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Abstract— A new formulation of the particle filter for non-
linear filtering is presented, based on concepts from optimal
control, and from the mean-field game theory framework
of Huang et. al. [8]. The optimal control is chosen so that
the posterior distribution of a particle matches as closely as
possible the posterior distribution of the true state, given the
observations. In the infinite-N limit, the empirical distribution
of ensemble particles converges to the posterior distribution of
an individual particle.

The cost function in this control problem is the Kullback-
Leibler (K-L) divergence between the actual posterior, and
the posterior of any particle. The optimal control input is
characterized by a certain Euler-Lagrange (E-L) equation.

A numerical algorithm is introduced and implemented in
two general examples: A linear SDE with partial linear obser-
vations, and a nonlinear oscillator perturbed by white noise,
with partial nonlinear observations.

I. INTRODUCTION

We consider a scalar filtering problem:

dXt = a(Xt)dt +σB dBt , (1)

dZt = h(Xt)dt +σW dWt , (2)

where Xt ∈R is the state at time t, Zt ∈R is the observation

process, a( ·), h( ·) are C1 functions, and {Bt}, {Wt} are

mutually independent standard Wiener processes.

The objective of the filtering problem is to obtain the

posterior distribution p∗ of Xt given the history Zt := σ(Zs :

s ≤ t). If a( ·), h( ·) are linear functions, then the solution is

given by the well-known Kalman filter.

For nonlinear systems, the particle filter is a simulation-

based algorithm to approximate the filtering task [7], [6].

The key step is the construction of N stochastic processes

{X i
t}N

i=1. For each time t the empirical distribution formed

by the “particle population” is used to approximate the

conditional distribution. Recall that this is defined for any

measurable set A ⊂ R by,

p(N)(A, t) =
1

N

N

∑
i=1

1{X i
t ∈ A} (3)

A common approach in particle filtering is called the

sequential importance sampling, where particles are gen-

erated according to their importance weight at every time

stage [6], [2]. By choosing the sampling mechanism properly,
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particle filtering can approximately propagate the posterior

distribution, with the accuracy improving as N increases [5].

Several modifications and improvements of these and other

related algorithms have been suggested when dynamics are

linear and/or noise is Gaussian; cf., [3], [1], [9].

The objective of this paper is to introduce an alternative

approach to the construction of a particle filter for (1)-

(2) inspired from the mean-field optimal control techniques;

cf., [8], [11]. In this approach, the model for the ith particle

is defined by a controlled system,

dX i
t = a(X i

t )dt +σB dBi
t + dU i

t , (4)

where X i
t ∈ R is the state for the ith particle at time t, U i

t is

its control input, and {Bi
t} are mutually independent standard

Wiener processes. We assume the initial conditions {X i
0}N

i=1

are i.i.d., and drawn from initial distribution p∗(x,0) of X0.

With a specific formulation for (4), the resulting particle

trajectories {X i
t}N

i=1 (obtained under optimal control input

U i
t ) define a particle filter, in the sense that the empirical

distribution p(N)( · , t) approximates the posterior distribution

p∗(Xt |Zt) for large N.

We cast the synthesis of control input as an optimization

problem, with the Kullback-Leibler metric serving as the cost

function. The optimal control input is obtained via solution of

the associated Euler-Lagrange (E-L) boundary value problem

(BVP).

The outline of this paper is as follows. We begin with a

discussion of the continuous-discrete filtering problem: the

equation for dynamics is given by (1), but the observations

are made only at discrete times. In section II, we formulate

the optimization problem for this case and describe the E-

L BVP. For the linear Gaussian case, we obtain an explicit

solution of the BVP.

In section III, we consider the continuous-continuous

filtering problem (for (1)-(2)) as a limiting case of the

continuous-discrete problem. For the linear Gaussian case,

the solution is explicitly obtained, and shown to be consistent

with the Kalman filter.

In section IV, we describe the results of numerical experi-

ments. A numerical algorithm is introduced and implemented

in two general examples: A linear SDE with partial linear

observations, and a nonlinear oscillator perturbed by white

noise, with partial nonlinear observations.

Apart from the serving the pedagogical purpose, the scalar

case is especially relevant to filtering in oscillator models.

These models (also considered in our earlier mean-field

control paper [11]) provide one of the main motivations for

the present work. Extension to the multi-state case is planned

for the journal version of this paper.
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II. CONTINUOUS-DISCRETE TIME FILTERING

We consider the continuous-discrete time filtering prob-

lem. The equation for dynamics is given by (1), and the

observations are made only at discrete times {tn}:

Ztn = h(Xtn)+Wtn , (5)

where {Wtn} is i.i.d and drawn from N(0,σ2
W ).

The particle model in this case is a hybrid dynamical

system: For t ∈ [tn−1, tn), the ith particle evolves according to

the stochastic differential equation,

dX i
t = a(X i

t )dt +σB dBi
t , tn−1 ≤ t < tn , (6)

where the initial condition X i
tn−1

is given. At time t = tn there

is a potential jump that is determined by the input U i
tn

:

X i
tn
= X i

t−n
+U i

tn
, (7)

where X i
t−n

denotes the right limit of {X i
t : tn−1 ≤ t < tn}. The

specification (7) defines the initial condition for the process

on the next interval [tn, tn+1).
The filtering problem is to construct a control law that

defines {U i
tn

: n ≥ 1} such that, for each n ≥ 1, the resulting

empirical distribution p(N) approximates the posterior distri-

bution of Xtn given the history Zn := σ(Ztk : k ≤ n). To solve

this problem we first define “belief maps” that propagate the

conditional distributions of X and X i.

A. Belief maps

For each n we let p∗n(x) denote the probability density

function (pdf) for the conditional distribution of Xtn given

Zn, and we let p∗−n (x) denote the conditional distribution

of Xtn given Zn−1. Similarly, we let pn(x) denote the pdf

for the conditional distribution of X i
tn

given Zn, and we

let p−n (x) denote the conditional distribution of X i
tn

given

Zn−1. We will see that these densities evolve according to

deterministic equations of the form,

p∗n = P
∗(p∗n−1,Ztn), pn = P(pn−1,Ztn) . (8)

The mappings P∗ and P can be decomposed into two

parts. The first part is identical for each of these mappings:

The transformation that takes pn−1 to p−n coincides with the

mapping from p∗n−1 to p∗−n . In each case it is defined by the

kolmogorov’s forward equation associated with the diffusion

on [tn−1, tn).
Consider now how p∗−n (x) is mapped to p∗n(x) to define

P∗. Given the observation Ztn made at time t = tn, the pdf

for the actual state is updated using Bayes rule:

p∗n(s) =
p∗−n (s) · pZ|X(Ztn |s)

pZ(Ztn)
, s ∈ R, (9)

where pZ denotes the pdf for Ztn , and pZ|X( · | s) denotes the

conditional distribution of Ztn given Xtn = s. Applying (5)

gives,

pZ|X(Ztn | s) =
1

√

2πσ2
W

exp

(

− (Ztn −h(s))2

2σ2
W

)

.

Combining (9) with the forward equation defines P∗.

To complete the definition of P we impose further

structure on the input. At time t = tn, we seek a control input

U i
tn

that is an admissible function of X i
t−n

, and {Ztk : k ≤ n}.

Definition 1 (Admissible function): A function u : R→ R

is said to be admissible if u is twice continuously differen-

tiable and

lim
x→±∞

u(x)p−n (x) = 0.

The space of admissible functions is denoted as C2
b .

We suppress the dependency on the observations, writing

U i
tn
= u(x) when X i

t−n
= x. We further assume that 1+ u′(x)

is non-zero for all x. In this case we can write,

pn(s) =
p−n (x)

|1+u′(x)| (10)

where s = x+u(x) and u′(x) = d
dx

u(x).

B. Variational Problem

Our goal is to choose the function u so that the mapping

(10) approximates the mapping (9). More specifically, given

the pdf pn−1 we have already defined the mapping P so

that pn = P(pn−1,Ztn). We denote p̂∗n = P∗(pn−1,Ztn), and

choose u(x) so that these pdfs are as close as possible. We

approach this goal through the formulation of an optimization

problem with respect to the Kullback-Leibler (KL) diver-

gence metric. That is, at time t = tn, the function, denoted

as un, is the solution to the following optimization problem,

un(x) = arg min
u

KL(pn‖p̂∗n) . (11)

Based on the definitions, for any u the KL divergence can

be expressed,

KL(pn‖p̂∗n) =−
∫

R

p−n (x)
{

ln |1+u′(x)|

+ ln(p−n (x+u(x))pZ|X(Ztn |x+u(x)))
}

dx+C,

(12)

where C =
∫

R
p−n (x) ln(p−n (x)pZ(Ztn))dx is a constant that

does not depend on u; cf., Appendix A for the calculation.

The solution to (11) is described in the following propo-

sition, whose proof appears in Appendix B.

Proposition 1: Suppose that the admissible function

u : R→R is a minimizer for the optimization problem (11).

Then it is a solution of the following Euler-Lagrange (E-L)

BVP:

d

dx

(

p−n (x)

|1+u
′
(x)|

)

= p−n (x)
∂

∂u

(

ln(p−n (x+u)pZ|X(Ztn |x+u))
)

,

(13)

with boundary condition limx→±∞ u(x)p−n (x) = 0.

We refer to the minimizer as the optimal control function.

C. Forward equation

We now provide a complete description of the forward

equation that is intended to approximate the continuous-

discrete time particle filter (6)-(7) for large N.
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At measurement times t = tn, the optimal control function

is obtained as a solution to the E-L BVP,

d

dx

(

p−n (x)

|1+u
′
(x)|

)

= p−n (x)
∂

∂u

(

ln(p−n (x+u)pZ|X(Ztn |x+u))
)

,

(14)

with boundary condition limx→±∞ u(x)p−n (x) = 0. We denote

the solution of (14) as un(x).
We let p(x, t) denote the conditional distribution of the

particle X i
t given Zt . The evolution of the density p(x, t) is

given by the forward evolution equation:

∂ p(x, t)

∂ t
+

∂

∂x

{(

a(x)+∑
n

un(x)δ (t − tn)

)

p(x, t)

}

=
σ2

B

2

∂ 2 p(x, t)

∂x2
, (15)

where δ (t − tn) is the Dirac delta function at time t = tn.

The two equations (14)-(15) are coupled because p−n (x) =
p(x, t−n ) by construction.

D. Example: Linear Gaussian case

In this section, we assume dynamics and observation

equations are both linear:

dXt = a Xt dt +σB dBt , (16)

Ztn = h Xtn +Wtn , (17)

where a,h are now real numbers. We assume that the initial

distribution p∗(x,0) is Gaussian with mean µ0 and variance

Σ0.

For the linear Gaussian case, the E-L equation (13) can

be solved in closed form. The proof appears in Appendix C.

Lemma 1: Suppose p(x, t) is assumed to be Gaussian with

mean µt and variance Σt . Then the solution of E-L BVP (13)

is given by:

un(x) = knx+ cn, (18)

where

kn =

√

σ2
W

σ2
W +Σt−n h2

−1, (19)

cn =−
(

h2Σt−n

h2Σt−n +σ2
W

+ kn

)

µt−n +
hΣt−n

h2Σt−n +σ2
W

Ztn . (20)

The optimal control function un(x) yields the following

hybrid dynamical system model for the particle filter:

t ∈ [tn−1, tn) : dX i
t = a X i

t dt +σB dBi
t ;

t = tn : X i
tn
= X i

t−n
+ kn X i

t−n
+ cn, (21)

where kn and cn are as in (19)-(20).

Finally, with the control function (19)-(20) obtained by E-

L BVP, the forward equation (15) reduces to the following

recursive equations for only the mean and the variance:

t ∈ [tn−1, tn) :

{

dµt/dt = aµt ,
dΣt/dt = 2aΣt +σ2

B;
(22)

t = tn :

{

µtn = (σ2
W µt−n +hΣt−n Ztn)/Σ+

t−n
,

Σtn = σ2
W Σt−n /Σ+

t−n
;

(23)

where we define Σ+
t−n

:= h2Σt−n +σ2
W .

One can also readily verify that the solution of the BVP is

consistent with the Kalman filtering solution. These calcula-

tions for the discrete time case appear in the Appendix D.

The implementation of the particle filter appears to suffer

from the same drawback as importance sampling: We must

compute the object that we wish to simulate. In practice,

the conditional mean µt−n and the variance Σt−n appearing in

the recursions above will be estimated from the ensemble

{X i
t−n
}N

i=1:

µt−n ≈ µ̄
(N)

t−n
:=

1

N
∑X i

t−n
,

Σt−n ≈ Σ̄
(N)

t−n
:=

1

N −1
∑(X i

t−n
− µ̄

(N)

t−n
)2.

Further discussion is contained at the end of Section III-A.

III. CONTINUOUS-TIME FILTERING

We now return to the filtering problem (1)-(2) introduced

in Section I. The solution for the continuous time problem is

obtained by considering an observation time sequence {tn}
where the time between observations, tn+1− tn, goes to zero.

In the following, we describe the continuous-time filter:

We assume the initial conditions {X i
0}N

i=1 are i.i.d., and drawn

from initial distribution p∗(x,0) of X0. The dynamics of the

ith particle are defined by a controlled system:

dX i
t = a(X i

t )dt +σB dBi
t

+ v(X i
t , t)dIi

t +
1

2
σ2

W v(X i
t , t)v

′(X i
t , t)dt

(24)

in which v′(x, t) = ∂v
∂x
(x, t), where {Bi

t} are mutually indepen-

dent standard Wiener processes, and Ii is intended to mirror

the innovations process that appears in the nonlinear filter,

dIi
t=:dZt −

1

2
(h(X i

t )+ ĥ)dt (25)

where ĥ = 1
N ∑N

i=1 h(X i
t ).

The gain function v(x, t) is the solution to the Euler-

Lagrange boundary value problem (E-L BVP):

− ∂

∂x

(

1

p(x, t)

∂

∂x
{p(x, t)v(x, t)}

)

=
1

σ2
W

h′(x), (26)

with boundary conditions limx→±∞ p(x, t)v(x, t) = 0, where

h′(x) = d
dx

h(x), and p(x, t) denotes the conditional distribu-

tion of X i
t given Zt .

The filter (24) represents the continuous-time counterpart

of the continuous-discrete time filter (6)-(7). Likewise, the

E-L BVP (26) is the continuous-time counterpart of the E-

L BVP (13) derived earlier for the continuous-discrete time

problem. The details of derivation of the continuous-time

filter are omitted here on account of space.

The evolution of the conditional distribution p(x, t) is now

described by the Kolmogorov’s forward equation for the

controlled system (24): Setting

u(x, t) = v(x, t)

(

−1

2
(h(x)+ ĥ)+

1

2
σ2

W v′(x, t)

)

,
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Fig. 1. (a) Comparison of the true state {Xt} and the conditional mean {µ̄
(N)
t }. (b) and (c) Plots of estimated conditional covariance with N = 10,000

and N = 100 particles, respectively. For comparison, the true conditional covariance obtained using Kalman filtering equations is also shown.

the forward equation is given by

dp = L
† pdt − ∂

∂x
(vp) dZt

− ∂

∂x
(up) dt +σ2

W

1

2

∂ 2

∂x2

(

pv2
)

dt,

(27)

where L † p =− ∂ (pa)
∂x

+
σ2

B
2

∂ 2 p

∂x2 .

We refer to particle system described by (24) as the

feedback particle filter. In the following, we describe the

feedback particle filter for the linear Gaussian case.

A. Example: Linear Gaussian case

Consider the scalar linear model in continuous time de-

fined by,

dXt = a Xt dt +σB dBt , (28)

dZt = h Xt dt +σW dWt , (29)

where a, h are real numbers. We assume that the initial

distribution p∗(x,0) is Gaussian with mean µ0 and variance

Σ0.

The following lemma provides the solution of the optimal

control function v(x, t) in the linear Gaussian case.

Lemma 2: Consider the linear observation equation (29).

Suppose p(x, t) = 1√
2πΣt

exp(− (x−µt )
2

2Σt
) is assumed to be

Gaussian with mean µt and variance Σt . Then the solution

of E-L BVP (26) is given by:

v(x, t) =
hΣt

σ2
W

(30)

The formula (30) is verified by direct substitution in the

ODE (26) where the distribution p is Gaussian and h′(x) = h

which is a constant.

The optimal control yields the following form for the

particle filter in this linear Gaussian model:

dX i
t = a X i

t dt +σB dBi
t +

hΣt

σ2
W

(

dZt −h
X i

t +µt

2
dt

)

. (31)

Now we show that p = p∗ in this case. That is, the con-

ditional distributions of X and X i coincide, and are defined

by the well-known dynamic equations that characterize the

mean and the variance of the continuous-time Kalman filter.

Theorem 1: Consider the linear Gaussian filtering prob-

lem defined by the state-observation equations (28,29). In

this case the posterior distributions of X and X i are Gaus-

sian, whose conditional mean and covariance are given by

the respective stochastic differential equation and ordinary

differential equation,

dµt = aµt dt +
hΣt

σ2
W

(

dZt −hµt dt
)

(32)

dΣt

dt
= 2aΣt +σ2

B −
h2Σ2

t

σ2
W

(33)

The proof of Theorem 1 appears in Appendix E.

Notice that particle system (31) is not practical since it

requires computation of the conditional mean and variance

{µt ,Σt}. If we are to compute these quantities, then there is

no reason to run a particle filter!

In practice {µt ,Σt} are approximated as sample means and

sample covariances from the ensemble {X i
t }N

i=1:

µt ≈ µ̄
(N)
t :=

1

N

N

∑
i=1

X i
t ,

Σt ≈ Σ̄
(N)
t :=

1

N −1

N

∑
i=1

(X i
t − µ̄

(N)
t )2.

(34)

The resulting equation (31) for the ith particle is given by

dX i
t = a X i

t dt +σB dBi
t +

hΣ̄
(N)
t

σ2
W

(

dZt −h
X i

t + µ̄
(N)
t

2
dt

)

.

(35)

It is very similar to the mean-field “synchronization-type”

control laws and oblivious equilibria constructions as in [8],

[11], [10]. For large N, the model (31) represents the mean-

field approximation of (35).

For any t and any set A ∈ B(R), we define the empiri-

cal distribution, p(N)(A, t)=: 1
N ∑N

i=1 1{X i
t ∈ A}. Using Theo-

rem 1, the empirical distribution p(N) approximates p∗, in

the sense that:

lim
N→∞

p(N)(A, t) =
∫

A
p∗(x, t) dx.
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IV. NUMERICS

In this section, we provide numerical verification of the

particle filter for a linear Gaussian system (section IV-A)

and a nonlinear oscillator system (section IV-B).

A. Linear Gaussian case

Consider the following system:

dXt =−0.5 Xt dt +1dBt , (36)

dZt = 3 Xt dt +0.5dWt , (37)

where {Bt},{Wt} are mutually independent standard Wiener

process.

The particle filter comprises of N particles where the

dynamic of the ith particle is given by:

dX i
t =−0.5 X i

t dt +1dBi
t + dU i

t , (38)

where

dU i
t =

3 Σ̄
(N)
t

0.52
[dZt −3

X i
t + µ̄

(N)
t

2
dt],

and {Bi
t} are mutually independent standard Wiener process.

We initialize the particle system by drawing initial conditions

{X i
0}N

i=1 from the distribution N(1,1). In the simulation

discussed next, the mean µ̄
(N)
t and the variance Σ̄

(N)
t are

obtained from the ensemble {X i
t }N

i=1 according to (34).

Figure 1 summarizes some of the results of the numerical

experiments: Part (a) depicts a sample path of the state {Xt}
and the mean {µ̄

(N)
t } obtained using a particle filter with N =

10,000 particles. Part (b) provides a comparison between the

estimated variance Σ̄
(N)
t and the true error variance Σt that

one would obtain by using the Kalman filtering equations.

The accuracy of the results is sensitive to the number of

particles. For example, part (c) of the figure provides a

comparison of the variance with N = 100 particles.

B. Nonlinear oscillator case

We consider the filtering problem for a nonlinear oscilla-

tor:

dθt = ω dt +σB dBt mod 2π, (39)

dZt = h(θt)dt +σW dWt , (40)

where ω is the frequency, h(θ) = 1+cosθ
2

, and {Bt} and

{Wt} are mutually independent standard Wiener process.

For numerical simulations, we pick ω = 1 and the standard

deviation parameters σB = 0.5 and σW = 0.4. We consider

oscillator models because of their significance to applications

including neuroscience; cf., [11].

The feedback particle filter is given by:

dθ i
t = ω dt +σB dBi

t + v(θ i
t , t)[dZt −

1

2
(h(θ i

t )+ ĥ)dt]

+
1

2
σ2

W v(θ i
t , t)v

′(θ i
t , t)dt mod 2π, i = 1, ...,N.

(41)

where ĥ = 1
N ∑N

j=1 h(θ j
t ), and the function v(θ , t) is obtained

via the solution of the E-L equation:

− ∂

∂θ

(

1

p(θ , t)

∂

∂θ
{p(θ , t)v(θ , t)}

)

=− sinθ

2σ2
W

. (42)

Although the equation (42) can be solved numerically to

obtain the optimal control function v(θ , t), here we investi-

gate a solution based on perturbation method. Suppose, at

some time t, p(θ , t) = 1
2π =: p0, the uniform density. In this

case, the E-L equation is given by:

∂θθ v =
sinθ

2σ2
W

.

A straightforward calculation shows that the solution in this

case is given by

v(θ , t) =− sinθ

2σ2
W

=: v0(θ). (43)

To obtain the solution of the E-L equation (42), we assume

that the density p(θ , t) is a small harmonic perturbation of

the uniform density. In particular, we express p(θ , t) as:

p(θ , t) = p0 + ε p̃(θ , t), (44)

where ε is a small perturbation parameter. Since p(θ , t) is a

density,
∫ 2π

0 p̃(θ , t)dθ = 0.

We are interested in obtaining a solution of the form:

v(θ , t) = v0(θ)+ ε ṽ(θ , t). (45)

On substituting the ansatz (44) and (45) in (42), and retaining

only O(ε) term, we obtain the following linearized equation:

∂θθ ṽ =−2π∂θ [(∂θ p̃)v0]. (46)

The linearized E-L equation (46) can be solved easily by

considering a Fourier series expansion of ε p̃(θ , t):

ε p̃(θ , t) = Pc(t)cosθ +Ps(t)sinθ +h.o.h, (47)

where “h.o.h” denotes the terms due to higher order harmon-

ics. The Fourier coefficients are given by,

Pc(t)=
1

π

∫ 2π

0
p(θ , t)cosθ dθ , Ps(t)=

1

π

∫ 2π

0
p(θ , t)sinθ dθ .

For a harmonic perturbation, the solution of the linearized

E-L equation (46) is given by:

ε ṽ(θ , t) =
π

4σ2
W

(Pc(t)sin2θ −Ps(t)cos2θ)

=: v1(θ ;Pc(t),Ps(t)) (48)

For “h.o.h” terms in the Fourier series expansion (47) of

the density in p(θ , t), the linearized E-L equation (46) can be

solved in a similar manner. In numerical simulation provided

here, we ignore the higher order harmonics, and use a control

input as summarized in the following proposition:

Proposition 2: Consider the E-L equation (42) where the

density p(θ , t) is assumed to be a small harmonic perturba-

tion of the uniform density 1
2π . As ε → 0, the optimal control

function is given by the following asymptotic formula:

v(θ , t) = v0(θ)+ v1(θ ;Pc(t),Ps(t)), (49)
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Fig. 2. Summary of the numerical experiments with the nonlinear oscillator filter: (a) Comparison of the true state {θt} and the conditional mean {θ̄ N
t }.

(b) The mean-squared estimate of the first and second harmonics of the density p(θ , t) and (c) a plot of the typical density.

where Pc(t),Ps(t) denote the harmonic coefficients of density

p(θ , t). For large N, these are approximated by using the

formulae:

P̄N
c (t) =

1

πN

N

∑
j=1

cosθ j(t), P̄N
s (t) =

1

πN

N

∑
j=1

sinθ j(t). (50)

We next discuss the result of numerical experiments. The

particle filter model is given by (41) with gain function

v(θ i
t , t), obtained using formula (49). The number of particles

N = 10,000 and their initial condition {θ i
0}N

i=1 was sampled

from a uniform distribution on circle [0,2π].
Figure 2 summarizes some of the results of the numerical

simulation. For illustration purposes, we depict only a single

cycle from a time-window after transients due to initial

condition have converged. Part (a) of the figure compares

the sample path of the actual state {θt} (as a dashed line)

with the estimated mean {θ̄
(N)
t } (as a solid line). The shaded

area indicates ± one standard deviation bounds. Part (b) of

the figure provides a comparison of the magnitude of the

first and the second harmonics (as dashed and solid lines,

respectively) of the density p(θ , t). The density at any time

instant during the time-window is approximately harmonic

(see also part (c) where the density at one typical time instant

is shown).

Note that at each time instant t, the estimated mean,

the bounds and the density p(θ , t) shown here are all

approximated from the ensemble {θ i
t }N

i=1. For the sake of

illustration, we have used a Gaussian mixture approximation

to construct a smooth approximation of the density.

V. CONCLUSION AND FUTURE WORK

We have shown how a version of the particle filter can be

derived using optimal control techniques. A significant ad-

vantage of the control-oriented formulation is that it provides

self-correcting feedback mechanism to stabilize the particles

around the common posterior p( ·) for {X i}.

There are several connections to be made to both the

mean-field control literature as well as the filter stability

literature:

(i) The background to this paper is the literature on

mean-field games (e.g., [8], [10], [11]). The message

here is that one can potentially improve particle fil-

ters by using (a small amount of) global information

regarding particles. In the linear Gaussian case, this in-

formation is the mean and the variance of the ensemble.

In the nonlinear oscillator case, this information is the

first Fourier harmonic.

(ii) The research on ergodic properties of filters

(e.g., [4]) is potentially relevant to the resolution of

the following inter-related questions: Does the posterior

approximation match the true posterior in the infinite-N

limit? What are the stability properties of the algorithm

in this limit? And what is the nature of performance

bounds for large but finite values of N? Although

some of these issues are addressed here for the linear

Gaussian case, a resolution of these questions for the

nonlinear case is a subject of ongoing research.

APPENDIX

A. Calculation of KL divergence

Recall the definition of K-L divergence for densities,

KL(pn‖p̂∗n) =
∫

R

pn(s) ln
( pn(s)

p̂∗n(s)

)

ds.

We make a co-ordinate transformation s = x + u(x) and

use (10) to express the K-L divergence as:

KL(pn‖p̂∗n)

=
∫

R

p−n (x)
|1+u′(x)| ln(

p−n (x)
|1+u′(x)| p̂∗n(x+u(x)|Ztn)

)|1+u′(x)|dx

The expression for K-L divergence given in (12) follows on

using (9).

B. Solution of the optimization problem

Denote:

L (x,u,u′) =−p−n (x)
(

ln |1+u′(x)|

+ ln(p−n (x+u)pZ|X(Ztn |x+u))
)

.
(51)

The optimization problem (11) is a calculus of variation

problem:

min
u

∫

L (x,u,u′)dx.
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The minimizer is obtained via the analysis of first variation

given by the well-known Euler-Lagrange equation:

∂L

∂u
=

d

dx

(

∂L

∂u′

)

,

Explicitly substituting the expression (51) for L , we ob-

tain (13).

C. Proof of Lemma 1

Denote Σn− := Σt−n ,µn− := µt−n . Under the linear Gaussian

assumption, we have:

p−n (x) =
1√

2πΣn−
exp[− (x−µn−)

2

2Σn−
], (52)

pZ|X(Ztn |x+un) =
1

√

2πσ2
W

exp[− (Ztn −h(x+un))
2

2σ2
W

]. (53)

We consider a linear ansatz for the solution un(x):

un(x) = knx+ cn. (54)

So u′n = kn. Substituting (52) and (53) into (13) and using

ansatz (54), we obtain:

1

(1+ kn)Σn−
x− 1

(1+ kn)Σn−
µn− = (

1

Σn−
+

h2

σ2
W

)(1+ kn)x

+(
1

Σn−
+

h2

σ2
W

)cn −
h

σ2
W

Ztn −
µn−

Σn−
.

This gives:

1

(1+ kn)Σn−
= (

1

Σn−
+

h2

σ2
W

)(1+ kn),

(
1

Σn−
+

h2

σ2
W

)cn = (
1

Σn−
− 1

(1+ kn)Σn−
)µn− +

h

σ2
W

Ztn ,

whose solution is given by (19) and (20).

D. Calculations for the discrete-time case

In this section, we consider the discrete time case:

Xn = a Xn−1 +Bn, (55)

Zn = h Xn +Wn, (56)

where a,h are real numbers, and Bn,Wn are mutually inde-

pendent i.i.d noise with distribution N(0,σ2
B) and N(0,σ2

W ),
respectively.

The discrete-time filter is a special case of the continuous-

discrete filter discussed in Section II. One can view (55)

as the discrete time system obtained by integrating the

continuous time SDE (16) forward in time from tn−1 to tn.

Using Lemma 1, the discrete-time particle filter is given

by:

t ∈ [tn −1, tn) : X i
n− = a X i

n−1 +Bi
n; (57)

t = tn : X i
n = X i

n− + knX i
n− + cn, (58)

where Bi
n ∼ N(0,σ2

B) and kn,cn are defined in (19) and (20).

The mean µt−n and variance Σt−n is approximated from

the ensemble {X i
n−}N

i=1 in practice. In the infinite-N limit,

one obtains the recursive equations for mean and variance

associated with the discrete-time Kalman filter:

µn+1 = a µn +Kn+1(Zn+1 −h a µn), (59)

Σn+1 = (1−h Kn+1)(a
2 Σn +σ2

B). (60)

where Kn+1 =
h(a2Σn +σ2

B)

h2(a2Σn +σ2
B)+σ2

W

is the Kalman gain.

E. Proof of Theorem 1

The Gaussian density is given by:

p(x, t) =
1√

2πΣt

exp(− (x−µt)
2

2Σt

), (61)

The density (61) is a function of the stochastic process µt .

Using Itô’s formula,

dp(x, t) =
∂ p

∂ µ
dµt +

∂ p

∂Σ
dΣt +

1

2

∂ 2 p

∂ µ2
dµ2

t ,

where
∂ p
∂ µ = x−µt

Σt
p,

∂ p
∂Σ

= 1
2Σt

(

(x−µt )
2

Σt
−1
)

p, and
∂ 2 p

∂ µ2 =

1
Σt

(

(x−µt )
2

Σt
−1
)

p. Substituting these into the forward equa-

tion (27), we obtain a quadratic equation Ax2+Bx= 0, where

A = dΣt −
(

2aΣt +σ2
B −

h2Σ2
t

σ2
W

)

dt,

B = dµt −
(

aµt dt +
hΣt

σ2
W

(dZt −hµt dt)

)

.

This leads to the model (32) and (33).
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