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Abstract— In this paper, we develop a controller design
method for nonlinear systems using the Robust Controller Bode
(RCBode) plot. A robust performance criterion defines allowed
and forbidden regions for the controller frequency response on
the RCBode plot. The nonlinear system is linearized about a
finite set of operating points which are considered to be a set
of structured uncertainties. The union of the forbidden regions
of each linearized system then defines the RCBode plot of the
nonlinear system. We apply an iterative loop shaping technique
to eliminate the intersections between the forbidden regions of
the RCBode plot and the frequency response of the controller.
We demonstrate the effectiveness of this technique for the design
of a flow-rate controller for a dynamic nonlinear butterfly valve
system. We show that this design is less conservative than a
design satisfying the Circle Criterion. Finally, simulations are
presented which verify the performance of the compensated
system.

I. INTRODUCTION

One of the most commonly used approaches to controller

design for nonlinear systems is gain scheduling where in-

dividual linear controllers are designed for the linearized

dynamics of the nonlinear system at various operating

points [1]. A variation of this approach is the design of a

single linear controller which simultaneously stabilizes the

set of linearized plants. Simultaneous stabilization is the

approach that we employ by considering the set of linearized

dynamics to be a set of structured uncertainties.

Automated design tools such as H∞ and µ-synthesis

methods are widely used for synthesizing robust controllers

for systems with structured uncertainties [2]; however, since

these approaches are based on mathematical optimization

procedures, they do not provide the designer with much

insight into the relationship between open-loop frequency

response and performance. Also these tools require that the

plant, the uncertainty weighting functions, and the perfor-

mance weighting functions all be represented by realizable

transfer functions. Construction of these transfer functions

themselves can be quite difficult. For SISO systems these

automated approaches often trade the difficulty of controller

synthesis for the difficulty of construction of weighting

functions and plant models; consequently, designs that are

more conservative than necessary may result. Approaches

based on Quantitative Feedback Theory (QFT) [3], can

represent the plant and uncertainties as frequency response

data alone; however, QFT employs the Nichols chart, for

which frequency is a parametric variable and, therefore,

hidden.
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The Robust Bode (RBode) plot was developed to provide

an intuitive visual approach to robust controller synthesis

for unstructured uncertainties [4]. The robust performance

criterion is represented as allowed and forbidden regions

on the Bode magnitude and phase charts for the open-loop

frequency response of the controller and plant. Realizable

transfer function models are not required for the plant model

or the weighting functions – frequency response data alone

is sufficient. The strategy for compensator design with the

RBode plot is to shape the controller frequency response

to eliminate all intersections with the forbidden regions at

all frequencies. By employing the Bode plot, frequency is

explicitly shown, making controller selection much easier

than with QFT.

The RBode plot can still result in unnecessarily conser-

vative designs because all uncertainties are considered to be

unstructured uncertainties (i.e. no phase information). The

Robust Controller Bode (RCBode) plot is a variation of

the RBode plot developed to address these limitations when

designing for structured uncertainties [5]. These structured

uncertainties are represented as a set of frequency responses

with both magnitude and phase information available.

To demonstrate this approach we consider the problem of

fluid flow-rate control with a butterfly valves. The control

of fluid flow-rate is a critical engineering challenge in a

wide variety of applications, for example in the chemical

processing industry and in various cooling systems. Butterfly

valves are common control components in these systems due

to their relatively quick response time and wider throttling

range compared to other valve types; however, in butterfly

valves the flow-rate is a highly nonlinear function of valve

angle [6]; therefore, any controller for this system must

be designed to ensure robust stability and performance in

the presence of this nonlinearity as well as any additional

disturbances which may arise due to the uncertain dynamics

of the flow.

II. SYSTEM MODEL AND LINEARIZATION

The block diagram describing the flow-rate feedback con-

trol system is shown in Fig. 1, where C(s) is the controller

transfer function, M(s) is the geared motor transfer function,

Φ is the valve nonlinearity, Pn(s) is the linearized plant

transfer function at the nth operating point, r is the reference

flow-rate, y is the output flow-rate, and d is the disturbance

signal.
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Fig. 1. Block diagram of nonlinear valve system.

A. Geared DC Electric Motor Model

The dynamics of the geared DC electric motor are repre-

sented by the differential equations (1)-(2).

Jθ̈(t) + bθ̇(t) = NKτ i(t) (1)

L
di

dt
+Ri(t) = v(t)−NKτ θ̇(t) (2)

where θ(t) and θ̇(t) are the valve angle and angular velocity,

i(t) is the current, and v(t) is the applied voltage. The

transfer function from voltage input to valve angle output

is given in Eq. (3).

M(s) =
Θ(s)

V (s)
=

NKτ

s[(Js+ b)(Ls+R) + (NKτ )2]
(3)

The constant parameters and their values are defined in

Table I.

TABLE I

Geared DC Motor Parameters

Motor Torque Constant Kτ =1E-4 N-m/A
Motor Coil Resistance R = 200 Ω
Motor Coil Inductance L = 0.03 H

Motor-Gearbox-Load Inertia J = 0.04 kg-m2

Motor-Gearbox-Load Viscous Damping b = 0.07 N-m/s
Gearbox Gear Ratio N = 25

B. Butterfly Valve Model
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Fig. 2. Schematic Diagram of Butterfly Valve Flow.

The nonlinear mapping from valve opening angle to volu-

metric flow-rate through a butterfly valve was derived in [6]

and is given in Eq. (4). Note that θ = 0◦ corresponds to a

closed valve with no flow and θ = 90◦ to an open valve with

maximum flow.

Q = Φ(θ) =

(

2∆PD2

ρ(ζe + ζf )

)1/2

(4)

where Q is the volumetric flow-rate, ∆P is the pressure

drop across the valve, D is the valve diameter, ρ is the

fluid density, and ζe and ζf are the dimensionless pressure

loss coefficients due to flow expansion and pipe friction

respectively.

ζe =

(

2

(Cc1 + Cc2)(1− cos(θ))
− 1

)2

(5)

ζflaminar
=

64µL

ρV D2
(6)

where Cc1 and Cc2 are the coefficients of contraction, µ
is the fluid dynamic viscosity, L is the length of the pipe

segment containing the butterfly valve, and V is the fluid

velocity. Because the coefficient, ζf , is a function of flow-

rate (V = Q/A), the relation in Eq. (4) is implicit, and some

root finding procedure is typically necessary. The flow-rate

is shown as a function of valve angle in Fig. 3.
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Fig. 3. Flow-rate as function of valve angle and linearizations about several
operating points.

C. Linearized System Model

The nonlinear dynamical system ẋ = f(x, u), y = g(x)
may be linearized about an equilibrium operating point

(x0, u0) : ẋ = f(x0, u0) = 0 as follows:

δẋ ≈ ∇xf |(x0,u0)δx+∇uf |(x0,u0)δu = A · δx+B · δu

δy = y − g(x0) ≈ ∇xg|(x0)δx = C · δx (7)

The linearized transfer function of the nonlinear dynamical

system in the neighborhood of (x0, u0) is therefore, P0(s) =
C(sI − A)−1B. Since the valve introduces only a static

nonlinearity to the system output (i.e. y = g(x) = Φ(θ)),
and the dynamics of the motor are essentially linear, the

linearizations of this system are relatively trivial, Eq. (8).

Pn(s) =
E(s)

V (s)
=

cnNKτ

s[(Js+ b)(Ls+R) + (NKτ )2]
(8)

cn =
dΦ

dθ

∣

∣

∣

∣

θn

(9)
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The fluid flow-rate, Q as a function of valve angle, θ,

is shown in Fig. 3, along with the linearization about a

few representative operating points. The linearized open-

loop transfer functions evaluated at these operating points

are provided in Fig. 4.
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Fig. 4. Linearized open-loop transfer functions evaluated at several
operating points.

III. UNCERTAINTY, ROBUST PERFORMANCE,

AND RCBODE PLOTS

Any mathematical model of a physical system will have

characteristics which are not accurately represented by that

model. These unmodeled characteristics broadly fall into

two categories 1) Structured uncertainty and 2) Unstructured

uncertainty [2]. The structured uncertainty could for instance

be given by a discrete set of plants. It is structured in the

sense that there is accurate gain and phase bounds as a

function of frequency. Often the structured uncertainty is the

result of variations in the plant parameters over the operating

range, for instance in our nonlinear valve system.

The unstructured uncertainty is representative of unmod-

eled and stochastic processes, for instance noise in the mea-

sured signals. It is characterized by only gain information,

and as such may be represented by a disc uncertainty in the

complex plane. Unstructured uncertainties must increase in

magnitude with frequency since at some frequency all phase

knowledge is lost, (i.e. phase uncertainty is ±180).

The overall multiplicative uncertainty, ∆m, in the system

depends on the structured uncertainty, ∆s, and unstructured

uncertainty, ∆u, as in Eq. (10). A block diagram showing

how these uncertainties enter the system is provided in Fig. 5.

Fig. 5. Block diagram illustrating structured and unstructured uncertainties

|∆m(ω)| = |∆s(ω)|+ |∆u(ω)|+ |∆s(ω)||∆u(ω)| (10)

A. Uncertainty Weighting Functions

In robust controller design, two weighting functions are

used which are related to the sensitivity, S(ω), and com-

plementary sensitivity functions, T (ω). These functions are

defined in the standard way.

S(ω) =
1

1 + C(ω)P (ω)
, T (ω) =

C(ω)P (ω)

1 + C(ω)P (ω)
(11)

The uncertainty weighting function, Wu(ω), is chosen to

over-bound the multiplicative uncertainty magnitude at all

frequencies.

|Wu(ω)| > max|∆m(ω)|, ∀ω (12)

It can be shown that to achieve robust stability against ∆m

the complementary sensitivity function, T (ω), must satisfy

Eq. (13).

|T (ω)| < |Wu(ω)|−1, ∀ω (13)

The sensitivity weighting function, Ws(ω), is chosen to meet

frequency domain performance specifications for the closed-

loop system, c.f. Section IV B.

|S(ω)| < |Ws(ω)|−1, ∀ω (14)

B. Robust Performance Condition

Robust performance is achieved if every member of the

uncertainty set satisfies Eq. (14). It can be shown that if

the open-loop transfer function, P (s)C(s) is stable then a

necessary and sufficient condition for the robust performance

of the closed-loop system is given by Eq. (15) [2].

|Wu(ω)T (ω)|+ |Ws(ω)S(ω)| < 1, ∀ω (15)

C. Robust Controller (RCBode) Bode Plot

By substituting the open-loop magnitude |C(s)||P (s)|
and phase 6 C(s) + 6 P (s) into the robust performance

criteria Eq. (15), it is possible to derive conditions on the

controller magnitude and phase.

Phase Criterion:

cos( 6 C(jω) + 6 P (jω)) > Q(ω), ∀ω (16)

where

Q(ω) =
|Ws(ω)|2 − 1

2|C(jω)||P (jω)| + |Wu(ω)||Ws(ω)|

+

(

|Wu(ω)|2 − 1
)

|C(jω)||P (jω)|
2

(17)
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Gain Criterion:

(1− |Wu(ω)|2)|Pn(ω)|2|C(jω)|2+

+ 2(cos( 6 C(jω) + 6 P (jω)|)

− |Wu(ω)||Ws(ω)|)|Pn(ω)||C(jω)|

+ 1− |Ws(ω)|2 > 0, ∀ω. (18)

The details of this derivation are presented in [4]. These

conditions define allowed and forbidden regions for the con-

troller frequency response that we call the Robust Controller

Bode plot (RCBode). (See e.g. Figs. 7(a), 7(b), and 7(c)).

The objective of loop-shaping controller design using the

RCBode plot is to apply various compensators to shape

the overall controller frequency response such that all in-

tersections with the forbidden regions are eliminated at all

frequencies.

IV. LOOP-SHAPING CONTROLLER DESIGN WITH

THE RCBODE PLOT

The controller design follows a four step process. Note

that we are considering the union of the forbidden regions

due to each linearized plant. It has been shown that this

results in a less conservative design (i.e. smaller forbidden

regions) than if a larger structured uncertainty is chosen to

account for the variation of the plant parameters [5].

Step 1 Determine the frequency response of the linearized

plants Pn and the weighting functions Wu and

Ws, all of which could be represented by either

frequency response data or transfer functions.

Step 2 Design an initial controller C0 which stabilizes

each Pn. Then plot the union of all RCBode plots

for all linearized plants using Pn, |Wu|, |Ws|, and

C = C0.

Step 3 Design the loop-shaping filter Cs to satisfy the

low frequency robust performance criteria on the

first RCBode plot. Then plot the second RCBode

plot using Pn, |Wu|, |Ws|, and C = C0Cs.

Step 4 Design the loop-shaping filter Cu to satisfy the high

frequency robust performance criteria on the second

RCBode plot.

A. Performance Specifications

1) Zero steady-state error for constant disturbance

2) Disturbance attenuation of at least -3 dB below 2 Hz

3) Maximum 6 dB disturbance amplification above 10 Hz

B. Weighting Functions

The second and third performance specifications define

bounds on the sensitivity function for the system. We choose

the following sensitivity weighting function to meet those

requirements.

|Ws(ω)|−1 =
2ω√

ω2 + 122
(19)

The sensitivity weighting function and its inverse are shown

in Fig. 6.
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Fig. 6. Sensitivity and sensitivity weighting functions

Since we assume that our nonlinear model of the valve is

accurate at frequencies below roughly 103 rad/s, we choose

the uncertainty weighting function to take the following

form.

|Wu(ω)| =
{

0.01 : x ≤ 103 rad/s

0.5 : x > 103 rad/s
(20)

V. DESIGN ITERATIONS AND RESULTS

The open-loop system is already stable due to the pole at

zero in the motor transfer function. We begin the controller

design process by choosing a constant gain of C0 = 5×1010.

This choice yields the RCBode plot shown in Fig. 7(a). Note

that we have increased the number of operating points to 240

equally spaced in the interval θn ∈ [30◦, 90◦] to smooth out

the union of the forbidden regions on the RCBode plot.

The intersections of the controller frequency response

with the forbidden regions (shown in grey) indicate that

the constant gain controller violates the robust performance

condition in the approximate frequency range 20 rad/s <
ω < 103 rad/s.

One option is to lift the controller phase over the phase

forbidden region on the RCBode plot. To accomplish this,

we may use the recently developed complex proportional-

integral-lead compensator (CPIL) [7]. The structure of the

CPIL transfer function is given in Eq. (21).

Ccpil(s) =
s2 + 2ζωzs+ ω2

z

s(s+ p)
(21)

where

ωz = ωm

(

−ζ tan (φm) +
√

ζ2 tan2 (φm) + 1

)

, (22)
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p = ωm

√

1 + sin (φm)

1− sin (φm)
, (23)

The phase contribution at ωm is 3φm

2 − 45◦. The phase

angle must satisfy 0 < φm < 90◦. The zeros of this

compensator are complex when ζ < 1. Lower damping ratios

provide higher gains at low frequencies and a steeper phase

peak. Through a trial and error process the CPIL parameters

were found to be 60◦ of phase added at ωm = 7 rad/s and

damping ratio ζ = 0.7.

The RCBode plot for the cascaded constant gain and

CPIL compensators is shown in Fig. 7(b). It may appear

that the center frequency of the CPIL compensator is too

low; however, this is necessary when the final stage of the

controller is added.

There are still intersections with the forbidden regions on

the RCBode plot after application of the CPIL compensator

in Fig. 7(b). We now add a final complex lead compensator

defined by the transfer function in Eq. (24).

Cclead =
ωp

ωz

(

s2 + 2ζωzs+ ω2
z

s2 + 2ζωps+ ω2
p

)

(24)

where ωp = ωm(ζ tan(φ) +
√

ζ2 tan2(φ) + 1 and ωz =
ω2/ωp, and φ = max phase/2. The parameters used here

were max phase = 50 rad/s at ωm = 1000 rad/s and

damping ratio ζ = 1.5.

In the final RCBode plot, Fig. 7(c), all intersections with

the forbidden regions have been eliminated indicating that the

robust performance criterion is satisfied at all frequencies.

VI. COMPARISON WITH CIRCLE CRITERION

The well known Circle Criterion provides a method for

determining the stability of a nonlinear feedback system

of the form given in Fig. 8, where L(s) is the transfer

function of a linear time invariant (LTI) system and Ψ(·) is a

memory-less and possibly time-varying sector nonlinearity.

The nonlinearity is said to belong to the sector [α, β], if for

any input u to Ψ(·), αu2 ≤ uΨ(u) ≤ βu2. The details of the

circle criterion for different sector conditions can be found

in [8]. The butterfly valve nonlinearity satisfies such a sector

condition.

For β > α ≥ 0 the Circle Criterion states that a sufficient

(but not necessary) condition for the stability of a nonlinear

system is that the Nyquist plot of the open-loop frequency

response, L(jω), remains outside of a disc centered on and

intersecting the real axis at [−1
α , −1

β ].
Just as the robust performance condition Eq. (15) was used

to define allowed and forbidden regions for the controller

frequency response in RCBode, the circle criterion can be

mapped onto the Bode plot of the controller frequency

response. We call this the Circle Criterion Controller Bode

(CCBode) plot. Any intersections of the controller magni-

tude and phase with the forbidden regions on the CCBode

plot indicates that the open-loop system violates the circle

criterion. We must emphasize here that an intersection does

not mean that the system in unstable.

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

100

150

200

250

300

Frequency [rad/s]

M
a

g
n

it
u

d
e

 [
d

B
]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−120

−60

0

60

120

180

Frequency [rad/s]

P
h

a
s
e

 [
d

e
g

]

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

100

150

200

250

300

Frequency [rad/s]

M
a

g
n

it
u

d
e

 [
d

B
]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−120

−60

0

60

120

180

Frequency [rad/s]

P
h

a
s
e

 [
d

e
g

]

(b)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

100

150

200

250

300

350

Frequency [rad/s]

M
a

g
n

it
u

d
e

 [
d

B
]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−180

−120

−60

0

60

120

180

Frequency [rad/s]

P
h

a
s
e

 [
d

e
g

]

(c)

Fig. 7. Design Iterations on RCBode Plots (a) Constant gain (b) Constant
gain + complex-proportional-integral-lead (CPIL) compensator, (c) Constant
gain + CPIL + complex-lead (Clead) compensators. In the final iteration,
all intersections with the forbidden regions have been eliminated indicating
that the robust performance criterion is satisfied at all frequencies.

The CCBode plot of the controller designed using RCBode

is given in Fig. 9. The intersections with the forbidden

regions on the CCBode plot are consistent with the Nyquist

plot and indicate that the robust performance condition is

less conservative than the circle criterion and thus may be

the preferred choice for robust controller design in many

applications.
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Fig. 8. (a) Block diagram of system with linear part L(s) and memory-less
nonlinearity, Ψ(·). (b) An example of a nonlinear function belonging to the
sector [α, β].

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

100

150

200

250

300

350

Frequency, [rad/s]

M
a

g
n

it
u

d
e

 [
d

B
]

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

−150

−100

−50

0

50

100

Frequency, [rad/s]

P
h

a
s
e

 [
d

e
g

]

Fig. 9. CCBode plot of RCBode controller. The intersections with the
forbidden regions indicate that the robust performance condition is less
conservative than the circle criterion.

VII. SIMULATIONS AND PERFORMANCE

EVALUATIONS

Matlab Simulink c© was used to simulate the time-domain

response of the compensated motor-valve feedback system.

The time-domain response of the compensated close-loop

valve system to a step change in the reference flow-rate

is presented in Fig. 10. Note that the full range of both

the available flow-rate and valve angle are shown on the

y-axis of the simulations illustrating the nonlinearity of the

system. The simulations verify that the compensated system

designed using the RCBode techniques does in fact meet the

performance requirements, exhibiting stability in the face of

the valve nonlinearity and settling time under 0.15 s.

VIII. CONCLUSION

We developed a method for controller design for nonlinear

systems using a modification of the Robust Bode plot called

the Robust Controller Bode (RCBode) plot. The nonlinear

system was linearized about a finite set of operating points,

and this set of linearized dynamics was considered to be a

set of structured uncertainties. The union of the forbidden

regions for the frequency responses of the linearized dy-

namics for the Robust Bode plot of the controller defines

the RCBode plot. We then applied an iterative loop shaping
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Fig. 10. Time-Domain simulation of compensated nonlinear valve system
to step input.

technique to eliminate the intersections between the forbid-

den regions of the RCBode plot and the frequency response

of the controller. We demonstrated the effectiveness of this

technique for the design of a flow-rate controller for the

nonlinear dynamic butterfly valve system. We showed that

this design is less conservative than a design satisfying the

Circle Criterion and verified the performance of the design

in simulation.
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