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Abstract— A general class of nonlinear systems containing
delays in both state and input is considered and a dynamic
high-gain scaling based control design is proposed. The class
of systems considered is of a general structure which is not
necessarily of any triangular form. All functions appearing in
the system dynamics are allowed to be uncertain as long as
some polynomial bounds on ratios of uncertain system terms
are available. Both state and input delays are allowed to be
time-varying and uncertain. The control design is based on our
recent results on generalized scaling utilizing appropriate (not
necessarily successive) powers of the scaling parameter. The
control implementation does not require knowledge of the time
delays or any magnitude bounds thereof; the only information
about the time delays that is required is a bound on the rate
of variation of time delays.

I. INTRODUCTION
The control of systems with state and input time delays

has attracted significant research interest in the literature (see
[1]–[11] and the references therein) for a variety of classes of
nonlinear systems. Control Lyapunov-Razumikhin functions and
control Lyapunov-Krasovskii functionals have been considered
to provide constructive tools for control design [1], [2] for
delayed systems. A domination redesign approach based on con-
trol Lyapunov-Razumikhin functions and backstepping based
design yielding delay-independent feedback were proposed in
[4]. Adaptive backstepping based on a LaSalle-Razumikhin
approach using a Lyapunov-Razumikhin function was proposed
in [5]. Robust backstepping of time delayed systems has also
been considered in [7]. The case of input delays (or equivalently
measurement delays) has been addressed in [6], [9]–[11].

The dynamic high-gain scaling based design technique [12],
[14], [16], [25]–[27] has been developed in a recent sequence
of papers and has been demonstrated to be a versatile control
design approach for various classes of nonlinear systems includ-
ing both strict-feedback and feedforward classes of systems as
well as polynomially bounded nontriangular systems. High-gain
scaling is a popular technique for the control of strict-feedback
systems and various high-gain based controller and observer
designs have been considered in the literature ( [18]–[21] and
references therein). A combination of a high-gain observer and
a backstepping based controller was proposed in [15], [22]
with the dynamics of the scaling parameter r being of the
form of a scalar Riccati equation. The dual observer/controller
dynamic high-gain scaling technique was introduced in [16],
[23] and shown to be a flexible design technique capable of
handling uncertain terms dependent on all states and uncertain
ISS appended dynamics with nonlinear gains from all the system
states and the input (previous results allowed the ISS appended
dynamics to have a nonzero gain only from the output). The
dynamic high-gain scaling technique provides a unified frame-
work for state-feedback and output-feedback control of both
strict-feedback [16], [24]–[26] and feedforward [14] systems as
well as state-feedback control of nontriangular polynomially-
bounded systems [27]. The control of a specific structure of
systems with state delay (but no input delays) that admit a
linear observer/controller design as a particular special case of
the dual high-gain scaling approach was addressed in [31]. The
control of feedforward systems with input and state delays was
addressed in [29], [30] based on the dynamic dual high-gain
scaling technique. The application of the dual dynamic high-

The authors are with the Control/Robotics Research Laboratory, Dept. of
ECE, Polytechnic Institute of NYU, Brooklyn, NY 11201, USA. This work
was supported in part by the NSF under grant ECS-0501539. Corresponding
author: F. Khorrami, khorrami@smart.poly.edu.

gain scaling approach to control of strict-feedback systems with
input and state delays was considered in [17].

In this paper, we further investigate the robustness of the
dynamic high-gain scaling based controllers as applied to the
following class of nontriangular nonlinear systems that features
state and input time delays:
ẋi(t) = φ(i,i+1)(t, x(t), u(t))xi+1

+ φi(t, x(t), u(t), x(t− τi), u(t− τi))
for i = 1, . . . , n− 1

ẋn(t) = φn(t, x(t), u(t), x(t−τn), u(t−τn))+µ(t, x, u)u(t) (1)
where x = [x1, . . . , xn]T ∈ Rn is the state and u ∈ R is the
input. φ(i,i+1) : Rn+2 → R, i = 1, . . . , n − 1, φi : R2n+3 →
R, i = 1, . . . , n, and µ : Rn+2 → R are uncertain contin-
uous functions1. τ1, . . . , τn are uncertain non-negative values
representing time-varying time delays in state and input signals.
It is assumed that sufficient conditions (e.g., local Lipschitz
property) on φi needed for local existence and uniqueness of
solutions of (1) are satisfied. A general class of non-triangular
systems with system uncertainties and uncertain time delays is
considered and a state-feedback controller is proposed based on
the generalized scaling technique. As a motivating example of
the class of systems that is addressed by the proposed control
design methodology, consider the third-order system given by:

ẋ1(t) = (1+x21(t))x2(t)+x51(t)+x31(t− τ1)

ẋ2(t) = (1 + x23(t) +
√
|u(t)|)x3(t) + x21(t)x2(t)x3(t)

+x21(t− τ2)
√
|x3(t− τ2)|

+x1(t− τ2)x2(t− τ2) sin(x3(t) + x3(t− τ2))

ẋ3(t) = u(t) + x21(t)x32(t) + x21(t− τ3)|u(t− τ3)|
1
4

+x21(t− τ3)x22(t− τ3) cos(u(t− τ3)) (2)
where τ1, τ2, and τ3 are uncertain possibly time-varying
time delays. The system (2) is in neither strict-feedback nor
feedforward triangular structures. The global stabilization and
asymptotic regulation (to zero) problem for this system cannot
be addressed using any systematic control design methodology
currently available in the literature. If τ1, τ2, and τ3 are zero,
then the generalized scaling technique [27] provides a globally
stabilizing high-gain scaling based control design that regulates
x(t) and u(t) exponentially to zero as t → ∞. The goal of
this paper is to extend the generalized scaling technique to
handle time delayed functions of input and state in the system
dynamics and thereby to provide control designs that achieve
global asymptotic results for systems such as (2).

II. STATEMENT OF MAIN RESULT
The problem addressed in this paper is the design of a

dynamic state-feedback controller of the following form to
globally stabilize the system (1) and regulate the signals x(t)
and u(t) to zero as t→∞:

$̇(t) = Ω1(x(t), $(t)) ; u(t) = Ω2(x(t), $(t)). (3)
This stabilization problem will be addressed under the assump-
tions listed below. Note that the dynamic control law (3) is
delay-free in the sense that it does not utilize delayed versions
of the state or input. The functions φi, i = 1, . . . , n, φ(i,i+1), i =
1, . . . , n− 1, and µ are uncertain functions, regarding which no

1For simplicity, a single time delay value is considered in (1) for all
components entering into the dynamics of each state variable. The proposed
controller design can evidently be applied (with appropriate additional terms
in the overall system Lyapunov function) to the case when there are multiple
time delay values in the system dynamics.
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knowledge is assumed to be available beyond what is stated in
the assumptions listed below. Furthermore, the time delay values
τ1, . . . , τn are allowed to be time-varying and uncertain, with
no knowledge assumed beyond what is stated in Assumption
A6. Before stating the main result of the paper, some required
notations and terminology are summarized below:
R, R+, Rk, and Rk

∗
denote the set of real numbers, the set

of non-negative real numbers, the set of real k-dimensional
column vectors, and the set of real k-dimensional row vectors,
respectively. diag(η1, . . . , ηk) denotes the k×k diagonal matrix
with the ith diagonal element being ηi. upperdiag(η1, . . . , ηk−1)

denotes the k × k matrix with the (i, i + 1)th entry being
ηi, i = 1, . . . , k − 1, and zeros elsewhere. If η ∈ Rk, S(η)
denotes the k × k diagonal matrix with (i, i) entry being the
sign (±1; sign of zero taken to be +1) of the ith element
of η. A function f : Rl → R is a multinomial if it is of
the form f(z1, . . . , zl) =

∑N
k=1 χk

∏l
i=1 z

β(i,k)

i , N ≥ 1 with
χk and β(i,k), i = 1, . . . , l, k = 1, . . . , N , being nonnegative
real numbers. A multinomial f is said to be superlinear if a
continuous nonnegative function f (called its bounding function)
exists such that |f(z1, . . . , zl)| ≤ f(z1, . . . , zl)

√∑l
i=1 z

2
i . A

real number ζ is said to dominate f relative to real numbers
ζ1, . . . , ζl if ζ ≥ ζ1β(1,k) + . . . + ζlβ(l,k), k = 1, . . . , N . To
denote that ζ dominates f relative to ζ1, . . . , ζl, we use the
notation ζ � f |(ζ1,...,ζl). It can be shown that the multinomial of
form defined above is superlinear if and only if

∑l
i=1 β(i,k) ≥ 1

for each k ∈ {1, . . . , N} for which χk > 0. The notation |π|
denotes the Euclidean norm of a vector (or scalar) π.

The principal result of this paper is stated in Theorem 1
below, the proof of which is presented in Section III.
Theorem 1: Under Assumptions A1-A6 listed below, continu-
ous functions K : Rn+2 →Rn+1∗ , q : R→ R+, R : Rn+1 →
R+, and α : Rn+2 → R+, a nonnegative constant qn+1, and
positive constants q1, . . . , qn, and bq can be chosen such that
all solution trajectories of the closed-loop system formed by the
dynamic controller 2

ξi =
xi
rqi

, i = 1, . . . , n+ 1 ; ξ = [ξ1, . . . , ξn, ξn+1]T (4)

u = µ̃(x)xn+1 ; ẋn+1 = v (5)

v = rqn+1
[
K(x, xn+1, r)ξ − bq

ṙ

r
ξn+1

]
(6)

ṙ = rq(R(ξ)− r)α(x, xn+1, r) ; r(0) ≥ 1 (7)
and system (1) starting from any initial conditions
(x(0), xn+1(0), r(0)) ∈ Rn × R × [1,∞) have the following
properties: (a) all closed-loop signals are bounded on the time
interval t ∈ [0,∞), (b) the signals xi(t), i = 1, . . . , n + 1, and
u(t) asymptotically converge to zero as t→∞.
Assumption A1: A constant σ > 0 is known such that for
all t ∈ R+, x ∈ Rn, and u ∈ R, |φ(i,i+1)(t, x, u)| ≥ σ >
0 , i = 1, . . . , n − 1 and |µ(t, x, u)| ≥ σ > 0. The sign of
each φ(i,i+1), i = 1, . . . , n − 1, and of µ is independent of its
arguments and known.
Assumption A2: Continuous functions φ(i,i+1) : Rn+1 →
R+, i = 1, . . . , n−1 and µ : Rn+1 → R+, are known such that
|φ(i,i+1)(t, x, u)| ≤ φ(i,i+1)(x, u) and |µ(t, x, u)| ≤ µ(x, u) for
all t ∈ R+, x ∈ Rn, and u ∈ R.
Assumption A3: Continuous (possibly uncertain) functions
φ(i,j) : Rn+2 → R+, i = 1, . . . , n, j = 1, . . . , i, Ξ(i,j) :

Rn+1 → R+, i = 1, . . . , n, j = 1, . . . , i, and φfi : Rn+2 →
R+, i = 1, . . . , n, exist such that the inequalities in (8) hold
for all t ∈ R+, x ∈ Rn, and u ∈ R. Continuous functions
φ(n,j) : Rn+1 → R+, j = 1, . . . , n, are known such that
φ(n,j)(t, x, u) ≤ φ(n,j)(x, u), j = 1, . . . , n for all t ∈ R+,
x ∈ Rn, and u ∈ R.

2In cases where all signals appearing in an equation are indexed at the
same time (e.g., in equations (4)-(7)), the explicit time argument is omitted
for notational convenience and clarity.

Assumption A4: Continuous functions µ̃ : Rn → R+ and
γu : Rn → R+, superlinear multinomials fi, i = 1, . . . , n,
and (not necessarily superlinear) multinomials f(i,j), i =

1, . . . , n, j = 1, . . . , i, f̃(i,j), i = 1, . . . , n, j = 1, . . . , i, and
f̃i, i = 2, . . . , n, are known such that the following inequalities
(where φ(n,n+1)(t, x, u)

4
= µ̃(x)µ(t, x, u)) hold for all t ∈ R+,

x ∈ Rn, and u ∈ R, with φ(0,1)
4
= φ(1,2):

φ(i,j)(t, x, u)√
|φ(i,i+1)(t, x, u)||φ(j−1,j)(t, x, u)|

≤ f(i,j) (|x1|, . . . , |xn|, γu(x)|u|) ,
for i = 1, . . . , n, j = 1, . . . , i (9)

|Ξ2
(i,j)(x, u)|

|φ(1,2)(t, x, u)| ≤ f̃(i,j) (|x1|, . . . , |xn|, γu(x)|u|)

for i = 1, . . . , n, j = 1, . . . , i (10)
|φ(i−1,i)(t, x, u)|
|φ(i,i+1)(t, x, u)| ≤ f̃i (|x1|, . . . , |xn|, γu(x)|u|)

for i=2, . . . , n (11)
φfi(t, x, u) ≤ fi(|x1|, . . . , |xn|, γu(x)|u|), i = 1, . . . , n (12)

and the inequality µ̃(x)γu(x) ≤ µ∗ holds for all x ∈ Rn with
µ∗ being a known positive constant.
Assumption A5: Positive constants c(i,j), i = 1, . . . , n, j =
1, . . . , i, c̃(i,j), i = 1, . . . , n, j = 1, . . . , i, ci, i = 1, . . . , n + 1,
c̃i, i = 2, . . . , n, and qi, i = 1, . . . , n, and a (not necessarily posi-
tive) constant qn+1 exist such that the set of linear inequalities in
(13)-(17) are satisfied. If any of f(i,j), i = 1, . . . , n, j = 1, . . . , i,
f̃(i,j), i = 1, . . . , n, j = 1, . . . , i, or f̃i, i = 2, . . . , n, are non-zero
constants, the right hand sides of the corresponding inequalities
in (13)-(16) reduce to zero. If any of f(i,j), i = 1, . . . , n, j =

1, . . . , i, or f̃(i,j), i = 1, . . . , n, j = 1, . . . , i, are zero, the
corresponding inequalities in (13)-(15) can be dropped. None
of the f̃i can be zero since φ(i,i+1), i = 1, . . . , n, are lower
bounded in magnitude by σ. If any of fi, i = 1, . . . , n + 1,
are zero, the corresponding inequalities in (17) can be dropped.
Note that none of the fi can be a non-zero constant since
fi, i = 1, . . . , n+ 1, are superlinear multinomials.
Assumption A6: The time-varying time delays τ1, . . . , τn are
uniformly bounded in time and satisfy, for all time, the inequali-
ties |τ̇i| ≤ τ i < 1 , i = 1, . . . , n, where τ i are known constants.
Remark 1: Assumption A1 ensures the controllability of the
system (1). Assumption A2 imposes the requirement that the
uncertain functions φ(i,i+1) and µ must have known time-
independent upper bounds as functions of x and u. Assumption
A3 imposes bounds on the uncertain terms φ(i,j) in the system
dynamics; the structure of the bounds is very general and
essentially only requires that the upper bounds on the uncertain
functions should admit factorizations into nonlinear and linear
functions. Assumption A4 addresses the relative sizes (in a
nonlinear function sense) of the terms φ(i,j), Ξ(i,j), and φ(i,i+1)
and plays a crucial role in ensuring solvability of a pair of cou-
pled Lyapunov inequalities as will be seen during the stability
analysis. The inequalities in Assumption A4 are formulated in
terms of superlinear multinomial functions of the entire state
and input and are quite general and do not particularly impose
a tight restriction on the system terms; in particular, inequalities
as in Assumption A4 are definitely satisfied if the functions
φ(i,j), Ξ(i,j), and φ(i,i+1) are themselves upper bounded by
superlinear multinomials (a very general class). Assumption A5
prescribes a set of linear inequalities, a solution of which will
be seen to play a role as scaling powers of a high-gain scaling
parameter. Assumption A6 is a fairly standard assumption in
control of systems with time-varying delays and essentially
requires that the values of the time delays should not change
faster than “real-time”. Among the Assumptions A1-A6, it is
only Assumption A5 that imposes a relatively strong restriction
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|φi(t, x(t), u(t), x(t− τi), u(t− τi))| ≤
i∑

j=1

φ(i,j)(t, x(t), u(t))|xj(t)|+
i∑

j=1

Ξ(i,j)(x(t− τi), u(t− τi))|xj(t− τi)|

+|φ(1,2)(t, x(t), u(t))|φfi(t, x(t), u(t)) , i = 1, . . . , n (8)
qi+1 + qi − qj − qj−1

2
− c(i,j) � f(i,j)|(q1,...,qn+1), i = 2, . . . , n , j = 2, . . . , i (13)

qi+1 + qi + q2 − 3q1
2

− c(i,1) � f(i,1)|(q1,...,qn+1), i = 1, . . . , n (14)

q2 − q1 − 2qj + 2qi − c̃(i,j) � f̃(i,j)|(q1,...,qn+1), i = 1, . . . , n , j = 1, . . . , i (15)

qi+1 + qi−1 − 2qi − c̃i � f̃i|(q1,...,qn+1), i = 2, . . . , n (16)
qi + q2 − q1 − ci � fi|(q1,...,qn+1) , i = 1, . . . , n. (17)

on the class of systems that can be handled by the proposed
control design approach. The inequalities (13)-(17) determine if
scaling powers q1, . . . , qn+1 can be found to achieve a high-
gain scaling based global control design via the generalized
scaling technique [27]. However, the verification of Assumption
A5 given a specific structure of the bounds from Assumptions
A3 and A4 is straightforward since (13)-(17) is simply a
system of linear inequalities in the unknowns q1, . . . , qn+1. The
requirement in Assumption A5 that q1, . . . , qn be positive can
be captured by appending the n inequalities qi > 0, i = 1, . . . , n
to this system of linear inequalities. In this context, note that the
factorization of upper bounds in (8) in Assumption A3 is non-
unique. For instance, a function such as x21x2x3 can be bounded
as any one of (|x1||x2||x3|)|x1|, (x21|x2|)|x3|, or (x21|x3|)|x2|.
This non-uniqueness in the factorization of the upper bounds
in Assumption A3 provides a highly useful design freedom to
aid in satisfying Assumption A5 since different factorizations
effectively result in different structures of right hand sides in
the system of linear inequalities in Assumption A5.
Remark 2: With the definition of the � property as defined
above, it can be seen that if f : Rl → R is a multinomial and
ζ � f |(ζ1,...,ζl), then for all η ≥ 1 and all [z1, . . . , zl]

T ∈ Rl,
the inequality

∣∣∣f(ηζ1z1, . . . , η
ζlzl)

∣∣∣ ≤ ηζf(|z1|, . . . , |zl|) holds.
This property will be useful during the stability analysis.
Remark 3: It can be shown (analogous to the reasoning used
in Section III in [27] that Assumptions A4 and A5 imply the
following statement: A positive constant ρ, continuous functions
R : Rn+1 → R+ and Rf : Rn+1 → R+, positive constants
qi, i = 1, . . . , n, and a (not necessarily positive) constant qn+1
are known such that the following inequalities hold for all t ∈
R+, u ∈ R, ξ ∈ Rn+1, and all r ∈ [R(ξ),∞):

φ̂(i,j)(t, ξ, u, r)√
φ̂(i,i+1)(t, ξ, u, r)φ̂(j−1,j)(t, ξ, u, r)

≤ ρ , i = 2, . . . , n,

for j = 2, . . . , i (18)
φ̂(i,1)(t, ξ, u, r)√

φ̂(i,i+1)(t, ξ, u, r)φ̂(1,2)(t, ξ, u, r)
≤ ρ

for i = 1, . . . , n (19)
φ̂(i−1,i)(t, ξ, u, r)

φ̂(i,i+1)(t, ξ, u, r)
≤ ρ for i = 2, . . . , n (20)

where φ̂(i,j)(t, ξ, u, r)
4
= rqj−qi |φ(i,j)(t, T−1(r)ξ, u)|, i =

1, . . . , n, j = 1, . . . , i+1, φ(n,n+1)(t, x, u) = µ̃(x)µ(t, x, u), and

T (r)
4
= diag( 1

rq1 ,
1
rq2 , . . . ,

1
rqn ). Also, for all t ∈ R+, u ∈ R,

ξ ∈ Rn, and all r ∈ [Rf (ξ),∞): φfi(t,T
−1(r)ξ,u)

rqi+q2−q1
≤ ρ , i =

1, . . . , n.
III. PROOF OF THEOREM 1

A dynamic state extension is defined as shown in (5) with
xn+1 being a new state coordinate and v being the new control
input into the extended system. A dynamic scaling of the state
variables x1, . . . , xn is defined as shown in (4). The control

law for v is defined to be of the form shown in (6) with K
being a continuous function and bq a positive constant. Note
that the assumption that µ̃(x)γu(x) ≤ µ∗ which is part of
Assumption A4 implies that γu(x)|u| ≤ µ∗|xn+1|. Hence, in
the extended system, the bounds on the uncertain functions
in Assumption A4 are bounded by a function of the states x
and ξn+1 and do not involve the new input v. The dynamic
high-gain scaling parameter r is a time-varying signal whose
dynamics will be designed to be of the form shown in (7) with
R : Rn+1 → R+, q : R → R+, and α : Rn+2 → R+

being continuous functions. The functions R, q, and α will be
designed during the stability analysis below; however, at this
stage, it is to be noted that the dynamics of r will be designed
such that ṙ(t) ≥ 0 at all times t, i.e., that r(t) is monotonically
non-decreasing in time. Furthermore, r will be initialized with
r(0) ≥ 1; hence, r(t) ≥ 1 for all time t. Local existence of
solutions starting from any initial condition is guaranteed by
the assumptions on the functions φ(i,i+1), φi, and µ and the
continuity (by construction) of functions appearing in the overall
dynamic controller. By construction, the functions appearing
in the dynamic controller inherit any continuity requirements
imposed on the functions appearing in the system dynamics and
in the bounds in the Assumptions A3 and A4. Hence, uniqueness
of solutions is guaranteed if these functions are all locally
Lipschitz-continuous; if not, while uniqueness of solutions is
not guaranteed, the theorem of Kurzweil [32] can still be used
to infer boundedness and convergence properties of all solutions
through the Lyapunov arguments in this section. Let the maximal
interval of existence of solutions be [0, tf ) where tf ∈ (0,∞].
The dynamics of the scaled states ξ are given by

ξ̇ = A(t, x, u, r)ξ +BK(x, xn+1, r)ξ + Φt −
ṙ

r
Dξ

B = [0, . . . , 0, 1]T ; D = diag(q1, . . . , qn, qn+1 + bq) (21)

and Φt is used to denote the signal

Φt =

[
1

rq1(t)
φ1(t, x(t), u(t), x(t− τ1), u(t− τ1)), . . . ,

1

rqn(t)
φn(t, x(t), u(t), x(t− τn), u(t− τn)), 0

]T
(22)

with A(t, x, u, r) being the (n + 1) × (n + 1) matrix with
A(i,i+1)(t, x, u, r) = rqi+1−qiφ(i,i+1)(t, x, u) , i = 1, . . . , n and
zeros elsewhere, and B being the (n + 1) × 1 vector with a 1
as the last element and zeros everywhere else. Here, φ(n,n+1)
is defined as φ(n,n+1)(t, x, u) = µ̃(x)µ(t, x, u). The constant
bq is picked such that bq > −qn+1. Under the Assumptions
A4 and A5 and using Remark 3, it can be shown as in [27]
that, given any positive constant c0, a continuous function
K : Rn+2 → R(n+1)∗ , a constant symmetric positive-definite
n × n matrix P , and positive constants ν1, ν2, and ν2 can be
found such that for all t ∈ R+, x ∈ Rn, u ∈ R, and r ≥ R(ξ),
the inequalities (23) and (24) are satisfied where In+1 denotes
an (n+1)×(n+1) identity matrix and Φt is the (n+1)×(n+1)
matrix with (i, j)th element being rqj−qi(t)φ(i,j)(t, x(t), u(t))
if 1 ≤ i ≤ n, 1 ≤ j ≤ i, and zeros elsewhere. Q1 and Q2 are
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P [A(t, x, u, r) +Q1ΦtQ2 + c0In+1 +BK(x, xn+1, r)]

+[A(t, x, u, r) +Q1ΦtQ2 + c0In+1 +BK(x, xn+1, r)]
TP ≤ −ν1rq2−q1 |φ(1,2)(t, x, u)|In+1 (23)

ν2In+1 ≤ PD +DP ≤ ν2In+1 (24)

arbitrary (n+1)× (n+1) diagonal matrices with each diagonal
entry +1 or −1. The demonstration of the simultaneous
solvability of the coupled Lyapunov inequalities (23) and (24)
is based upon the fact that, under the imposed assumptions,
the matrix A = A + Q1ΦtQ2 + c0In+1 is dual w-CUDD
(ρ̃) with ρ̃ = ρ + c0/σ for all r ∈ [R(ξ),∞). From [16], a
(n + 1) × (n + 1) matrix A with (i, j)th element A(i,j) is
said to be dual weakly Cascading Upper Diagonal Dominant
with parameter ρ or w-CUDD(ρ) with ρ being a given positive
constant if the following hold [28]:
1) A is in lower Hessenberg form, i.e., A(i,j) = 0 for j ≥ i+ 2.
2) The upper diagonal elements of A are non-zero, i.e.,
A(i,i+1) 6= 0, i = 1, . . . , n.
3) The following inequalities are satisfied:
|A(i,j)|/

√
|A(i,i+1)||A(j−1,j)| ≤ ρ for i = 2, . . . , n, j =

2, . . . , i; |A(i,1)|/
√
|A(i,i+1)||A(1,2)| ≤ ρ for i = 1, . . . , n;

|A(i−1,i)|/|A(i,i+1)| ≤ ρ for i = 2, . . . , n. Noting that D
is a diagonal matrix with positive diagonal entries, and
applying the results in [16], [28], the solvability of the
coupled Lyapunov inequalities (23) and (24) is inferred. By
the construction procedure described in [16], [28], the choice
of K depends only on the known upper and lower bounds
on φ(i,i+1), i = 1, . . . , n, and the known upper bounds on
φ(n,j), j = 1, . . . , n, and does not require knowledge of the
uncertain functions φ(i,j), i = 1, . . . , n, j = 1, . . . , i, and
φ(i,i+1), i = 1, . . . , n, themselves. Hence, K is a known
function of (x, xn+1, r). The continuity of K follows [28] from
continuity of φ(i,i+1), i = 1, . . . , n, and φ(n,j), j = 1, . . . , n.
The choice of P , ν1, ν2, and ν2 depends only on the choice
of ρ which is free to be arbitrarily picked and the signs of
φ(i,i+1) which are known and constant by Assumption A1.
Furthermore, K, P , ν1, ν2, and ν2 do not depend on Q1

and Q2. Note that while A and Φ depend explicitly on the
control input u, K does not depend on u but instead depends
on xn+1, the state variable of the dynamic extension. This
is a consequence of the fact that the bounds on the ratios of
elements of A and Φt, and consequently of the corresponding
CUDD parameters in the matrix A+Q1ΦtQ2+c0In+1, involve
γu(x)u, the design that u = µ̃xn+1, and the assumption that
µ̃(x)γu(x) is upper bounded by a known positive constant. A
controller Lyapunov function Vc : Rn+1 → [0,∞) is defined
as Vc(ξ) = ξTPξ where P is a constant matrix satisfying the
coupled Lyapunov inequalities (23) and (24) with c0 being any
positive constant. Vc satisfies

V̇c ≤ ξT
{
P [A+BK] + [A+BK]TP

}
ξ + 2ξTPΦt

− ṙ
r
ξT (PD +DP )ξ. (25)

The term 2ξTPΦt can be upper bounded as:

2ξT (t)PΦt ≤ ξT (t)PS(Pξ(t))ΦtS(ξ(t))ξ(t)

+ξT (t)S(ξ(t))Φ
T
t S(Pξ(t))Pξ(t)

+2λmax(P )|ξ(t)||Φ̃(t)|+ 2ξT (t)P Ξ̃t (26)
Φ̃(t)

4
= |φ(1,2)(t, x(t), u(t))|

×
[

1

rq1(t)
f1(x1(t), . . . , xn(t), γu(x(t))|u(t)|), . . . ,

1

rqn(t)
fn(x1(t), . . . , xn(t), γu(x(t))|u(t)|), 0

]T
(27)

and Ξ̃t is a (n+ 1)× 1 vector with ith element given by

Ξ̃i =

i∑
j=1

Ξ(i,j)(x(t− τi), u(t− τi))r−qi(t)|xj(t− τi)|. (28)

The (n+ 1)× 1 vector Φ̃ can be bounded as

|Φ̃| ≤
|φ(1,2)(t, x, u)|

rq1−q2
|ξ|
[ n∑
i=1

f
2
i (|ξ1|, . . . , |ξn|)

r2ci

] 1
2
. (29)

The term 2ξTP Ξ̃t can be upper bounded as
2ξTP Ξ̃t ≤ c0ξ

TPξ

+
λmax(P )

c0

n∑
i=1

( i∑
j=1

Ξ(i,j)(x(t− τi), u(t− τi))

× r−qi(t− τi)|xj(t− τi)|
)2

. (30)
An overall Lyapunov-Krasovskii functional is defined as

V = Vc +
λmax(P )

c0

n∑
i=1

∫ t

t−τi

(∑i
j=1 Ξ̃(i,j)(π)

)2

1− τ i
dπ (31)

where Ξ̃(i,j)(π) is used to denote
Ξ(i,j)(x(π), u(π))|xj(π)|r−qi(π). We get

V̇ ≤ ξT
{
P [A+BK] + [A+BK]TP

}
ξ + 2ξTPΦt

− ṙ

r
ξT (PD +DP )ξ +

λmax(P )

c0

n∑
i=1

[(∑i
j=1 Ξ̃(i,j)(t)

)2

1− τ i

−
(1− τ̇i)

(∑i
j=1 Ξ̃(i,j)(t− τi)

)2

1− τ i

]
. (32)

Using Assumption A6, |τ̇i| ≤ τ i < 1 for = 1, . . . , n. Also,
noting that r(t) ≥ 1 for all time t, (32) reduces to
V̇ ≤ ξT

{
P [A+BK] + [A+BK]TP

}
ξ + 2ξTPΦt

− ṙ

r
ξT (PD +DP )ξ +

λmax(P )

c0

n∑
i=1

[(∑i
j=1 Ξ̃(i,j)(t)

)2

1− τ i

−
( i∑
j=1

Ξ̃(i,j)(t− τi)
)2
]
. (33)

Using (33), (26), (29), and (30), we obtain, by utilizing the
coupled Lyapunov inequalities (23) and (24):

V̇ ≤ −ν1rq2−q1 |φ(1,2)(t, x, u)||ξ|2 − ṙ

r
ν2|ξ|

2

+2λmax(P )|ξ(t)||Φ̃(t)|+
n∑
i=1

λmax(P )

c0(1− τ i)

( i∑
j=1

Ξ̃(i,j)(t)
)2
.(34)

The term
∑n
i=1

λmax(P )
c0(1−τ i)

(∑i
j=1 Ξ̃(i,j)(t)

)2
can be upper

bounded as
n∑
i=1

λmax(P )

c0(1− τ i)

( i∑
j=1

Ξ̃(i,j)(t)
)2

≤
[ n∑
i=1

nλmax(Po)

c0(1− τ i)

i∑
j=1

Ξ2
(i,j)(x, u)r2qj−2qi

]
|ξ|2. (35)

Defining a function R as in (36) where f i are the bounding
functions of fi, λmax(P ) is the maximum eigenvalue of P , and
R(ξ) is defined as in Remark 3, and inserting Q1 = S(Pξ) and
Q2 = S(ξ) into (23), we infer that the following inequality (37)
is satisfied for all t ∈ R+, x ∈ Rn, u ∈ R, and r ∈ [R(ξ),∞),

V̇ ≤ −ν1r
q2−q1 |φ(1,2)(t, x, u)||ξ|2 (37)

with ν1 = ν1/4. Furthermore, it is also seen that a continuous
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R(ξ) = max

(
R(ξ), max

i=1,...,n
{[4λmax(P )

√
nf i(|ξ1|, . . . , |ξn|, µ

∗|ξn+1|)/ν1]
1
ci },

max
i=1,...,n

max
j=1,...,i

{[4n3λmax(P )f̃(i,j)(|ξ1|, . . . , |ξn|, µ
∗|ξn+1|)/(ν1c0(1− τ i))]

1
c̃(i,j) },

)
(36)

∆(x, xn+1, r) = 2λmax(P )

{√√√√ n∑
i=1

[
φ(i,i+1)(x)

rqi−qi+1

]2
+|K(x, xn+1, r)|+Φ̂(x, xn+1, r)+φ(1,2)(x)

√√√√ n∑
i=1

f
2
i (|ξ1|, . . . , |ξn|, |µ∗ξn+1|)

r2(q1−q2+ci)

}

Φ̂(x, xn+1, r)
4
=

[
n−1∑
i=2

i∑
j=2

f2(i,j)(|x1|, . . . , |xn|, |µ
∗ξn+1|)φ(i,i+1)(x)φ(j−1,j)(x)r2qj−2qi

+

n−1∑
i=1

f2(i,1)(|x1|, . . . , |xn|, |µ
∗ξn+1|)φ(i,i+1)(x)φ(1,2)(x)r2q1−2qi +

n∑
j=1

φ
2
(n,j)(x)r2qj−2qn

] 1
2

. (39)

function ∆(x, xn+1, r) exists such that for all t ∈ R+, x ∈ Rn,
u ∈ R, and r ∈ [1,∞), the inequality

V̇ +
ṙ

r
ν2|ξ|

2 ≤ ∆(x, xn+1, r)|ξ|2 (38)
holds. One such function ∆ can be explicitly constructed using
(26) and (29) as shown in (39). The dynamics of r are designed
as in (7) with α(x, r) = 1

ν2
[∆(x, r) + ∆0] and with q being a

continuous nonnegative function such that

q(b) =

{
1 , b > 0
0 , b ≤ −εr , εr > 0. (40)

with ∆ as determined above and ∆0 ∈ (0,∞). From (7),
r(t) is monotonically non-decreasing so that r(t) ≥ 1 for
all t ∈ [0, tf ). Consider the following two cases. Case A1:
r < R(ξ); Case A2: r ≥ R(ξ). In Case A1, (40) implies
that q(R(ξ) − r) = 1. Hence, V̇ ≤ −∆0|ξ|2. In Case A2, we
get V̇ (t) ≤ −ν1r

q2−q1 |φ(1,2)(t, x, u)||ξ|2. Hence, in either case,
V̇ (t) ≤ 0 over [0, tf ) implying that the signal V (t), and hence
the signal ξ(t), is bounded (in L∞ norm sense) on [0, tf ). Noting
from (7) and (40) that ṙ(t) = 0 if r(t) ≥ R(ξ(t)) + εr , the
boundedness of the signal ξ(t) implies that of r(t). Therefore,
the signals xi(t) = rqi(t)ξi(t), i = 1, . . . , n, and hence u(t)
are bounded over [0, tf ), implying that tf = ∞. Therefore, all
closed-loop signals are bounded on t ∈ [0,∞); also, r(t) ∈
[1, r] ∀t ≥ 0 with r being some positive constant. Furthermore,
using Assumption A1, the bounds on V̇ (t) obtained in Cases
A1 and A2 can be combined into

V̇ (t) ≤ − 1

λmax(P )
min(∆0, ν1σ, ν1σr

q2−q1)V (t) (41)
implying that V (t) goes to zero exponentially as t→∞. Hence,
from the definition of the functional V , it is seen that |ξ(t)| goes
to zero exponentially as t→∞. Since |xi(t)| = rqi(t)|ξi(t)| ≤
rqi |ξi(t)|, it follows that the signals x(t) and u(t) also go to
zero exponentially as t→∞.

IV. ILLUSTRATIVE EXAMPLES

Example 1: Consider the third order system given in (2) and
with τ1, τ2, and τ3 being uncertain time-varying time delays
with known bounds smaller than 1 on the rates of time variation
of the time delays, i.e., |τ̇i| ≤ τ i < 1 for i = 1, 2, 3, with known
nonnegative constants τ i, i = 1, 2, 3. Consider, for instance,
τ1 = τ2 = τ3 = 1. The values of the actual time delays τ1, τ2,
and τ3 are not required in the control design. For this system,
the functions appearing in the general system description (1)
are given by: φ(1,2) = 1 + x21(t), φ(2,3) = 1 + x23(t) +

√
|u(t)|,

µ = 1, φ1 = x51(t) + x31(t− τ1), φ2 = x21(t)x2(t)x3(t) + x21(t−
τ2)
√
|x3(t− τ2)|+x1(t− τ2)x2(t− τ2) sin(x3(t) +x3(t− τ2)),

and φ3 = x21(t)x32(t)+x21(t−τ3)|u(t−τ3)|
1
4 +x21(t−τ3)x22(t−

τ3) cos(u(t − τ3)). It can be verified that this system satisfies
the Assumptions A1-A6 as follows:

1) Assumption A1 is satisfied with σ = 1.
2) Assumption A2 is trivially satisfied since the functions

φ(1,2), φ(2,3), and µ are continuous functions and do not
depend explicitly on time.

3) Assumption A3 is satisfied by noting that

• |φ1| ≤ φ(1,1)(t, x(t), u(t))|x1(t)| + Ξ(1,1)(x(t −
τ1), u(t− τ1))|x1(t− τ1)| where φ(1,1)(t, x, u) = x41
and Ξ(1,1)(x, u) = x21,

• |φ2| ≤ φ(2,2)(t, x(t), u(t))|x2(t)| + Ξ(2,1)(x(t −
τ2), u(t − τ2))|x1(t − τ2)| + Ξ(2,2)(x(t − τ2), u(t −
τ2))|x2(t − τ2)| where φ(2,2)(t, x, u) = x21x3,
Ξ(2,1)(x, u) = |x1|

√
|x3|, and Ξ(2,2)(x, u) = |x1|,

• |φ3| ≤ φ(3,2)(t, x(t), u(t))|x2(t)| + Ξ(3,1)(x(t −
τ2), u(t − τ2))|x1(t − τ2)| + Ξ(3,2)(x(t − τ2), u(t −
τ2))|x2(t − τ2)| where φ(3,2)(t, x, u) = x21x

2
2,

Ξ(3,1)(x, u) = |x1||u|
1
4 , and Ξ(3,2)(x, u) =

x21|x2|| cos(u)|.
4) With the functions φ(i,j) and Ξ(i,j) appearing in the

bounds identified above in the verification of Assumption
A3, the Assumption A4 is easily verified and the relevant
multinomials for the inequalities in Assumption A4 are
obtained as: f(1,1) = |x1|2, f(2,2) = |x1|, f(3,2) =

|x1|2|x2|2, f̃(1,1) = |x1|2, f̃(2,1) = |x3|, f̃(3,1) =
√
|u|,

f̃(3,2) = |x1|2|x2|2, f̃2 = 1 + |x1|2, and f̃3 = 1 + |x3|2 +√
|u|. Also, γu(x) and µ̃(x) can be defined to be 1.

5) From the definitions of the functions f(i,j), f̃(i,j), and
f̃i, in the verification of the Assumption A4 above, the
system of linear inequalities in Assumption A5 is obtained
to be: q2 − q1 − c(1,1) ≥ 2q1; 0.5(q3 − q1)− c(2,2) ≥ q1;
0.5(q4+q3−q2−q1)−c(3,2) ≥ 2q1+2q2; q2−q1−c̃(1,1) ≥
2q1; 3q2−3q1−c̃(2,1) ≥ q3; q2−3q1+2q3−c̃(3,1) ≥ 0.5q4;
−q2−q1+2q3−c̃(3,2) ≥ 2q1+2q2; q3+q1−2q2−c̃2 ≥ 2q1;
q3 + q1 − 2q2 − c̃2 ≥ 0; q4 + q2 − 2q3 − c̃3 ≥ 2q3;
q4+q2−2q3−c̃3 ≥ 0.5q4; q4+q2−2q3−c̃3 ≥ 0. Note that
a multinomial with multiple terms (e.g., f̃2, f̃3) results in
multiple inequalities in the system of linear inequalities
given above. To impose the condition that q1, . . . , q3 be
positive constants as required by Assumption A5, the
additional linear inequalities q1 > 0, q2 > 0, and q3 > 0
are introduced into the system of linear inequalities given
above. It is numerically verified that solutions do exist for
this overall set of linear inequalities; for instance, q1 = 1,
q2 = 6, q3 = 14, q4 = 51, c(1,1) = 3, c(2,2) = 5.5,
c(3,2) = 15, c̃(1,1) = 3, c̃(2,1) = 1, c̃(3,1) = 5.5,
c̃(3,2) = 7, c̃2 = 1, and c̃3 = 1.

6) A6 is satisfied as noted above with τ1 = τ2 = 0.5.
Hence, the system given in (2) satisfies Assumptions A1-A6 and
the control design approach proposed in this paper is applicable
to system (2) and yields a dynamic control law of the form (4)-
(7) that globally stabilizes the system (2) and regulates x(t) and
u(t) to zero exponentially as t→∞.
Example 2: To illustrate the generality of the design procedure,
consider the fairly complex fifth order system given by
ẋ1(t) = (1 + x21(t))x2(t)

ẋ2(t) = (1 + x41(t)x22(t))x3(t) + 0.2x1(t)|x4(t)|
1
5
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+x21(t− τ2)x2(t− τ2)

ẋ3(t) = x4(t) + x22(t− τ3)

ẋ4(t) = (1 + x21(t)x42(t))x5(t) + x52(t) + x33(t)|u(t)|
1
5

+x21(t)x22(t)x24(t)

ẋ5(t) = u(t)+x42(t)x33(t)+x21(t−τ5)x3(t−τ5)|u(t−τ5)|
1
5

with τ2, τ3, and τ5 being uncertain time-varying time delays
with known bounds on rates of variation of the form |τ̇i| ≤
τ i = 0.5, i = 2, 3, 5. As in the analysis of Example 1, it can be
verified that the system above also satisfies Assumptions A1-
A6. Specifically, we obtain f̃2 = 1 + |x1|2, f̃3 = 1 + |x1|4|x2|2,
f̃4 = 1, f̃5 = 1 + |x1|2|x2|4, f(2,1) = 0.2|x4|

1
5 , f(4,2) = |x2|4,

f(4,3) = |x3|2|u|
1
5 f(4,4) = |x1||x3|, f(5,3) = |x2|4|x3|2,

f̃(2,1) = |x1||x2|2, f̃(3,2) = |x2|2, and f̃(5,4) = |x1|3|x3|2|u|
2
5 .

Writing out the system of linear inequalities in Assumption A5,
a solution is numerically found as q1 = 1, q2 = 5, q3 = 12,
q4 = 40.6, q5 = 97.1, q6 = 176.7, implying that a dynamic
control law of form (4)-(7) can be designed using the proposed
generalized scaling based control design approach.

V. CONCLUSION
In this paper, we considered the state-feedback control prob-

lem for a class of nontriangular nonlinear systems including
delays in both input and state. The design was based on our
generalized scaling approach and yields a robust feedback that
requires knowledge of only a bound on the rate of time variation
of the delays. The class of systems considered is of a general
structure which is not necessarily of any triangular form and
addresses both lower triangular (strict-feedback) type systems
and upper triangular (feedforward) type systems. The control
design is delay-independent in two senses that are attractive
from a theoretical and implementation standpoint: firstly, that
the control algorithm does not utilize any delayed versions of
measured states or input and secondly, that the design does
not require knowledge of the actual time delays or magnitudes
thereof. It is noteworthy that while the systems considered do
feature input delays, the input is still required to be “matched” in
time with the state at the point where the input most materially
enters the system, (i.e., in ẋn); the extension of the methodology
to remove this input time-matching requirement remains an
interesting topic for further research.
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