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Abstract— In this paper we address the problem of coopera-
tion and collision avoidance for multi-agent Lagrangian systems
with input disturbances. Two different disturbance observers
with different stability results are used for Lagrangian systems,
and collisions are shown to never occur in both cases. Then,
using Lyapunov techniques, states of the systems are shown to
converge to an ultimately bounded region around the master
agent. Theoretical results are illustrated through simulations.

I. INTRODUCTION

Control of multi-agent formations has been a popular area

for numerous researchers. A survey of works that deal with

autonomous consensus seeking methods where agents utilize

local data can be found in [1]. In [2], reaching consensus on

the heading of multi-agent systems using nearest neighbor

rules and switching communication graphs has been dis-

cussed. Consensus under communication delays has been

considered in [3], [4]. Potential-based methods have been

proposed in [5], and decentralized overlapping control of

multi-agent formations have been discussed in [6].

In order to establish safe trajectories in multi-agent for-

mations, many ideas have been proposed. In the case of the

noncooperative scenario for a two-agent system, collision

avoidance has been studied in [7], [8]. In the context of

collision avoidance of multi-agent formations with kinematic

models, the problem was addressed using multiobjective

and decentralized optimization methods in [9], and attrac-

tive/repulsive potentials in [5]. One of the most essential

ideas related to the safety of multi-agent formations is the

concept of avoidance control that was originally formulated

in [10], and later further developed in [11], [12], [13]. The

importance of the aforementioned works lies in the fact

that the analysis for collision avoidance is naturally inte-

grated into Lyapunov analysis for stability results. Stability

results that integrate avoidance control ideas from [10] with

Lyapunov analysis for multi-agent formations can be found

in [14]. For a chronological survey with more details on

avoidance control, we refer the readers to [15]. One of the

main ideas for disturbance rejection in dynamical systems is

employment of disturbance observers. The main idea of a dis-

turbance observer (DO) is to attenuate the disturbance signal

by measuring the states to recreate the dynamic system and
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constructing additional dynamics for ensuring convergence

of the disturbance error. DOs have particularly been utilized

for control of robot manipulators as they provide good results

in compensating for friction ([16]) and other disturbances

([17]) without the use of additional sensors. In this paper,

we utilize DO designs from two papers; the simple DO is

designed in [18] and the advanced DO is proposed in [19].

In this paper, we tackle the problem of cooperated co-

ordination and collision avoidance of Lagrangian multi-

agent formations with disturbances. Two different distur-

bance observers are utilized for estimating disturbances of

the system. To overcome the drawbacks of the additional

dynamics of the DOs, control laws that exploit the bounds

on the initial disturbance errors and the derivatives of the

disturbances have been proposed, which guarantee collision-

free trajectories for the agents. Using Lyapunov techniques,

ultimate bounds on the states of the agents are derived.

The remainder of the paper is organized as follows: in

Section II, we discuss the dynamics of the multi-agent sys-

tem, avoidance functions, two versions of DOs and control

laws for the system. In Section III, we prove that collisions

do not occur in the multi-agent formation, and derive the

ultimately bounded region to which all the agents converge

in finite time. We provide numerical simulations in Section

IV and give final comments in Section V.

II. PROBLEM STATEMENT

A. Dynamics

Consider N agents whose dynamics are described by

Mi(xi)ẍi + Ci(xi, ẋi)ẋi = τi + di, i = 1, ..., N (1)

where xi ∈ R
n are the generalized coordinates, Mi(xi) is a

symmetric positive definite inertia matrix, Ci(xi, ẋi) is the

Coriolis Matrix, τi ∈ R
n is the input force/torque, and di is

a disturbance to the system.

Agents are assumed to satisfy the following [20]:

P1 ∃ constants 0 < σi, σi such that σi ≤ ‖Mi(xi)‖ ≤ σi.

P2 ∃ constants 0 < kCi
such that

‖Ṁi(xi)‖ ≤ 2‖Ci(xi, ẋi)‖ ≤ 2kCi
‖ẋi‖.

P3 Matrices Ṁi(xi)− 2Ci(xi, ẋi) are skew symmetric.

In addition to P1-P3, we have the following property

for the system utilizing the advanced DO, which is to be

introduced in Section II-C.2:

P4 ∃ constants 0 < ωdi
such that ‖ḋi‖ ≤ ωdi

< ∞.
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B. Avoidance Functions

In order to guarantee collision avoidance, for each pair of

agents we define the following avoidance functions [14]:

V a
ij(xi, xj) =

(

min

{

0,
‖xi − xj‖2 −R2

‖xi − xj‖2 − r2

})2

(2)

with i, j ∈ 1, ..., N, i 6= j and R > r > 0. R denotes the

radius of the region in which agents can detect other agents,

and r denotes the avoidance region, which is the smallest

safe distance between the agents.

C. Disturbance Observers

1) Simple Disturbance Observer:

a) Design: For the simple disturbance observer (DO)

version, we are going to assume that the time derivative of

the disturbance is zero; i.e., ḋi = 0 for all i ∈ {1, ..., N}.

This assumption implies that the disturbance for each agent

varies slowly relative to the observer’s dynamics. Instead of

deriving the equations, we use the results given in [18] and

state how we utilize the simple DO. Consider the disturbance

d and the error between disturbance and estimation d̂ for a

Lagrangian system of the form given in (1):

d = M(x)ẍ+ C(x, ẋ)ẋ− τ, e(t) = d− d̂. (3)

Introducing the auxiliary variable δ and the design variables

L(x, ẋ), p(x, ẋ), the following equations constitute the sim-

ple DO dynamics [18]:

δ = d̂− p(x, ẋ), (4)

L(x, ẋ)M(x)ẍ =
[

∂p(x,ẋ)
∂x

∂p(x,ẋ)
∂ẋ

]

[

ẋ
ẍ

]

, (5)

δ̇ = −L(x, ẋ) (δ + p(x, ẋ)) + L(x, ẋ) (C(x, ẋ)ẋ− τ) .(6)

b) Stability Analysis: Differentiating e(t) with respect

to time and utilizing ḋ = 0 assumption, (4), (5) and (6)

yields ė = −L(x, ẋ)e. It can be seen that d̂ asymptotically

converges to the actual disturbance d if L(x, ẋ) is chosen

properly. However, L(x, ẋ) cannot simply be chosen as a

constant positive definite matrix since it also has to satisfy

the nonlinear equation in (5), so p(x, ẋ) must now be taken

into consideration. One way of choosing p(x, ẋ) by utilizing

the inertial matrix of a two-link robotic manipulator has been

proposed in [18], yet we propose a different p(x, ẋ) function.

By using V (e, x) = eTMe as a Lyapunov function, with

x ∈ R
N , we can state the following lemma:

Lemma 1: Let p(x, ẋ) = s[ẋT
1 , ..., ẋ

T
N ]T , such that s

satisfies 2sI − Ṁ(x) ≻ 0 ∀t ≥ 0 where I is the N by N
identity matrix and Ṁ is the derivative of the inertia matrix.

Then, the observer described in (4), (5) and (6) is globally

asymptotically stable.

c) Bound on Simple Disturbance Observer Error: Us-

ing the disturbance observer dynamics described in the pre-

vious section, it can be shown that Li(xi, ẋi) = siM
−1
i (xi)

where M−1(xi) is the inverse of the inertia matrix of an

agent. Utilizing the Lyapunov function V (ei) = 1
2e

T
i ei for

i = 1, ..., N , the following inequality can be shown to hold:

‖ei(t)‖2 ≤ ‖ei(0)‖2e−
si
σi

t ⇒ ‖ei(t)‖ ≤ ‖ei(0)‖ (7)

with σi defined as in Property P1. For all practical purposes,

we assume that at t = 0, discrepancy between actual and

estimated disturbance is bounded; i.e., ‖di(0) − d̂i(0)‖ =
‖ei(0)‖ ≤ ηi where ηi > 0 ∀i ∈ {1, ..., N}. It can be seen

that the observer error is bounded from above by the initial

error for each agent. Define ‖D−D̂‖ = ‖[e1(t), ..., eN (t)]T ‖,

and η := maxi∈{1,...,N} ηi. Using the bound, we have:

‖D − D̂‖ ≤ ‖[η, ..., η]T ‖ ≤
√
Nη. (8)

2) Advanced Disturbance Observer: For the advanced

observer design, we consider the Lagrangian model and

design the observer for a single agent, so subscripts will

be dropped again. The main difference between the simple

and advance DO is that we do not have ḋ = 0 assumption

for the advanced DO. Again, we won’t derive the dynamics;

instead, we will use the results given in [19].

a) Design: Consider the Lagrangian agent given in (1).

We have the exact same equations as in (3) and (4). The

only difference here is L is a constant matrix with positive

eigenvalues . Similar to the simple DO design, introducing

the auxiliary variable δ given in (4), with design parameters

L, p(x, ẋ) and r(x), advanced DO dynamics are described

by the following equations [19]:

p(x, ẋ) = LM(x)ẋ+ r(x), (9)

δ̇ =−Lδ −
(

L
∂(M(x)ẋ)

∂x
+

∂r(x)

∂x

)

ẋ

+L (C(x, ẋ)ẋ− p(x, ẋ)− τ) . (10)

b) Stability Analysis: Let us define the observer estima-

tion error ed = d−d̂. Taking derivative and using (4), (9) and

(10), we get ėd = −Led + ḋ. Note that ḋ is explicitly taken

into account in observer dynamics. Since ėd is a stable linear

system, it can be integrated to give the following solution

[19]:

ed(t) = e−Lted(0) +

∫ t

0

e−L(t−τ)ḋ(τ)dτ. (11)

It follows that limt→∞ ‖e−Lted(0)‖ = 0 . The ultimate

bound on ed(t) can be shown to be [19]:

lim
t→∞

‖ed(t)‖ ≤ c sup
t∈(0,∞]

‖ḋ(t)‖, (12)

where c :=
∫∞

0
‖e−Lt‖dt. Hence, the observer error is

ultimately bounded.

c) Bound on Advanced Observer Error: Using the

bound found in (12), property P4, and defining ωd :=
maxi∈{1,...,N} ωdi

, ρ := maxi∈{1,...,N} ci where ci :=
∫∞

0
‖e−Lit‖dt, ‖D − D̂‖ can be bounded as:

‖D − D̂‖ ≤ ‖[ρωd, ..., ρωd]
T ‖ ≤

√
Nρωd. (13)
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D. Control Laws

Every agent i has a group of neighbors Ni defined as

Ni = {j ∈ {1, ..., N} : i∼j}, i ∈ {1, ..., N}
where i∼j indicates that the agent i communicates with agent

j. It is assumed that the communication graph is undirected.

The control laws for the agents (master agent is assumed to

have index i = 1) are given by

τi =−bẋi − αkxi − k
∑

∀j∈Ni

(xi − xj)−
∑

∀j∈Ni

∂V a
ij

∂xi

T

−d̂i −
{

((1− β)ciωdi
+ βηi)

ẋi

‖ẋi‖
ẋi 6= 0

0 ẋi = 0
(14)

∀i ∈ {1, ..., N}, where b > 0, k > 0 are control gains, d̂i are

the estimations of the disturbance observers for each agent.

α and βi are binary variables that satisfy the following:

α =

{

1 i = 1
0 i 6= 1

, β =

{

1 Simple DO

0 Advanced DO
.

Finally, ωdi
are as defined in Property P4, ci are as defined

in Section II-C.2.c and ηi are as defined in Section II-C.1.c.

E. Augmented System

Using the control laws for the agents defined in (14), and

the equations of motion for each agent given in (1), we can

write the augmented closed loop system as follows [20]:

MẌ+CẊ = −bẊ−kSTSX−D̂−P (Ẋ)−L(X)+D (15)

where XT =
[

xT
1 , ..., x

T
N

]

∈ R
nN is the position vector,

DT =
[

dT1 , ..., d
T
N

]T
is the disturbance vector, similarly

D̂T is the disturbance estimation vector and L(X) =
[

∑

j∈N1

∂V a
1j

∂x1

, ...,
∑

j∈NN

∂V a
Nj

∂xN

]T

is the collision avoidance

part. P (Ẋ) =
[

pT1 , ..., p
T
N

]T
is a vector that contains the

following term for each agent, i.e., for all i ∈ {1, ..., N}:

pi =

{

((1− β)ciωdi
+ βηi)

ẋi

‖ẋi‖
ẋi 6= 0

0 ẋi = 0
. (16)

Inertia and Coriolis matrices are block diagonal matrices

and are given by M = diag{M1(x1), ...,MN (xN )} and

C = diag{C1(x1, ẋ1), ..., CN (xN , ẋN )}, respectively. S is

the connection matrix and is defined as follows [20]: Let E
contain x1 as an element as well as all the error vectors of

the form xi − xj , if i, j are neighbors. Then, S is defined

such that E = SX , with the first element in E being x1.

Since the communication graph is connected, with the use of

the term −kx1 in (14), S can be shown to have full column

rank and thus STS is a symmetric positive definite matrix.

III. MAIN RESULTS

A. Collision Avoidance

For the overall system (15), let’s define the avoidance

region for each pair of agents as

Ωij =
{

X : X ∈ R
nN , ‖xi − xj‖ ≤ r

}

and the detection region for each pair of agents as

Dij =
{

X : X ∈ R
nN , ‖xi − xj‖ ≤ R

}

.

The overall avoidance and detection regions for the aug-

mented system are then given by the unions of pairwise

avoidance regions and detection regions:

Ω =
⋃

i,j∈{1,...,N},j>i

Ωij , D =
⋃

i,j∈{1,...,N},j>i

Dij . (17)

Let’s recall the definition for the avoidance of the set [10]:

Definition 1: The system ẋ = f (x, u(x)) avoids Ω ⊂
R

nN , if and only if for each solution x(t, x0), t ≥ 0, that

does not start in Ω, x(t, x0) stays out of Ω for all t ≥ 0.

We now give the results for collision avoidance for two

systems that utilize different observers. We only show the

proof for the system with simple DO, since the proof is very

similar for advance DO case.

Lemma 2: Consider N agents with Lagrangian dynamics

given in (1), and the control laws (14)), starting from an

initial configuration x(t0) := x0 /∈ Ω, where Ω is defined in

(17). Also, assume that the system utilizes the simple DO

defined in Section II-C.1.

Then, the set Ω is avoidable in the sense of Definition 1.

Proof: Let’s define the following Lyapunov function

candidate [20]:

Vcol =
1

2
ẊTMẊ +

1

2
kXTSTSX +

1

2

N
∑

i=1

∑

i 6=j

V a
ij . (18)

Since we assume the simple DO is utilized, β in (14)

becomes 1. Using the property P3, the bound on ‖ei(t)‖
from Section II-C.1.c and following derivations in [20], the

derivative of Vcol along the trajectories of the augmented

system can then be shown to satisfy the following:

dVcol

dt
≤ −b‖Ẋ‖2 + ẊT

(

D − D̂
)

− ẊTP (X)

≤ −
N
∑

i=1

b‖ẋi‖2 +
N
∑

i=1

‖ẋi‖(‖ei(t)‖ − ηi)

≤ −
N
∑

i=1

b‖ẋi‖2 ≤ −b‖Ẋ‖2 ≤ 0. (19)

Since V̇col ≤ 0, the function Vcol is non-increasing in

the sensing region D. Also, the values of Vcol are finite for

finite values of its argument X that are outside the avoidance

region Ω, that is when X ∈ Ωc where Ωc = R
nN\Ω denotes

the complement of Ω. Due to continuity of solutions of the

system in (15), the assumption that initial condition satisfies

x0 ∈ Ωc, and that the following conditions hold:

lim
‖xi−xj‖→r+

V a
ij = +∞, ∀i, j ∈ {1, ..., N}, i 6= j, (20)

we conclude that X(t,X0, Ẋ0) will never enter Ω.

‖xi − xj‖ → r+ in (20) denotes convergence to r from

above, i.e., ‖xi − xj‖ = r + δ while δ → 0 and δ ≥ 0.

Lemma 3: Consider N agents with Lagrangian dynamics

given in (1), and the control laws (14)), starting from an

initial configuration x(t0) := x0 /∈ Ω, where Ω is defined in

(17). Also, assume that the system utilizes the advanced DO

defined in Section II-C.2.

Then, the set Ω is avoidable in the sense of Definition 1.
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B. Bound on Collision Avoidance Terms

The collision avoidance terms can be regarded as distur-

bances with the following bound shown in [20]:

sup
t≥0

‖L(X(t))‖ ≤
√
N max

i∈{1,...,N}

∑

j 6=i

‖
∂V a

ij

∂xi

‖ ≤ N
3

2 g (21)

with g defined as in [20], where r ∈ (r,R):

4R(R2 − r2)(R2 − r2)

(r2 − r2)3
:= g. (22)

C. Stability and Coordination

We want to show that agents will converge to a bounded

region around the master agent’s position; i.e., the final agent

positions will be ultimately bounded.

Theorem 1: Consider the augmented system (15), with

the simple DO given in (4), (5) and (6). For any initial

condition ξ(0) =
[

XT (0), ẊT (0)
]T

, such that X(0) /∈ Ω,

there exist gains b and k large enough such that the system

trajectory avoids the set Ω and satisfies the ultimate bound

‖ξ(t)‖ ≤
√

c2
c1

2
√
N

c3

√

(Ng)
2
+ (2η +Ng)

2
(23)

∀t ≥ T , where T ≥ 0 is a finite time, c1, c2 and c3 are

positive constants to be defined, N is the number of agents, η
is as defined in Section II-C.1.c , and g is as defined in (22).

Moreover, the positions of all the slave agents ultimately

converge to a bounded set around the master agent’s position.

Proof: Consider the following Lyapunov function [20]:

Vst =
1

2
ẊTMẊ +

1

2
kXTSTSX + ǫϕT (X)MẊ (24)

where ǫ > 0 and ϕ(X) := X
1+‖X‖ . By the virtue of property

P1 and the fact that the matrix S has full column rank, it

can be shown that for sufficiently small ǫ there exist two

constants c1 and c2 such that the following lower and upper

bounds hold for Vst [3], [21]:

c1‖ξ‖2 ≤ Vst ≤ c2‖ξ‖2. (25)

Following the derivations of [20], using the properties P1-

P3, the result from Lemma 2 and manipulation of terms, we

get the following inequality:

V̇st ≤ −b‖Ẋ‖2 + ‖X‖
(

ǫ

1 + ‖X‖‖P (X)‖
)

+‖X‖
(

ǫ

1 + ‖X‖‖ED‖
)

+ ‖Ẋ‖‖L(X)‖

+‖X‖
(

ǫ

1 + ‖X‖‖L(X)‖
)

+ ǫ(2σ + kC)‖Ẋ‖2

+ǫb
‖X‖‖Ẋ‖
1 + ‖X‖ − ǫ

k‖S‖2‖X‖2
1 + ‖X‖ (26)

where ED , D− D̂ and σ is as defined in Property P1. We

can write the inequality (26) in the following way:

V̇st ≤ −
[

‖Ẋ‖
‖X‖

]T

A

[

‖Ẋ‖
‖X‖

]

(27)

+

[

‖Ẋ‖
‖X‖

]T

B

[

‖ED‖
‖P (X)‖+ ‖L(X)‖+ ‖ED‖

]

where

A ,

[

b− ǫ(2σ + kC)
ǫb

2(1+‖X‖)
ǫb

2(1+‖X‖)
ǫk‖S‖
1+‖X‖

]

, B ,

[

1 0
0 ǫ

1+‖X‖

]

.

From (8), (21) and the fact that the system utilizes the simple

DO (i.e., β = 1), we have the following bounds:

‖L(X)‖ ≤ N
3

2 g, ‖ED‖ ≤
√
Nη, ‖P (X)‖ ≤

√
Nη. (28)

Then, we can rewrite the inequality (27) as

V̇st ≤ −
[

‖Ẋ‖
‖X‖

]T

A

[

‖Ẋ‖
‖X‖

]

+

[

‖Ẋ‖
‖X‖

]T

B

[

N
3

2 g

N
3

2 g + 2
√
Nη

]

. (29)

Pick any c3 > 0 and design the control gains such that

min {b, k} > c3
‖S‖2 holds. Then, for ǫ < min { b−c3

2σ+kC
, 2c3

b
},

we have the following [20]:

‖ξ‖ ≥ 2
√
N

c3

√

(Ng)
2
+ (2η +Ng)

2 := ν,

⇒ V̇st ≤ −c3
2

[

‖Ẋ‖
‖X‖

]T

B

[

‖Ẋ‖
‖X‖

]

(30)

Using (30), the upperbound on Vst in (25), and the com-

parison principle [22], there exists a function β ∈ KL such

that

Vst ≤ max
{

β(c2‖ξ(0)‖2, t), ν2
}

. (31)

Using the lower bound in (25), we find the following bound

on the state:

‖ξ‖ ≤ max

{
√

1

c1
β(c2‖ξ(0)‖2, t),

√

c2
c1

ν

}

, (32)

for all t ≥ 0. For a fixed r > 0, β(r, s) → 0 as s → 0;

hence, there exists a finite time T > 0 such that
√

1

c1
β(c2‖ξ(0)‖2, t) <

√

c2
c1

ν, ∀t ≥ T. (33)

Following the arguments from [20], since the error between

any two neighbors is captured by the vector E = SX , using

the ultimate bound, we have that

‖E(t)‖ ≤ ‖S‖
√

c2
c1

2
√
N

c3

√

(Ng)
2
+ (2η +Ng)

2
, ∀t ≥ T.

Also, Since the coordination graph is connected, there is a

path from master agent (i = 1) to any other agent j.

All the position difference terms are contained in E,

so each one is bounded. Using triangle inequality, we can

conclude that ‖x1−xj‖ is also bounded, and since the result

holds for any j, the conclusion is true for any agent.

Theorem 2: Consider the augmented system (15), with

the advanced DO given in (4), (9) and (10). For any initial

condition ξ(0) =
[

XT (0), ẊT (0)
]T

, such that X(0) /∈ Ω,

there exist control gains b and k large enough such that the

trajectory of the augmented system avoids the set Ω and it

satisfies the ultimate bound

‖ξ(t)‖ ≤
√

c2
c1

2
√
N

c3

√

(Ng)
2
+ (2ρωd +Ng)

2
(34)
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∀t ≥ T , where ρ and ωd are as defined in (13) , T ≥ 0 is a

finite time, c1, c2 and c3 are positive constants to be defined,

N is the number of agents and g is as defined earlier in (22).

Moreover, the positions of all the slave agents ultimately

converge to a bounded set around the master’s position.

Proof: Consider the same Lyapunov function from (24).

Using the same arguments from Theorem 1, the inequality

in (25) holds. Following the derivations of [20], using the

properties P1-P3, the result from Lemma 3 and manipulation

of terms, we again get the inequalities (26) and (27). From

(21), (13) and the fact that the system utilizes the advanced

DO, we have the following bounds:

‖L(X)‖ ≤ N
3

2 g, ‖ED‖ ≤
√
Nρωd, ‖P (X)‖ ≤

√
Nρωd.

(35)

Hence, we can rewrite the inequality (27) for the system with

the advanced DO:

V̇st ≤ −
[

‖Ẋ‖
‖X‖

]T

A

[

‖Ẋ‖
‖X‖

]

+

[

‖Ẋ‖
‖X‖

]T

B

[

N
3

2 g

N
3

2 g + 2
√
Nρωd

]

(36)

where A and B are as defined in (27). Pick any c3 > 0 and

design gains exactly as it has been done in Theorem 1. Then,

for ǫ < min { b−c3
2σ+kC

, 2c3
b
}, we have the following:

‖ξ‖ ≥ 2
√
N

c3

√

(Ng)
2
+ (2ρωd +Ng)

2
,

⇒ V̇st ≤ −c3
2

[

‖Ẋ‖
‖X‖

]T

B

[

‖Ẋ‖
‖X‖

]

(37)

Similar to the arguments made in Theorem 1, it can be shown

that the ultimate bound on the state vector is given by

‖ξ‖ ≤
√

c2
c1

2
√
N

c3

√

(Ng)
2
+ (2ρωd +Ng)

2
. (38)

Following the arguments from [20], since the error between

any two neighbors is captured by the vector E = SX , using

the ultimate bound, we have that

‖E(t)‖ ≤ ‖S‖
√

c2
c1

2
√
N

c3

√

(Ng)
2
+ (2ρωd +Ng)

2
,

∀t ≥ T . Also, since the coordination graph is connected,

there is a path from master agent (i = 1) to any other agent

j. All the position difference terms are contained in E hence

each one is bounded. Using triangle inequality, we can then

conclude that ‖x1−xj‖ is also bounded, and since the result

holds for any j, the conclusion is true for any agent.

IV. SIMULATION RESULTS

In this section, we present two illustrative examples.

In both examples, the same multi-agent system has been

considered. In the first one, the system utilizes the simple

DO design, whereas in the second one, the system utilizes

the advanced DO design.
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Fig. 1. Snapshots of agents’ trajectories (Simple DO)

Consider a multi-robot formation of 4 agents utilizing the

simple DO given in Section II-C.1, with the dynamics given

by the following:

ẍi = τi + di, ∀i ∈ {1, ..., 4}

where xi =
[

xxi
xyi

]T
, d1 =

[

5 5
]T

+ duni and

di = duni for i ∈ {1, 2, 3, 4}, with duni being a pulse

signal that is uniformly distributed in the range [−3, 3]. The

communication graph is taken as 1∼2∼3∼4, and the control

laws given in (14) are used with bi = ki = 10 for all

i ∈ {1, ..., 4}. ηi’s are selected according to the disturbance

signals for each agent. The sensing and avoidance radii are

chosen to be R = 15 and r = 10, respectively. Finally,
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Fig. 2. Snapshots of agents’ trajectories (Advanced DO)

the design parameters for the simple DO for each agent are

selected to be si = 20 for all i ∈ {1, ..., 4}. The agents are

located to lie initially at the corners of a square of length 100
units, as shown in Figure 1. The large circles indicate the

avoidance region of each agent. Snapshots of the evolution

of the trajectories of the agents are depicted in Figure 1,

whereas the distances among all the agents are shown in

Figure 3(a). The solid line in Figure 3(a) indicates 10 units

of distance which represents the avoidance region for agents.

The distances among agents do not cross the solid line, which

implies that collisions do not occur. Finally, Figure 4(a)

shows the norms of the disturbance errors ‖ei(t)‖. Although

the disturbances are assumed to be constant in the design of

the simple DO, we see from Figure 4(a) that the observers

do well even for disturbances that are piecewise constant.
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Fig. 3. Distances among agents for the system with (a) Simple DO, (b)
Advanced DO

Now, consider the same Lagrangian system, but this time

it utilizes the advanced DO, described in Section II-C.2. The

difference of this version of the problem is the nature of

the disturbances and the design parameters for the advanced

DO. The disturbance signals are selected to be periodic, i.e.,

di =
[

3 sin(t) 2 sin(2t)
]T

for all i ∈ {1, ..., 4}. Li’s are

selected to be diag{7, 7}, and ri(xi)’s, which are depicted in

(9), are chosen to be ri(xi) = xi. Other design parameters,

ωdi
’s and ci’s given in (14) are selected according to the

disturbance signals and Li matrices. Snapshots of the tra-

jectories of the agents can be seen in Figure 2, whereas the

distances among all the agents are shown in Figure 3(b).

Finally, Figure 4(b) shows the norms of the disturbance

errors ‖ei(t)‖. Notice that the disturbance errors do not

converge to 0; they stay bounded after t ≈ 2s. This is an

expected behavior since the stability result for the advanced

DO guarantees an ultimate bound for the disturbance error,

rather than asymptotic convergence to 0.
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Fig. 4. Norms of Disturbance Errors (a) Simple DO (b) Advanced DO

V. CONCLUSION

In this paper we presented a control scheme that guaran-

tees collision free trajectories for Lagrangian multi-agent sys-

tems while ensuring convergence to an ultimately bounded

region via cooperation of agents. The scheme utilizes dis-

turbance observers for attenuating disturbances of various

structures. As an extension of the present research, communi-

cation delays will be considered for more realistic scenarios,

as well as time-delay Lagrangian systems, where states are

measured with time delays and control laws are applied with

time delays.
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