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Abstract— Driving patterns have great impact on fuel econ-
omy or power split control decisions of PHEV (Plug-in Hybrid
Electric Vehicle) energy management. In this paper, a statistical
approach was used to analyze real world velocity profiles to
gather traffic information such as average speed, speed limits,
segment length, etc. A Markov chain model was developed to
make use of such information for generation of random velocity
profiles that are representative of real world driving scenarios.

The velocity profiles generated using the Markov chain
models are used to calculate vehicle fuel economy by means of
a validated through the road parallel PHEV model and ECMS
(Equivalent Consumption Minimization Strategy) control strat-
egy. The end goal of the research is to find mathematical,
statistical or heuristic relationships between road events and
the performance of PHEV energy management.

I. INTRODUCTION

Various researchers have pointed out that driving patterns

such as road type and traffic condition, trend and style, and

vehicle operation modes have various degrees of impact on

vehicle fuel consumption [1], [2], [3], [4], [5], [6]. The

research related to intelligent vehicle power control has

tried to find ways to incorporate the online driving pattern

information into control strategies [7], [8], [9], [10], [11],

[12], [13]. In [6], 62 driving pattern parameters were selected

to describe the dimensions of urban driving and factorial

analysis was used to reduce the initial 62 parameters to 16

independent driving pattern factors based on their effects on

emissions and fuel consumption. For driving pattern analysis,

driving pattern recognition approach was used in [7], [8],

[9] to define different driving modes. In [7] [9], Artificial

Neural Network (ANN) based driving pattern recognition

was conducted while in [8] Lin et al. used a simple rule-based

control strategy to recognize the Representative Driving

Profiles.

Statistical analysis based approach was proposed by Gu et

al. [10], they developed a simple algorithm that can be easily

implemented in real time. In [11] and [12], an intelligent

energy management agent (IEMA) based on driving pattern

recognition was used for parallel hybrid vehicles. 40 out

of the 62 parameters from [7] with seven new parameters

were used for the driving pattern recognition. In [13], an

intelligent system was developed to predict the current traffic

conditions and neural learning for predicting the driving

environment, such as road type and traffic congestion. The

developed intelligent system was then used for vehicle power

management.
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External systems like traffic information systems and

traffic modeling approaches were used for prediction of the

driving patterns [14]. Similar to [10], a statistical analysis

and clustering approach was used in [15] for driving cy-

cles. It first divided the driving cycles into segments called

kinematic sequences and then clustering approach was used

to separate those kinematic sequences into groups based on

statistical information. The paper also proposed an approach

to generate the driving cycles by choosing the kinematic

sequences from the existing database randomly following

distributions obtained from the kinematic sequences. For

long and regular driving cycles, the approach may be ef-

fective and appropriate. However, it may not be adequate

enough to generate short and more precise driving cycles.

Markov chain modeling is an effective way to generate a

representative driving pattern in a statistical way. In [16],

Markov chain modeling was used for the velocity profiles

generation based on observations from some standard driving

cycles.

In this paper, with real world driving data available from

a PHEV fleet, a systematic statistical approach was carried

out, and then Markov chain modeling was used based on

the clustering results. Furthermore, traffic information was

used as the constraints for the stochastic velocity genera-

tion model. With traffic information, more precise velocity

profiles were generated for different driving patterns under

different traffic density conditions.

Given the complexity of plug-in hybrid electric vehicle

architecture, the control strategy algorithm is required to

perform multi-objective optimization of fuel economy, all-

electric range, total emissions, battery life, ease of im-

plementation, along with the constraints related charging

issues and availability, battery aging, expected performance.

Energy management algorithms can be broadly divided into

analytical (e.g. dynamic programming, Pontryagin principle,

equivalent consumption minimization strategy) and empir-

ical (rule-base, fuzzy logic, artificial neural networks) ap-

proaches. Ideally, a priori detailed knowledge of the trip

is required for optimal solution, but clearly this is not a

practical scenario and a trade-off between optimality and

level of information is needed. This paper is focused on

ECMS and builds on methodology and results presented

in [17]. As confirmed also by [18], the presented control

strategy requires very limited information about the trip to

obtain near-optimal performances, thus being suitable for

online implementation. In order to increase the level of

available trip information, some authors ([19], [14]) have

developed tools to characterize driving pattern based on GPS,
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TABLE I

STATISTICAL METRIC FOR DRIVING CYCLES

Vmean Mean Velocity
Vrun,mean Mean Run Velocity
Vmax Maximum Velocity
amax Maximum Acceleration
dmax Maximum Deceleration
amean Mean Acceleration
dmean Mean Deceleration
arms Root-Mean-Square of Acceleration
Vstd Standard Deviation of Velocity
astd Standard Deviation of Acceleration
% dtime Percent of Time Decelerating
% atime Percent of Time Accelerating
% cruisetime Percent of Time Cruising
% adist Percent of Distance Accelerating
% ddist Percent of Distance Decelerating
% cruisedist Percent of Distance Cruising
PKE Positive Kinetic Energy
D Driving distance
T Driving time

GIS and historical data. These driving patterns could be

then used i) to tune control algorithms or ii) as predictions,

resulting in improved performance of the energy manage-

ment strategy and fuel economy, thus further proving the

increasing importance of Intelligent Transportation Systems.

This paper deals with combining the ITS (Intelligent

Transportation Systems) information with the PHEV energy

management to find the relationship between velocity profiles

and PHEV performance. The goal of the research is to find

mathematical, statistical or heuristic relationships between

road events and the performance of PHEV energy manage-

ment. The task is divided into two groups, (i) relationship

between road events, weather conditions and velocity statisti-

cal properties and (ii) relationship between velocity statistical

properties and PHEV performance. In this paper, we focused

on the second group of the study. The work related the first

group is not included in this paper but can be found in [20].

The remainder of the paper is organized as follows. Sta-

tistical analysis of real velocity profiles along with Markov

chain model-based velocity generation approach is presented

in section II. PHEV model and simulator architecture is

presented in Section III and IV, respectively. Section V gives

simulation results followed by conclusion and future work in

section VI.

II. STATISTICAL ANALYSIS OF REAL VELOCITY PROFILES

A systematic statistical analysis was carried out for the

real driving velocities. The velocity profiles were divided

into smaller segments, which are velocity profiles between

two consecutive stops, and then the statistical analysis and

clustering was performed based on the obtained velocity seg-

ments. A set of statistical characteristics adapted from [10],

[15] was used to describe each velocity segment, as shown in

Table I. Considering that the segment based velocity profiles

were analized here, PKE (positive acceleration kinetic energy

per unit distance) and %idletime (percent of time idling)

which were used in [21] were not used here. Instead, as

pointed out in [15], driving distance and driving time were

used.
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Fig. 1. Principal component analysis of all segments

With the proposed statistical metric each velocity segment

(i) is represented by a 18 element vector, DCSMVorg,i×18

(Driving Cycle Statistical Metrics Vector). To reduce the

dimension of the characteristic vector, Principal Component

Analysis (PCA) was applied since the components of the vec-

tors may be highly correlated. PCA involves a mathematical

procedure that transforms the number of possibly correlated

variables into a smaller number of uncorrelated variables

called principal components. Detailed description related

to PCA analysis can be found in [21]. The accumulated

variances shown in Figure 1 imply that the first 5 principal

components determined from the PCA represent more than

90% of the information of the original vector.

Then k-means clustering approach was used to group the

velocity segments into classes. Detailed description of k-

means clustering was in [22]. Based on the PCA results,

and trial and error method, two clustering result was better

than other number of clusters. However, two clusters may not

be the best grouping result, so deeper analysis with reduced

order of statistical metric was carried out. Finally, a reduced

order of statistical metric with only four variables gave much

better clustering results with four clusters shown in Figure

2. The four variables were driving time, driving distance,

maximum velocity and mean velocity. The sessions with

negative silhouette values were deleted since they were not

suitable to be grouped into any cluster. The resulting clusters

with velocity profiles are shown in Figure 3.

In the clustering results, cluster 1 has relatively high veloc-

ity urban driving. Cluster 2 includes relatively low velocity

urban driving, cluster 3 contains very low velocity driving

such as moving vehicles in parking lots or when waiting for

traffic lights, and cluster 4 includes typical highway driving.

The grouped velocity profiles will be used for the stochastic

velocity generation using Markov chain modeling approach.

A. Markov chain

In this paper, the Markov chain modeling approach given

in [19] [23] was used to generate velocity profiles based on
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Fig. 2. Silhouette value for all segments
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Fig. 3. Velocity profiles showing four clusters.

the observations from real world driving data available from

the PHEV fleet. The Markov model is described in Equation

(1), which shows that the next state of the system is only

dependent on the current state.

P{X(t+ 1) = j|X(t) = i} = f(i, j) (1)

Where, the state vector in the Markov chain is defined as

Xk = (Vk, Ak) where Ak is acceleration and Vk is velocity,

and the probability distribution for a combination of A and

V at the next step is given by the transition probabilities.

P (Ak+1 = ak+1, Vk+1 = vk+1|ak, vk) = pk,k+1 (2)

Detailed procedures of using Markov chain model for our

PHEV fleet real world velocity data was included in [21].

In Equation (3), mi,j is the number of occurrences of the

transition from vi to vj for a certain acceleration rate, and

mi =
∑n

j=1
mi,j is the total number of times vi has occurred

at the acceleration rate.

pi,j =
mi,j

mi

(3)
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Fig. 4. Generated Velocity Profile for Cluster 1

Apart from the transition probabilities some traffic in-

formation like speed limit and segment length can also

be added into the model. To accurately generate velocity

profiles representing different traffic conditions, information

like average speed, speed limits, segment length will be

integrated into the Markov chain model for velocity gen-

eration. Detailed description of the combined model is in

the following paragraphs.

Assuming that the whole trip has N segments which

can be obtained from ITS, a stochastic velocity profile is

generated for each segment based on Markov chain model.

During the generation process following steps are performed

till all segments are generated

1) The speed limit was checked to limit the generated

velocity at each step.

2) Idle period was generated following the idle time

distribution which was collected from the real world

driving data

3) The mean value of this velocity profile was compared

to the average velocity of the segment to check whether

the average velocity is acceptable. If unacceptable,

generate velocity profile for this segment, otherwise

go on for the next segment.

4) The process was carried out until all the segments were

finished.

B. Sample data

So far, almost one year driving data of a PHEV has

been considered for this study. The collected 530 cycles

were divided into more than 4000 segments. Based on the

four clusters obtained, Markov chain model can be used for

each cluster for velocity generation. Detailed work about the

velocity data process and velocity generation were shown

in [21]. One example case of generated velocity profile

for cluster 1 using the corresponding probability transition

matrix is presented in Figure 4. Similarly, velocity profiles

for other clusters can be generated in the same way.
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Fig. 5. Powertrain architecture and simulator used in this study [17].

III. VEHICLE SIMULATOR

The simulator considered in this study builds upon an

energy-based model developed in Matlab/Simulink environ-

ment designed for the Challenge-X student competition. The

simulator and the component models were validated against

the experimental data during the three years of the competi-

tion [24]. The vehicle simulators were developed to perform

the energy analysis of the vehicle. The main purpose of these

simulators is to analyze fuel consumption and battery usage

for a particular driving pattern. The simulator is a quasi-static

model for drive train components with backward model of

the vehicle. The quasi-static models do not consider transient

response of vehicle components and use static efficiency

maps and fuel consumption maps for the engine and the

motor. The control algorithm accepts these commands and

selects the optimum power split between the engine and the

battery. The general architecture of the simulator is shown in

Figure 5. The component specifications of the vehicle power

train are given in Table II.

IV. PHEV ENERGY MANAGEMENT

The velocity profiles generated as discussed in the pre-

vious section are then used for PHEV energy management

performance analysis. The goal of this study was to compare

PHEV fuel economy and electric energy consumption for

different (but equivalent in terms of distance and number

of stops) velocity traces. The results provide some insights

into the effect of different driving conditions on PHEV

performance. PHEV energy management strategy is based

on Equivalent Consumption Minimization Strategy (ECMS)

as given in [17]. The ECMS is used in blended mode control

where the battery SOC decreases gradually such that it

reaches the minimum allowed value only at the end of the

trip. This control is implemented by considering a reference

SOC profile that linearly decreases with the driving distance.

This strategy was proved to be near optimal in [17] but

it requires prior knowledge of total distance between two

charging events.

V. RESULTS

The developed simulator is used to study the impact of

driving profiles in fuel economy and optimality of ECMS.

The PHEV simulator has an all-electric range (AER) of

approximately 16 miles; therefore, to properly assess the

TABLE II

SIMULATOR DETAILS

Vehicle Chevrolet Equinox mid-size SUV
Total Mass 2090 Kg
Engine 1.9L Diesel, 4 cylinder, 103kW, 17.5:1
Rear axle Motor 67 kW peak, 3ph AC Induction motor
Transaxle 6 speed automatic
Traction Battery 9kWh GAIA Li-ion battery. Nominal voltage

270V
Gear shifting Look up table controller
Engine, EM models Fuel consumption map and Efficiency maps
Simulator Backward Quasi-static simulator built using

Matlab/Simulink
Energy management Equivalent Consumption Minimization Strat-

egy.

Fig. 6. A route from CAR to bethel road showing location of traffic lights.

performance of the energy management algorithm in blended

mode control, the total trip distance is chosen to be 50

miles. Out of the 50 miles only the initial 5 miles of trip

is synthetically generated using Markov chain models for a

route in Columbus, OH as shown in Figure 6.

The length of the trip segment is about 5 miles with 10

traffic lights, and the speed limit of 45 mph. Segment lengths

between traffic lights were obtained from Google map [25].

To assess the impact of traffic density on PHEV performance,

four traffic conditions were assumed. In high traffic density

situation, the PHEV was assumed to stop at all traffic lights

and 5 extra stops caused by other traffic events, and the

average velocities for each segment were relatively small

ranging from 10-30 mph depending on the segment length.

In low traffic density situation, the PHEV was assumed to

stop at only 4 randomly chosen traffic lights, and the average
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velocity for each segment were relatively high ranging from

30-40 mph depending on the segment length. Two more

traffic situations between these two were defined as well

with 7 and 10 stops, respectively. The decreasing number

of stops indicates the decreasing traffic density and the four

different conditions are shown in Figure 7. In order to have

statistically significant dataset, fifteen velocity profiles were

generated for each traffic density condition.

All scenarios were analyzed using the PHEV simulator

described in the previous section. An optimal equivalence

factor was found for each velocity profile using iterative

procedure such that the final SOC is equal to the reference

SOC. The optimal fuel economy for each velocity profile

is calculated by considering only the fuel consumption; this

approach is valid because all velocity profiles reach the same

final state of charge so that net electricity consumption is the

same for all cycles. It should be noted that the purpose of this

study is to compare the impact of different velocity profiles

on PHEV performance; since net electricity consumption

for all cycles is constant, equivalent miles per gallon is

not relevant. Figure 8 shows the results for minimum fuel

consumption for different traffic densities; it can be noted that

the number of stops within a fixed distance is less important

as compared to the velocity profile. These results signify

that small changes in the velocity profiles can significantly

change the fuel economy performance of a PHEV. It is worth

noting that these results are based on the optimal equivalence

factor for each case; simulations have shown that if the

controller has no availability of real time driving data and it

is tuned just based on standard driving cycles (e.g. UDDS)

the resulting fuel economy is 5 - 10% lower.

The optimal equivalence factor for different driving cases

is shown in Figure 9. The figure shows that different velocity

profiles have different optimal equivalence factors although

there is a general trend that lower traffic densities require

higher equivalence factor. The large deviation of equivalence

factor around the average value suggests that the optimal
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Fig. 7. Velocity profiles showing different traffic density conditions.
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equivalence factor strongly depends on statistical properties

of velocity profiles along with the traffic density.

In order to identify which statistical properties of velocity

profile have larger impact on the optimal equivalence factor,

a regression analysis was performed. Initially, a linear re-

gression is used to find out the direct relationships between

the velocity statistics as given in Table I and the equivalence

factor. The regression coefficients are shown in Figure 10.

This figure gives a general idea about the importance of ac-

celeration parameters and overall distribution of acceleration

throughout the driving cycle on the equivalence factor. The %
time spent in cruising and stopping is inversely proportional

to the time spent in acceleration and deceleration. Therefore,

these results suggest that the driving behavior is more

important than the velocity of the vehicle, i.e. stop and go

traffic with different average, maximum velocities may lead

to same equivalence factor.
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Fig. 10. Regression analysis results to show the relation between velocity
statistics and equivalence factor.

VI. CONCLUSION

This paper presents a preliminary study of equivalence

factor and fuel economy for different driving conditions.

The study is performed by means of synthetic driving cycles

generated using real world driving data and using Markov

chain modeling. A specific route is assumed in this paper

to reduce the variability in the velocity profiles and the

study is performed in simulation using a PHEV model with

equivalent consumption minimization strategy. The prelim-

inary results show that the driving profiles have impact on

the PHEVs fuel consumption and the optimum equivalence

factor for ECMS. A regression analysis is performed to

identify different factors affecting the optimal equivalence

factor. The results show that acceleration statistics such as

average acceleration, RMS acceleration, etc. have largest

impact on the equivalence factor as compared to the velocity

statistics such as mean velocity, maximum velocity, etc.

The end goal of the research is to find mathematical, statis-

tical or heuristic relationships between velocity profiles, driv-

ing habits and PHEV energy management and performance.

This study is the first step to show the need of detail analysis

to find optimal equivalence factor and its dependence on

the driving profiles to improve PHEV performance. Future

work includes more accurate regression models (quadratic,

nonlinear, etc.) based on analytical solutions and a method

to predict the equivalence factor using ITS trip information.
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