law:

u(t) = cuv(t) + (1− c)uo(t) (20)

where uv(t) is obtained by applying the vertex control law
and uo(t) = Kxo(t) is the control law, that is feasible in Ω.

Fig. 2. Feasible regions for example 1. The blue one is the MAS Ω, when
applying the control law u = Kx. The red one is the positively invariant
set PN .
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Theorem 2: The above linear control is feasible for all
x ∈ PN .

Proof: Corresponding to the decomposition, the control
law is given by (20).

One has to prove that Fuu(t) ≤ gu and x(t + 1) =
A(t)x(t) +B(t)u(t) ∈ PN for all x(t) ∈ PN . One has

Fuu(t) = Fu(cuv(t) + (1− c)uo(t))
= cFuuv(t) + (1− c)Fuuo(t)
≤ cgu + (1− c)gu = gu

and

x(t+ 1) = A(t)x(t) +B(t)u(t)
= A(t)(cxv(t) + (1− c)xo(t))+

+B(t)(cuv(t) + (1− c)uo(t))
= c(A(t)xv(t) +B(t)uv(t))+

+ (1− c)(A(t)xo(t) +B(t)uo(t))

We have A(t)xv(t) + B(t)uv(t) ∈ PN and A(t)xo(t) +
B(t)uo(t) ∈ Ω ⊂ PN . It follows that x(t+ 1) ∈ PN . �

Referring to the discussion in the Introduction about
maximal control action, one would like to minimize c, so
the following program is given,

c∗(x) = min
c,xv,xo

c, s.t.


FNxv ≤ gN ,
Fwxo ≤ gw,
cxv + (1− c)xo = x,
0 ≤ c ≤ 1

(21)

Denote rv = cxv , ro = (1−c)xo. It is clear that rv ∈ cPN

and ro ∈ (1−c)Ω or equivalently FNrv ≤ cgN and Fwro ≤
(1 − c)gw. The above non-linear program is translated into
a linear program as follows.

Interpolation based on linear programming

c∗(x) = min
c,rv

c, s.t.

 FNrv ≤ cgN

Fw(x− rv) ≤ (1− c)gw

0 ≤ c ≤ 1
(22)

Remark 6: If one would like to maximize c, it is obvious
that c = 1 for all x ∈ PN . In this case the controller turns
out to be the vertex controller.

Theorem 3: The control law using interpolation based
on linear programming (19), (20), (22) guarantees robustly
asymptotic stability for all initial states x(0) ∈ PN .

Proof: First of all we will prove that all solutions starting
in PN will reach the set Ω in finite time. For this purpose,
consider the positive function V (x) = c∗ for all x(t) ∈
PN \ Ω. V (x) is the Lyapunov function candidate.

For any x(t) ∈ PN , one has x(t) = c∗(t)xv(t) + (1 −
c∗(t))xo(t) and u(t) = c∗(t)uv(t) + (1 − c∗(t))uo(t). It
follows that

x(t+ 1) = A(t)x(t) +B(t)u(t)
= c∗(t)xv(t+ 1) + (1− c∗(t))xo(t+ 1)

where xv(t+ 1) = A(t)xv(t) +B(t)uv(t) ∈ PN and xo(t+
1) = A(t)xo(t) +B(t)uo(t) ∈ Ω.

By using the interpolation based on linear programming,
one gets that x(t + 1) = c∗(t + 1)xo

v(t + 1) + (1 − c∗(t +

1))xo
o(t+ 1) where xo

v(t+ 1) ∈ PN and xo
o(t+ 1) ∈ Ω . It

follows that c∗(t+ 1) ≤ c∗(t), and V (x) is non-increasing.
The asymptotically stability property of the vertex control

law and the feasibility of the controller entering in the
interpolation over Ω assures that there is no initial condition
x(0) ∈ PN \ Ω such that c∗(t) = c∗(0),∀t ≥ 0. It follows
that V (x) = c∗ is a Lyapunov function for x(t) ∈ PN \ Ω.

Using the vertex controller, an interpolation between the
vertices of the feasible invariant set and the origin is
obtained. Conversely using the controller (19), (20), (22),
an interpolation is constructed between the vertices of the
feasible invariant set and those of the MAS which contains
the origin as an interior point. This last property proves that
the vertex controller is a feasible choice for the interpolation
based technique. From these facts we conclude that the
closed sets defined by the Lyapunov function level curves
for the closed loop system with the with the controller
(19), (20), (22) are subsets of the closed sets defined by
the corresponding Lyapunov function level curves for the
closed loop with vertex control. The latter ones are, in fact,
homothetical polyhedra with respect to the border of the
vertex control feasible invariant set.

The proof is complete by noting that inside Ω the feasible
stabilizing control u = Kx is contractive, and thus the
interpolation-based controller assures asymptotic stability for
all x ∈ PN . �

Theorem 4: The control law from the interpolation based
on linear programming (19), (20), (22) can be represented
as a continuous and piecewise affine function of the state.

Proof: Equation (22) can be interpreted as a multi-
parametric linear optimization problem [13], with the state
being the vector of parameters. An explicit solution can be
constructed for the optimal arguments in terms of a con-
tinuous piecewise affine function defined over a polyhedral
partition of the parameters space [14]. Thus the ultimate
control action represents a function of the state (22). The
stated properties are concluded. �

VI. EXAMPLES

To show the effectiveness of the proposed approach, two
examples are presented in this section. To solve problem (10)
in both examples we used CVX, a package for specifying and
solving convex programs [15], [16]. To solve linear programs
we used the Multi-parametric toolbox [17].

A. Example 1

Consider the uncertain discrete-time system:

x(t+ 1) = A(t)x(t) +B(t)u(t) (23)

where
A(t) = α(t)A1 + (1− α(t))A2,
B(t) = α(t)B1 + (1− α(t))B2

and
A1 =

(
1 0.1
0 1

)
, B1 =

(
0
1

)
A2 =

(
1 0.2
0 1

)
, B2 =

(
0

1.5

)
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At each sampling time α(t) ∈ [0, 1] is an uniformly dis-
tributed pseudorandom number. The constraints are −10 ≤
x1 ≤ 10, −10 ≤ x2 ≤ 10 and −1 ≤ u ≤ 1.

Solving (10) gives the feedback gain K = (−0.5160 −
0.6644).

Using procedures in [11] and our procedure 1 above one
can obtain the sets Ω and PN as showed in Figure 2. Note
that P17 = P18, so P17 is the MAS for (23).

The set of vertices of PN is given by the matrix V (PN )
below, together with the control matrix Uv

V (PN ) = (V1 ; − V1)

where

V1 =
(

10 9.7 9.1 8.2 7 5.5 3.7 2.3 −10
0 1.5 3 4.5 6 7.5 9 10 10

)
and

Uv = (U1 ; − U1)

where

U1 =
(
−1 −1 −1 −1 −1 −1 −1 −1 −1

)
Using the algorithm (22), Figure 3 shows the state space

partition and three different trajectories of the closed loop
system, depending on the realization of α(t).

Fig. 3. State space partition and trajectories of the closed loop system for
example 1.

For the initial condition x(0) = (−4 10)T , Figure 4
shows the realization of α(t), the state and input trajectories
and the interpolating coefficient c as a function of t. As
expected, c(t) is positive and non-increasing.

B. Example 2

This example is taken from [18]. Consider the uncertain
discrete time system:

x(t+ 1) = A(t)x(t) +Bu(t) (24)

where
A(t) = α(t)A1 + (1− α(t))A2

A1 =
(

1 0.1
0 0.99

)
, A2 =

(
1 0.1
0 0

)
,

and B(t) = (0 0.0787)T . At each sampling time α(t) ∈
[0, 1] is an uniformly distributed pseudorandom number. The

Fig. 4. The realization of α(t), state and input trajectories and interpolating
coefficient for example 1.

constraints are −1 ≤ x1 ≤ 1, −1 ≤ x2 ≤ 1 and −2 ≤ u ≤
2. Solving (10) gives the feedback gain K = (−92.8160 −
14.4876).

The set of vertices of PN is given by the matrix V (PN )
below, together with the control matrix Uv

V (PN ) = (10−1V1 ; − 10−1V1)

where
V1 =

(
3.4 2.5 2.2 1.7 1.1 0.3 −0.7 −1.8 −2 −3.3
−8.5 0 1.6 3.2 4.8 6.5 8.1 9.8 10 10

)
and

Uv = (U1 ; − U1)

where
U1 = ( −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 )

Using the algorithm (22) gives Figure 5 showing the state
space partition and four different trajectories of the closed
loop system, depending on the realization of α(t).

Fig. 5. State space partition and trajectories of the closed loop system for
example 2.

For the initial condition x(0) = (0.05 0)T , Figure 6
shows the realization of α(t), the state and input trajectories,
and the interpolating coefficient c as a function of t. As a
comparison, Figure 7 shows the state and input trajectories
for the same initial condition, using algorithms described in
[18].
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Fig. 6. The realization of α(t), state and input trajectories and the
interpolating coefficient c for example 2

Fig. 7. State and input trajectories for example 2, using algorithms in [18].

VII. CONCLUSION

In this paper a novel interpolation scheme by linear
programming is introduced for time-varying and uncertain
linear discrete-time plants with polyhedral state and control
constraints. The interpolation is done between global vertex
control and local unconstrained robust optimal control. A
proof of asymptotic stability is given. Several simulation
examples are presented including a comparison with an
earlier solution from the literature.

The resulting control law is affine over a polyhedral
partition of the state space and is thus similar to Explicit
Model Predictive Control. In a companion paper we show
how to partition the state space and merge polyhedral cells by
off-line computation of the proposed control law. However,
the implicit version with the on-line LP-solution as presented
here is computationally attractive, since the size of the LP-
problem solved in each sampling instant is independent of
the any prediction horizon.

In contrast to most MPC schemes, the present controller
is suitable for uncertain and time-varying plants, and gives

local optimal control We believe that it will prove attractive
for some fast MPC-like applications in industry.
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