
  

  

Abstract—In this paper, an augmented form of the smooth 

variable structure filter (SVSF) is proposed. The SVSF is a 

state estimation strategy based on variable structure and 

sliding mode concepts. It uses a smoothing boundary to remove 

chattering (excessive switching along an estimated state 

trajectory). In its current form, the SVSF defines the boundary 

layer by an upper-bound on the uncertainties present in the 

estimation process (i.e., modeling errors, magnitude of noise, 

etc.). This is a conservative approach as one would be limiting 

the gain by assuming a larger smoothing boundary subspace 

than what is necessary. A more well-defined boundary layer 

will yield more accurate estimates. This paper derives a 

solution for an optimal boundary layer width by minimizing 

the trace of the a posteriori covariance matrix. The results of 

the derivation are simulated on a linear mechanical system for 

the purposes of control, and compared with the Kalman filter. 

I. INTRODUCTION 

TATE and parameter estimation theory is particularly 

important for the successful control of mechanical and 

electrical systems. In most control scenarios, a number of 

states may be required, however direct observations or 

measurements may not always be available. Estimation tools 

such as filters can be used to extract information on the 

states from the system. The term filter is used because one 

needs to remove unwanted signals such as noise from the 

measurements, in order to obtain an accurate estimate of the 

states. Clearly, for the successful control of a system, 

accurate knowledge of the states is critical. 

The most popular and well-studied estimation method is 

the Kalman filter (KF). Introduced in the early 1960’s, it 

yields a statistically optimal solution for linear estimation 

problems in the presence of Gaussian noise [1]. The KF is 

formulated in a predictor-corrector manner, such that one 

first predicts the state estimates using knowledge of the 

system model. These estimates are termed a priori, meaning 

‘prior to’ knowledge of the observations. A correction term 

is then added based on the innovation (also called residuals 

or measurement errors), thus forming the updated or a 

posteriori (meaning ‘subsequent to’ the observations) state 

estimates. 
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The extended Kalman filter (EKF) was introduced for 

nonlinear systems and measurements [2]. Essentially the 

EKF works in a similar fashion to the KF, but requires 

linearization (i.e., first-order Taylor series) [3]. This comes 

at a cost of optimality. The act of truncating the higher-

orders through the process of linearization removes 

information on how the system behaves or the mapping of 

the measurements, thus introducing uncertainties in the 

estimation process. For mild nonlinearities, the EKF has 

been shown to work very well. However, the EKF is shown 

to fail in cases where the model or measurements have 

significant nonlinearities [4]. 

Sliding mode control and estimation techniques have been 

around for quite a few decades, and are mainly popular due 

to their relative ease of implementation and robustness to 

modeling uncertainties [5,6]. In a typical sliding mode 

control scenario, one utilizes a discontinuous switching gain 

to maintain the states along some desired trajectory [7]. This 

plane is quite often referred to as a sliding surface, in which 

the purpose is to keep the state values along this surface by 

minimizing the state errors. Ideally, if the state value is off 

or away from the surface, a switching gain would be used to 

push the state towards the sliding surface. The gain is 

calculated based on the proximity of the states from a 

switching hyperplane. Once on the surface, the states slide 

along the surface referred to as a sliding mode [7]. The 

discontinuous switching brings an inherent amount of 

stability to the control or estimation strategy, while also 

introducing excessive chattering (from the switching). These 

sliding mode concepts are based on variable structure 

control, in which one alters the dynamics of a system by the 

introduction of high-frequency switching [5]. 

A smoothing boundary layer may be introduced along the 

sliding surface in order to saturate and smooth out the 

chattering within the boundary region. In the KF, one may 

derive the optimal gain (to be applied on the a priori 

estimate) by taking the partial derivative of the a posteriori 

covariance (trace) with respect to the gain [2,8]. The trace of 

the covariance is taken because it represents the state error 

vector. Similarly, one can solve for the ‘optimal’ boundary 

layer widths for the SVSF by performing the same action, 

but with respect to the smoothing boundary layer term �. 

II. ESTIMATION STRATEGIES 

Consider a linear dynamic system defined by using the 

following two equations: 
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���� � ��� � ��� � �� (1) 	��� � 
���� � ���� (2) 

 

The Appendix contains a list of nomenclature. It is the goal 

of any estimation strategy to obtain the best possible state 

estimate �� by minimizing the effects of modeling 

uncertainties (typically in � or 
), as well as the system and 

measurement noises (� and �, respectively). 

A. Kalman Filter 

The following five equations form the core of the KF 

algorithm, and are used in an iterative fashion. Equation (3) 

defines the a priori estimate based on the system definition, 

and (4) is the corresponding state error covariance matrix. 

The Kalman gain is defined by (5), and is used to update the 

state estimate as shown in (6). The a posteriori state error 

covariance matrix is then calculated by (7). 

 �����|� � �
���|� � ���� (3) ����|� � 
��|�
� � �� (4) 

���� � ����|�
��
����|�
� � ������� (5) 

�����|��� � �����|� ������	��� � 
�����|�� (6) ����|��� � �� � ����
�����|� (7) 

 

A number of different methods have extended the classical 

KF to nonlinear systems, with the most popular one being 

the EKF [4,9]. The EKF is conceptually similar to the KF; 

however, the nonlinear system is linearized according to its 

Jacobian. This linearization process introduces uncertainties 

that can sometimes cause instability [9]. 

B. Smooth Variable Structure Filter 

The variable structure filter (VSF) was first proposed in 

2003, and was introduced as a new type of predictor-

corrector estimator based on the sliding mode concept [10]. 

It is a type of sliding mode estimator, where gain switching 

is used to ensure that the estimates converge to within a 

boundary of the true state (i.e., existence subspace). The 

smooth variable structure filter (SVSF) was later derived 

from the VSF, and uses a much simpler and less complex 

gain calculation [11]. In its present form, the SVSF is stable 

and robust to modeling uncertainties and noise, given an 

upper bound on the level of un-modeled dynamics or 

knowledge of the magnitude of noise. 

The basic estimation concept of the SVSF is shown in the 

following figure. An initial estimate of the states is made 

based on probability distributions or designer knowledge. 

Through the use of the SVSF gain, the estimated state will 

be forced to within a region around the state trajectory 

referred to as the existence subspace. Once the estimate 

enters the existence subspace, it is forced into switching 

along the system state trajectory. A saturation term may be 

used in this region to reduce the magnitude of chattering and 

smooths-out the result. The SVSF is robust to uncertainties, 

making this strategy an attractive method for control 

problems when not all of the dynamics are well defined. 

 
Fig. 1. The smooth variable structure filter estimation concept is 

shown in the above figure [11]. 

 

The SVSF method is model based and applies to 

differentiable linear or nonlinear dynamic equations. The 

estimation process is iterative and may be summarized by 

the following set of equations (for a linear control or 

estimation problem). Like the KF, the system model is used 

to calculate a priori state and measurement estimates. A 

corrective term, referred to as the SVSF gain, is calculated 

as a function of the error in the predicted output and a 

smoothing boundary layer. This gain is then used to update 

the state estimates. Note that the estimation process is stable 

due to the gain calculation of (11), which keeps the estimates 

bounded [11]. 

The switching found within the existence subspace is 

smoothed out by using the saturation term of (11), which is 

defined by the a priori output error and some predetermined 

smoothing boundary layer width. In its current form, the 

boundary layer width is defined by using the upper bound 

knowledge of the uncertainties and noise levels. However, 

an equation for the boundary layer width can be derived in 

the following section, to make it less conservative. 

 �����|� � �
���|� � ���� (8) 	̂���|� � 
������|� (9) �����|�
� 	��� � 	̂���|� (10) 

���� � �������|�
� � � ����|��� ∘ !"# $�����|�� % (11) 

�����|��� � �����|� � ���� (12) �����|���
� 	��� � 
������|��� (13) 

 

Two critical variables in the SVSF estimation process are 

the a priori and a posteriori output error estimates, defined 

by (10) and (13), respectively. 

III. DERIVATION OF THE BOUNDARY LAYER 

It is typically assumed that a boundary layer exists for 

each state trajectory. For the case when there are fewer 

measurements than states, one needs to implement the 

reduced order form of the SVSF [11]. This allows the 

creation of a full measurement matrix, typically in the form 
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of an identity. Consequently, each measurement error can be 

mapped to its corresponding state boundary layer. For the 

case when there are more measurements than states, the 

system output (or measurements) can be mapped to the 

states. Therefore, it is assumed that the measurements are 

completely observable. 

From [12], the revised SVSF gain and the a posteriori 

covariance (with an identity measurement matrix) are 

defined respectively as follows: 

 

���� � ���� ���	������
�� 
 �	������

� ��
 �����	������
�� ���� �	��������� 

(15) 

�������� � &� � ����'������&� � ����'�
� ������������

�  
(16) 

 

A solution of the ‘optimal’ value may be found by solving 

for � from the following: 

 ()#*"+�����������,(� � � (17) 

 

Essentially, one needs to substitute (15) into (16), and 

(17). Prior to doing this, consider the following definitions to 

simplify the process of determining a solution, let: 

 

� � ��������
�� � ������� (18) 

" � - � ./"0&-'" � -1" (19) 

 

Also, consider the following rules for solving partial 

derivatives with respect to a matrix [13]: 

 

�	
�2��
����
��������
(&#*"+���3���'(� � ��3 (20) 

�	
�2��	���
����
��������
(&#*"+���3�'(� � 3� (21) 

 

According to the chain rule [14], one may be able to 

rewrite (17) as follows: 

 ��
���	������������� �
��
���	����������������

������� � � (22) 

 

Each partial derivative in (22) will be solved next. The 

first term is solved by starting with an expansion of (16): 

 �������� � ������ � ���������� � ����������
�  

���������������
� � ������������

�  
(23) 

 

Next, each term in (23) will be solved, as per (20) and (21): 

 ()#*"+�����������,(����

� � (24) 

()#*"+��������������,(����

� ��������  (25) 

()#*"+�������������
� �,(����

�
()#*"+�������������� �,

(����

� ������� 

(26) 

()#*"+����������������
� �,(����

� ����������� (27) 

(&#*"+��������������
� �'(����

� ��������� (28) 

 

Combining (24) through (28) yields a solution for the first 

partial derivative in (22), as follows: 

 ()#*"+�����������,(����

� �������� � ������ 

������������ � ��������� 

(29) 

 

Due to the fact that the state error covariance matrix is 

symmetric, (29) may be simplified further: 

 ��
���	����������������

� �������� � ������������ � ����� (30) 

 

It is important to note that the Kalman gain may be 

obtained by solving for ���� in the above equation (by 

setting it to zero) [8]. The second partial derivative in (22) 

will now be solved. Note that the region of interest for the 

value of the boundary layer width is inside the saturation 

term of (15). Furthermore, using definitions (18) and (19), 

the gain may be rewritten as: 

 

���� � ./"0 ��1���̅��������./"0 ��������
��� (31) 

 

Simplifying (31) yields: 

 ���� � �1���̅ (32) 

 

Also, note the following two properties for matrix 

derivatives [14], assuming that matrix 2 is invertible and # is 

some parameter of interest: 

 (25(# �
(2(# 5 � 2 (5(#  (33) 

(2��

(# � �2��
(2(# 2�� (34) 

 

From (32) and (33), one has: 

 (����(� �
(�1��(� �̅ � �1�� (�̅(� (35) 

 

Where (35) simplifies to the following: 
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(����(� �
(�1��(� �̅ (36) 

 

Utilizing (34), (36) can be written as: 

 (����(� � ��1�� (�1(� �1���̅ (37) 

 

Finally, the second term in (22) may be found by 

simplifying (37), such that: 

 (����(� � ��1���̅ (38) 

 

Substituting (30) and (38) into (22) yields: 

 ��������� � �����)������ � ����,�&��1���̅' � � (39) 

 

Recall that the measurement innovation covariance (with 

an identity for the measurement matrix) is defined by [2]: 

 6��� � ������ � ���� (40) 

 

Such that (39) may be written as: 

 ��������� � �����6����&��1���̅' � � (41) 

 

Simplifying (41) further yields: 

 �������� � ����6�����̅ � � (42) 

 

Substituting (32) into (42) and expanding further gives: 

 

������� � �1���̅)������ � ����, � � (43) 

 

Now what remains is to simplify (43) and solve for the 

boundary layer width �. This is accomplished by isolating 

the � term: 

 

�1�� � ��������̅)������ � ����,�777777777777777777777777�� (44) 

 

Finally, solving (44) yields an equation for a variable 

boundary layer (to be calculated at each time step) in a 

matrix form: 

 

���� � ./"0 8��������̅)������ � ����,�777777777777777777777777��77777777777777777777777777777777777��9 (45) 

 

Furthermore, one can define a simplified version of (45) 

as follows: 

 

���� � ������� � ����
����������������������������������� ��	�������� 
 �	������ (46) 

 

The proposed boundary layer equation (46) is found to be 

a function of the a priori state error covariance, 

measurement covariance, a priori and previous a posteriori 

measurement errors, and the convergence rate or SVSF 

‘memory’. It appears that the width of the boundary layer is 

therefore directly related to the level of modeling 

uncertainties (by virtue of the errors) and measurement 

noise. There is no need to define the boundary layer widths 

as before, as they now may be solved directly at each time 

step. A revised SVSF estimation process may be 

summarized as follows. Note that [12] describes the 

covariance derivations in detail. 

 ������� � �
����� � ���� (47) ������ � �
�����
� � ���� (48) �������
� 	��� � 
�������� (49) 

���� � ������� � ����
����������������������������������� ��	������

�� 
 �	������ (50) 

���� � ���������
�� � �������� � !"# $�����������

% (51) 

��������� � ������� � ���� (52) �������� � &� � ����'������&� � ����'�
� ������������

�  
(53) 

���������
� 	��� � 
���������� (54) 

IV. SIMULATION EXAMPLE 

In this section, an electrohydrostatic actuator (EHA) is 

simulated. The system is based on an actual prototype built 

for control experimentation [11,15]. The purpose of this 

simulation is to demonstrate that the new form of the SVSF 

is numerically stable, and provides an alternative to the 

Kalman filter (KF) for systems when modeling uncertainties 

are present. However, recall that for known linear systems, 

the KF will yield the optimal solution (i.e., best estimate). 

The EHA is a third order system with state variables 

related to its position, velocity, and acceleration. It is 

assumed that all three states have measurements associated 

with them (i.e., full measurement matrix). The input to the 

system is a random normal distribution with magnitude 1. A 

step change is inserted into the input of the system half-way 

through the duration. The sample time of the system is 0.001 

seconds. The entire EHA system description may be found 

in [15], however for the purpose of this paper, the discrete 

state-space model of the system is simply defined as follows: 

 

���� � � � ����� �

� � �����

������� ��	�
�
 �����	

� �� 
 � �

�

������

� �� (55) 

 

The initial state values are set to zero. The system and 

measurement noises are considered to be Gaussian with 

maximum amplitude corresponding to 5 to 10% error 

(:	
� � ����� ��� ��� and ;	
� � ���� � ����). 

The initial state error covariance, system noise covariance, 

and measurement noise covariance are defined respectively 

as follows: 
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��|� � 10� (56) � � 10./"0&:	
�' (57) � � 10./"0&;	
�' (58) 

 

For the SVSF estimation process, the boundary layer 

widths were initialized as �� � �1 10 100��. The 

boundary widths were initialized based on some a priori 

knowledge of the noise; however, their values are not very 

sensitive to the success of the estimation process. The main 

results of applying the KF and the new SVSF on the EHA 

problem are shown in the following figure. This figure 

shows the true position of the EHA with the corresponding 

estimates. The estimation results of both filters are relatively 

the same. It is important to remind the reader that the KF is 

an optimal strategy given white noise and in the absence of 

uncertainties, so at the very best the SVSF can only match 

the estimation accuracy. 

 

 
Fig. 2. EHA simulation results with the Kalman filter and the 

proposed smooth variable structure filter. The results are nearly 

the same; hence the lines are difficult to distinguish. 

 

The velocity and acceleration estimates were relatively the 

same as those shown in the above figure (and were thus 

omitted for space constraints). The RMSE results of running 

the simulation are as follows: 

 
TABLE I 

RMSE SIMULATION RESULTS 

Filter 
Position 

(m) 

Velocity 

(m/s) 

Acceleration 

(m/s2) 

KF 0.0233 0.2370 2.4415 

SVSF 0.0246 0.2381 2.4422 

 

As shown in the above table, the KF provides the optimal 

result. However, the new form of the SVSF yields a near-

optimal estimate of the states. Although the previous form of 

the SVSF yielded relatively good results, it was still not 

optimal [12]. An advantage of using the new form of the 

SVSF over the KF is its robustness to modeling errors and 

uncertainties. 

 

Consider another case where there are modeling errors 

and the filter model is defined incorrectly as follows: 

 

���� � � 1 0.001 00 1 0.001�240 �28 0.9418$ �� % � 00557.02$ (� (59) 

 

The following figure shows the results of applying the KF 

and the new SVSF on the EHA problem with an incorrect 

system model introduced at 0.5 seconds, as defined by (59). 

 

 
Fig. 3. EHA simulation results with modeling uncertainties 

introduced at 0.5 seconds. Notice how the KF fails to yield a 

reasonable estimate. 

 

The RMSE results of running the simulation with 

modeling uncertainties are as follows: 

 
TABLE II 

RMSE SIMULATION RESULTS 

Filter 
Position 

(m) 

Velocity 

(m/s) 

Acceleration 

(m/s2) 

KF 0.4036 0.5018 2.7031 

SVSF 0.0234 0.2276 2.7125 

 

For this case, as shown in the previous table, the SVSF 

provides the best result in terms of estimation error. The 

position error for the KF increased by roughly 2,000%, and 

the velocity error increased by about 200%. The modeling 

errors were introduced in the acceleration term of the system 

model described by (59). Both the KF and SVSF yielded the 

same acceleration estimate. However, the SVSF remained 

stable and near-optimal for the first two states, unlike the 

KF. The following figure shows the boundary layer width 

over-time for the acceleration estimate. Notice how the 

boundary layer increases at the inception of the modeling 

uncertainties at 0.5 seconds. This compensates for the 

increased errors and uncertainties. 
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Fig. 4. The acceleration boundary layer width is shown above. 

Notice how the width increases at the introduction of modeling 

uncertainties. 

V. CONCLUSIONS 

This paper introduced a revised form of the smooth 

variable structure filter with an optimal variable boundary 

layer. The proposed estimation strategy was applied to an 

electrohydrostatic actuator for comparison with the popular 

Kalman filter. For known linear systems, the estimation 

errors are comparable (1% difference). However, in the 

presence of modeling uncertainties or errors, the SVSF was 

shown to yield the best result. The revised form of the SVSF 

yields a near-optimal estimation and is demonstrated to be 

robust to modeling errors. 

APPENDIX 

The following is a table of important nomenclature used 

throughout this paper: 

 
TABLE III 

LIST OF NOMENCLATURE 

Parameter Definition 

� State vector or values � Measurement (system output) vector or values � Input to the system � System noise vector � Measurement noise vector � Linear system transition matrix 	 Input gain matrix 
 Linear measurement (output) matrix � Filter gain matrix (i.e., KF or SVSF) � State error covariance matrix 
 System noise covariance matrix � Measurement noise covariance matrix � Measurement (output) error vector ������� or �� Defines a diagonal matrix of some vector a ������ Defines a saturation of the term a � SVSF ‘convergence’ or memory parameter � SVSF boundary layer width |�| Absolute value of some parameter a � Transpose of some vector or matrix ^ Estimated vector or values ! " 1|! A priori time step (i.e., before applied gain) ! " 1|! " 1 A posteriori time step (i.e., after update) 
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