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Abstract—A robust adaptive fuzzy identification and tra-
jectory tracking control approach is developed for a class
of multi-input-multi-output (MIMO) nonlinear systems in the
presense of unmodeled uncertainties, parametric uncertainties,
and external disturbances. A sliding mode-based fuzzy model
identification/observer method is used to provide additional
feedback of the unknown system dynamics. The model identifi-
cation error is used along with the tracking error as a composite
adaptive update law for a fuzzy logic based feeedforward term.
The fuzzy logic feedforward term is used in conjunction with
a recently developed robust integral of the sign of the error
(RISE) feedback method to yield a continuous controller that
achieves semi-global asymptotic trajectory tracking.

I. INTRODUCTION1

Fuzzy logic systems (FLSs) can be applied to develop
controllers for complex and practical problems where accu-
rate mathematical models may not be available. Specifically,
fuzzy systems can be used to approximate any nonlinear
system within an arbitrarily small residual error if a sufficient
number of rules are used. A salient motivating property of
FLSs is the approximation capability through the use of lin-
guistic information from human experts [1]–[3]. The approx-
imation capabilities of FLS are improved by incorporating
an adaptive control scheme so that the fuzzy rules model the
uncertain structure and the adaptive control strategy adjusts
the fuzzy parameters through on-line fuzzy update laws [4]–
[6]. Over the past decade, researchers (cf. [7]–[9]) have
included a sliding mode control feedback term (resulting in
a adaptive fuzzy sliding mode control (AFSMC)) as a means
to adaptively compensate for the uncertainties, while robustly
compensating for the redidual approximation error and other
bounded disturbances. However, sliding mode control gener-
ally creates notable problems in practical applications such as
the chattering phenomena which is a byproduct caused by the
use of the discontinuous feedback control (rather than high-
gain) switched at an infinite frequency with a finite amplitude
to offset uncertainties and disturbances [10], [11]. To reduce
the effects of discontinuous feedback, techniques such as
sliding surface strategies and chattering free problems have
been proposed [12]–[14].
Recently, a new continuous high gain feedback control

method was developed coined the robust integral of the
sign of the error (RISE) in [15]. The RISE technique can
be applied to yield an asymptotic tracking result despite
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the presence of sufficiently smooth bounded exogeneous
disturbances [15], [16]. In [15], the technique was used to
obtain an asymptotic tracking result in the presence of the
mixed structured and unstructured uncertainties.
For an affine nonlinear control system with additive dis-

turbances, an integrated identification/observer and tracking
strategy is developed using an adaptive FLS approach com-
bined with the RISE method to eliminate the residual approx-
imation error and other added unmodeled disturbances. The
contribution of this result includes new control development
and analysis for a novel integrated identification and tracking
algorithm for dynamical systems, where human experience
can be included in the development of the fuzzy rule set [17],
[18]. For the tracking control development, a fuzzy logic
feedforward term is augmented by a RISE feedback term to
compensate for additive disturbances and the residual fuzzy
approximation error. The fuzzy rule set is updated using
adaptation laws that are a composite of the tracking error and
the model identification error. A Lyapunov-based stability
analysis is used to conclude that the robust adaptive fuzzy
identification and tracking approach with the composite
adaptation law yields semi-global asymptotic tracking in the
presence of unmodeled dynamics, parametric uncertainty,
and exogeneous disturbances. This paper is organized as
follows. In Section II, the brief description for FLSs is
intoduced. Section III describes the control development
with the RISE feedback term. Section IV shows robust
identification using the sliding mode term. In Section V, a
Lyapunov stability analysis for the RISE fuzzy techique is
presented. Conclusions are provided in Section VI.

II. DESCRIPTION FOR FUZZY LOGIC SYSTEMS (FLSS)

A fuzzy logic system maps from an input vector x =
[x1, x2, · · · , xn]T ∈ U ⊆ Rn to an output vector y (x) ∈ R
where U = U1 × · · · × Un and Ui ∈ R . A MIMO fuzzy
system consists of three main components denoted as fuzzy
rule bases, fuzzification, and defuzzification operators. The
fuzzy rule base is composed of a collection of fuzzy If-Then
rules in the following:

Rl : If x1 is F l
1 and x2 is F

l
2 and · · · and xn is F l

n

Then y1 is Gl
1 and y2 is G

l
2 · · · and yn is Gl

n

where F l
i and Gl

i are fuzzy sets in the rule R, l =
1, 2, ...,M ; i = 1, 2, ..., n. The number M denotes a total
number of fuzzy If-Then rules in the rule base. By using
the singleton fuzzifier, product inference engine, and center-
average defuzzifier, the final output of the fuzzy logic system
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can be written as [19]

y (x) =

MX
l=1

ȳl

Ã
nY
i=1

μF l
i
(xi)

!
MX
l=1

Ã
nY
i=1

μF l
i
(xi)

! (1)

where ȳl is the point at which the μGl has a maximum value
under the assumption that μGl

¡
ȳl
¢
= 1 and the membership

function μF (x) represents the grade of membership of x in
a fuzzy set F and has the interval [0, 1]. In (1), provided that
the membership function μF (x) is fixed and ȳl is regarded
as adjustable parameters, (1) can be rewritten as

yi = θTi ξ (x) i = 1, 2, ..., n (2)

where θi = [θi,1, θi,2, ..., θi,M ]
T ∈ RM is a vector of

adjustable parameters, and ξ (x) = [ξ1, ..., ξM ]
T ∈ RM

denotes the fuzzy basis function and each element ξl is
defined as

ξl =

nY
i=1

μF l
i
(xi)

MX
l=1

Ã
nY
i=1

μF l
i
(xi)

! .

For MIMO systems, (2) can be extended as

y = ΘT ξ (x) (3)

where Θ = [θ1, θ2, ..., θn] ∈ RM×n.

III. ROBUST TRAJECTORY TRACKING USING FUZZY
LOGIC SYSTEMS

Consider an MIMO nonlinear dynamical system written
as

ẋ = f (x) + g (x)u (t) + d (t) (4)

where x (t) , [x1, x2, · · · , xn]T ∈ Rn is the system state,
g (x) ∈ Rn×m is a continuous function, u (t) ∈ Rm is
the control input, f (x) ∈ Rn is an unknown continuous
function, locally Lipschitz in x (t), and d (t) ∈ Rn is an
exogeneous disturbance. For the nonlinear plant provided in
(4), the tracking control objective is for the system state x (t)
to track a given desired reference trajectory xd (t) in the
presence of uncertainties and disturbances.
Assumption 1: The system state x(t) ∈ Rn is measurable.
Assumption 2: The funtion g (x) is known and invertible

if the rows of g (x) are linearly independent and if m = n.
The matrix inverse g+ (x) is bounded.
Assumption 3: The desired trajectory xd(t) ∈ Rn is

designed such that x(i)d (t) ∈ L∞, i = 0, 1, ..., n.
Assumption 4: The disturbance term and its first and

second time derivatives are bounded i.e. d(t), ḋ(t), d̈(t) ∈
L∞. In (4), since f (x) is unknown, the controller u (t)
is designed as a self-tuning adaptive controller constructed
in terms of the estimate function f̂ (x | Θ) resulting from
a fuzzy logic system (FLS) where the fuzzy parameters

are updated by an online adaptation law. Using FLS, the
nonlinear system of (4) can be equivalently represented as

ẋ = f̂ (x | Θ) + g (x)u (t) + ε (x,Θ) + d (t) (5)

where the fuzzy approximation error ε (x,Θ) ∈ Rn is
defined as

ε ,
h
f (x)− f̂ (x | Θ)

i
. (6)

To quantify the tracking objective, a tracking error e (t) ∈ Rn
is defined as

e (t) = x (t)− xd (t) (7)

where the desired state trajectory xd (t) is defined so that
the system output x (t) tracks a smooth reference trajectory
xd (t). To facilitate the subsequent stability analysis, a fil-
tered tracking error r (t) ∈ Rn is defined as

r = ė+ αe (8)

where α ∈ R denotes a positive constant. The system
equations in (5) and the tracking error in (7) can be used
to rewrite the filtered tracking error as

r = f̂ (x | Θ) + g (x)u+ ε+ d− ẋd + αe (9)

where the fuzzy parameter Θ of the estimate term f̂ (x̂ | Θ)
is defined in (3). Let Θ∗ ∈ RM×n denote the optimal
estimation parameters defined as [3]

Θ∗ , arg min
Θ∈Uf

∙
sup
x∈Ux

°°°f (x)− f̂ (x | Θ)
°°°¸ . (10)

In (10), Uf and Ux are compact sets for the fuzzy parameter
Θ and the system state x(t), respectively, defined as

Uf ,
©
Θ ∈ RM×n : kΘk ≤Mf

ª
(11)

Ux , {x ∈ Rn : kxk ≤Mx} ,

where Mf and Mx are designed parameters, and k·k repre-
sents a Euclidean 2-norm. Using the definition of the optimal
parameter matrix in (10), the minimum fuzzy approximation
error w (x) ∈ Rn is defined as

w ,
h
f (x)− f̂ (x | Θ∗)

i
. (12)

In (9), adding and subtracting f̂ (x | Θ∗) and using the
minimum fuzzy approximation error w (x,Θ∗), the filtered
tracking error in (9) can be written as

r = w +
h
f̂ (x | Θ∗)− f̂ (x | Θ)

i
+ f̂ (x | Θ) (13)

−ẋd + g (x)u+ d+ αe.

Remark 1: A FLS can approximate a smooth function
within an arbitrary small residual error. The minimum ap-
proximation error w (x,Θ∗) can be bounded on a compact
set assuming that kw (x,Θ∗)k < w1, kw0 (x,Θ∗)k < w2,
and kw00 (x,Θ∗)k < w3 with a known bound w1, w2, and
w3, respectively where w0 = ∂w

∂x and w
00 = ∂2w

∂x2 [20], [21].
Based on (13), the controller u (t) ∈ Rm is designed as

u (t) = g+ (x)
h
−f̂ (x | Θ) + ẋd − μ

i
(14)
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where μ (t) is a RISE feedback term that is included to
ensure asymptotic tracking in the presence of the FLS
reconstruction uncertainty and the additive disturbances.
Since g (x) ∈ Rn×m is non-square, the pseudo-inverse
g+ (x) = gT (x)

©
g (x) gT (x)

ª−1 ∈ Rm×n is used, where
g (x) g+ (x) = In×n provided g (x) gT (x) is non-singular
and n ≤ m. The RISE feedback term μ (t) ∈ Rn in (14) is
defined as [15], [16]

μ (t) , (kr + k) e (t)− (kr + k) e (0) + v (t) . (15)

In (15), v (t) ∈ Rn is the generalized solution to

v̇ (t) = (kr + k)αe (t) + β1sgn (e (t)) , v (0) = 0, (16)

where kr, k, β1 ∈ R denote positive constant control gains,
and sgn (·) is a vector signum function defined as

sgn (e) ,
£
sgn (e1) sgn (e2) ... sgn (en)

¤
.

Substituting the controller u (t) designed in (14) into (13)
yields

r = w +
h
f̂ (x | Θ∗)− f̂ (x | Θ)

i
+ αe+ d− μ. (17)

The singleton fuzzifier defined in (3) can be replaced for the
estimate f̂ as

f̂ (x | Θ) , ΘT ξ (x) , f̂ (x | Θ∗) , Θ∗T ξ (x) (18)

where ξ (x) = [ξ1, ..., ξM ]
T ∈ RM is a vector of fuzzy basis

functions. The mismatch parameter matrix Θ̃ (t) ∈ RM×n is
also defined as

Θ̃ , Θ∗ −Θ. (19)

After substituting (18) and (19), the filtered tracking error in
(17) can be written as

r = w + Θ̃T ξ (x) + αe+ d− μ. (20)

IV. ROBUST IDENTIFICATION USING FUZZY LOGIC
SYSTEMS

The identification model plus sliding mode term for iden-
tifying the nonlinear plant in (5) can be represented as

·
x̂ = f̂ (x | Θ) + g (x)u+ β2sgn (x̃) , (21)

where x̂(t) , [x̂1, x̂2, · · · , x̂n]T ∈ Rn is the system state
of the identification model, x̃(t) ∈ Rn denotes a measurable
identification error and is defined as

x̃ (t) , x(t)− x̂(t), (22)

and β2 ∈ R denotes a positive constant. The fuzzy parameter
Θ in (21) is identical to the parameter used in the tracking
controller (14) as seen in Fig. 1 so that the parameter
can approach one common optimal point. The identification
control objective is to drive the estimated state x̂ (t) to the
system state x (t).
Remark 2: The sliding mode term helps the model to

identify the nonlinear system with additive disturbance and
provides robust properties against exogeneous disturbance

Fig. 1. Overall scheme of robust identification and tracking control using
composite upadate law

and unmodeled dynamics. The measurable identification
error x̃ (t) in (22) is used to update the parameter of the
fuzzy system.
After subtracting (21) from (5), the time derivative of the

identification error equation is defined as
·
x̃ =

h
f (x)− f̂ (x | Θ)

i
+ ε+ d− β2sgn (x̃) . (23)

Based on (10), (11), and (12), (23) can be written as
·
x̃ = w +

h
f̂ (x | Θ∗)− f̂ (x | Θ)

i
+ d− β2sgn (x̃) . (24)

Using (18) and (19), the identification error dynamics in (24)
can be written as

·
x̃ = h+ Θ̃T ξ (x)− β2sgn (x̃) (25)

where h (t) ∈ Rn is a disturbance term consisting of
the fuzzy approximation error w (t) and the exogeneous
disturbance d (t) as

h , w + d, (26)

and in terms of Assumption 4 and Remark 1, the disturbance
term h (t) can be bounded as

khk ≤ h̄ (27)

where h̄ is a bounding positive constant.
To develop the integrated stability analysis for both robust

tracking and robust identification using the FLS, the derived
equations are rearranged and several useful properties are
defined. To facilitate the subsequent stability analysis, the
time derivative of (20) is given as

ṙ = αė+ w0 (x,Θ∗) ẋ+ Θ̃T ξ0 (x) ẋ+
·
Θ̃T ξ (x) (28)

+ḋ− μ̇.
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In (28), ẋ (t) is replaced by using (7) and (8) and after dif-
ferentiating the RISE term of (15), the following expression
is obtained as

ṙ = α (r − αe) + w0 (x,Θ∗) (r − αe+ ẋd) (29)
+Θ̃T ξ0 (x) (r − αe+ ẋd)− Θ̇T ξ (x) + ḋ

− (kd + k) r − β1sgn (e) .

Rearranging the terms of (29), the closed-loop filtered error
can be expressed as

ṙ = Ñ +N − e− (kd + k) r − β1sgn (e) (30)

where the auxiliary function Ñ (t) ∈ Rn is denoted as
Ñ , α (r − αe) + w0 (x,Θ∗) (r − αe) (31)

−Θ̇T ξ (x) + Θ̃T ξ0 (x) (r − αe) + e,

and N is defined as

N , ḋ+NB1 +NB2. (32)

In (32), NB1 (t) ∈ Rn is defined as
NB1 = w0 (x,Θ∗) ẋd, (33)

and NB2 is defined as

NB2 = Θ̃
T ξ0 (x) ẋd. (34)

The composite adaptive parameter update law for the FLSs
is designed based on the subsequent stability analysis as

Θ̇ = Γproj
©
αξ0 (x) ẋde

T + ξ (x) x̃T
ª

(35)

where Γ ∈ RMn×Mn denotes a constant, positive-definite,
diagonal adaptation gain matrix, and proj (·) denotes a
projection algorithm utilized to guarantee that the ith element
of Θ can be bounded as

Θi ≤ Θi ≤ Θi (36)

where Θi, Θi ∈ R denotes a known, constant lower and
upper bound for each element of Θ̂(t). The selection of
f̂ (x | Θ) in the FLS involves a human expert’s knowledge
in choosing the initial value Θ (0) of the parameter or the
randomly chosen values. In any case, the parmater Θ (t) is
properly adjusted by the adaptive update law [19], [22]. The
composite parameter update law can enhance the parameter
update performance in that the update law utilizes two
sources of information to adjust one fuzzy parameter Θ.
Substituting the update laws of (35) for the function of (31)
and using the mean value theorem, the function Ñ (t) can
be upper bounded as°°°Ñ°°° ≤ ρ (kzk) kzk (37)

where z (t) ∈ R3n is defined as

z (t) ,
£
eT rT x̃T

¤T
, (38)

and the bounding function ρ (·) ∈ R is a positive, globally
invertible, non-decreasing function. On the basis of Assump-
tions 4, the bounding properties for ḋ (t) and d̈ (t) can be
developed as °°°ḋ°°° ≤ ρ1,

°°°d̈°°° ≤ ρ2. (39)

Considering Assumption 3 and Remark 1, the bounds for the
NB1 (t) are obtained as

kNB1k ≤ ρ3,
°°°ṄB1

°°° ≤ ρ4 + ρ5 kzk , (40)

and using Assumption 3 and (36), the bounds for the NB2 (t)
are as follows:

kNB2k ≤ ρ6,
°°°ṄB2

°°° ≤ ρ7 + ρ8 kzk , (41)

where ρi ∈ R, (i = 1, 2, ..., 8) denote computable positive
bounding constants. To facilitate the subsequent stability
analysis, let D ⊂ R3n+2 be a domain containing y (t) = 0,
where y (t) ∈ R3n+2 is defined as

y (t) ,
£
zT (t)

p
P (t)

p
Q (t)

¤T
. (42)

The auxiliary function P (t) ∈ R in (42) is the generalized
solution to the differential equation

Ṗ = −L (t) , (43)

P (0) = β1

nX
j=1

|ej (0)|+ eT (0) (N (0))

where the subscript j denotes jth element of e (0) and the
auxiliary function L (t) ∈ R is defined as

L , rT
³
ḋ+NB1 − β1sgn (e)

´
+ ėTNB2−β3 kzk

2
. (44)

In (44), β1, β3 ∈ R are positive constants selected by the
following sufficient conditions:

β1 > max
³
ρ1 + ρ3 + ρ6, ρ1 + ρ3 +

ρ2
α
+

ρ4
α
+

ρ7
α

´
β3 > ρ5 + ρ8. (45)

Provided that the sufficient conditions introduced in (45) are
satisfied, then P (t) ≥ 0. The auxiliary function Q (t) ∈ R
included in (42) is defined as

Q (t) , 1

2
tr
³
Θ̃TΓ−1Θ̃

´
, (46)

where the function Q (t) ≥ 0 since Γ is positive-definite.

V. STABILITY ANALYSIS
Theorem: The robust adaptive fuzzy logic controller (14)

constructed from fuzzy modeling rules to identify and control
a class of uncertain nonlinear dynamic systems, which is
along with the composite adaptive fuzzy parameter update
laws given in (35), ensures that all systems signals are
bounded and that the tracking error e (t) and identification
error x̃ (t) are regulated such that

ke (t)k→ 0, kx̃ (t)k→ 0 as t→∞ (47)

provided that the control gain k in (15) is chosen so that it
has a sufficiently large value based on the initial conditions
of the states, the gain conditions given in (45) are satisfied,
and the following sufficient gain conditions are satisfied as

β2 > h̄ λ > β3 (48)

where β2, h̄, β3, and λ are introduced in (21), (27), (45),
and (57), respectively.
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Proof: To prove the integrated system identification and
tracking control result, consider a positive definite function
V
³
e, r, x̃, Θ̃

´
defined as

V , 1

2
eT e+

1

2
rT r +

1

2
x̃T x̃+ P +Q. (49)

The defined Lyapunov function candidate satisfies the fol-
lowing inequalities:

U1 (y) ≤ V (y, t) ≤ U2 (y) (50)

where the continuous positive definite fuctions U1 (y),
U2 (y) ∈ R are defined as

U1 (y) ,
1

2
kyk2 , U2 (y) , kyk2

where U1(y), U2(y) ∈ R are continuous positive definite
functions. Using (8), (24), (30), (43), the differential equa-
tions of the closed-loop system are continuous except in the
set {y|x̃ = 0 or e = 0}. Using Filippov’s differential inclu-
sion [23]–[26], the existence of solutions can be established
for ẏ = f(y), where f(y) ∈ R3n+2 denotes the right-hand
side of the the closed-loop error signals. Under Filippov’s
framework, a generalized Lyapunov stability theory can be
used (see [26]–[29] for further details). The generalized
time derivative of (49) exists almost everywhere (a.e.), and

V̇ (y) ∈a.e.
·
Ṽ (y) where

·
Ṽ =

\
ζ∈∂V (y)

ζTK
£
żT 1

2P
− 1
2 Ṗ 1

2Q
− 1
2 Q̇

¤T
where ∂V is the generalized gradient of V [27], and K[·] is
defined as [28], [29]

K[f ](y) ,
\
δ>0

\
μN=0

cof(B(x, δ)−N),

where ∩
μN=0

denotes the intersection of all sets N of
Lebesgue measure zero, co denotes convex closure, and
B(x, δ) represents a ball of radius δ around x. Since V (y)
is a Lipschitz continuous regular function,

·
Ṽ = ∇V TK

£
żT 1

2P
− 1
2 Ṗ 1

2Q
− 1
2 Q̇

¤T
⊂

£
zT 2P

1
2 2Q

1
2

¤
K
£
żT 1

2P
− 1
2 Ṗ 1

2Q
− 1
2 Q̇

¤T
.

From (8), (25), (30), (34), and (43),
·
Ṽ (t) can be expressed

as
·
Ṽ ⊂ rT

³
Ñ +NB1 + ḋ− (kr + k) r − β1sgn (e)− e

´
+(ė+ αe)

T
Θ̃T ξ0 (x) ẋd + eT (r − αe) (51)

+x̃T
³
h+ Θ̃T ξ (x)− β2sgn (x̃)

´
−rT

³
ḋ+NB1 − β1sgn (e)

´
−ėTNB2 + β3 kzk

2 − tr

µ
Θ̃TΓ−11

·
Θ

¶
.

where [29]
K [sgn (e)] = SGN (e)

such that

SGN (e) =

⎧⎨⎩ 1 e > 0
[−1, 1] e = 0
−1 e < 0

.

By arranging the terms and using the composite fuzzy
parameter update laws given in (35), the expression in (51)
can be simplified as

·
Ṽ ⊂ rT Ñ − rT (kr + k) r − αeT e (52)

+x̃Th+ β2x̃
T sgn (x̃) + β3 kzk

2
.

The expression in (52) can be upper bounded as
·
Ṽ ⊂ −kr krk2 − α kek2 − k krk2 + h̄ kx̃k (53)

−β2
nX
j=1

|x̃j |+
°°°Ñ°°° krk+ β3 kzk

2
.

The bounding condition (37) for
°°°Ñ°°° and the fact that

kx̃k ≤
nX
j=1

|x̃j | (54)

yields
·
Ṽ ⊂ −kr krk2 − α kek2 −

n
k krk2 − ρ (kzk) kzk krk

o
−
¡
β2 − h̄

¢
kx̃k+ β3 kzk

2
. (55)

Choosing β2 according to the gain condition in (48) and
completing the squares with respect to krk, (55) can be upper
bounded as

·
Ṽ ⊂ −

µ
λ− β3 −

ρ2 (kzk)
4k

¶
kzk2 (56)

where
λ , min {α, kr} . (57)

The bounding result given in (56) achieves the following
equivalent inequality:

·
Ṽ ≤ −U (y) (58)

where U (y) = c kzk2 is a continuous positive semi-definite
function for a positive constant c ∈ R. The function y (t) ∈
R3n+2 is defined on the domain

D ,
n
y (t) ∈ R3n+2 | kyk ≤ ρ−1

³
2
p
k (λ− β3)

´o
.

The inequality conditions in (50) and (58) show that V ∈ L∞
exists in the domain D. Using (49), r (t), e (t), x̃ (t), P (t),
Q (t) ∈ L∞ in the domain D. From r (t), e (t) ∈ L∞ and
(8), ė (t) ∈ L∞ in D. Further, (7), e (t), ė (t) ∈ L∞, and
xd (t), ẋd (t) ∈ L∞ by Assumption 3 can be used to show
that x (t), ẋ (t) ∈ L∞. In addition to x (t) and ẋ (t) ∈ L∞
from (4) and (5), f (x), g (x), u (t) ∈ L∞ inD. Since u (t) ∈
L∞, the estimates f̂ (x | Θ) ∈ L∞ in D and the RISE term
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μ (t) ∈ L∞ in D from (14). From (36) and f̂ (x | Θ) ∈
L∞ in D, it is said that the fuzzy parameters are bounded
like following: Θ (t), ξ (x) ∈ L∞. Moreover, using (22) and
x (t), x̃ (t) ∈ L∞ shows x̂ (t) ∈ L∞ in D. The fact that the
estimates f̂ (x | Θ) ∈ L∞ and the controller u (t) ∈ L∞ in
D shows

·
x̂ ∈ L∞ in D from (21) and then

·
x̃ ∈ L∞ in D

from ẋ (t) ∈ L∞,
·
x̂ ∈ L∞ in D, and (22). Based on the

bounded property of the fuzzy basis function ξ (·), the sign
function sgn (·), Assumption 3, 4, and Θ̇ (t) ∈ L∞ along
the parameter update laws, we can prove that ṙ (t) ∈ L∞
in D from (30) and then ż (t) ,

h
ėT ṙT

·
x̃
T
iT
∈ L∞

in D. Therefore, U (y) is uniformly continuous in D. Now,
consider the set S satisfying S ⊂ D denoted as

S ,
½
y (t) ∈ D | U2 (y) ≤

n
ρ−1

³
2
p
k (λ− β3)

´o2¾
.

(59)
The region of attraction in (59) is arbitrarily large and can
include any initial condition by increasing the control gain
k (i.e., a semi-global result), and hence

c kzk2 → 0 as t→∞ ∀y (0) ∈ S.

The above result shows that both the identification error x̃ (t)
and the tracking error e (t) go to zero as time goes to infinity
under all initial condition y (0) in the set S (i.e., x̃ (t), e (t)
→ 0 as t→∞, ∀y (0) ∈ S). ¥

VI. CONCLUSION

A robust adaptive fuzzy identification and tracking ap-
proach is developed for an affine disturbed nonlinear dy-
namic system. A novel fuzzy identification method is used
to generate additional approximate model knowledge that is
combined with the tracking error in a composite adaptive
update law. The developed controller uses a fuzzy logic based
feedforward controller combined with a continuous RISE
feedback term to compensate for parametric uncertainties,
uncertain exogenous disturbances, and the residual fuzzy
approximation error. A Lyapunov-based stability analysis
indicates that the developed controller achieves semi-global
asymptotic tracking under the sufficient gain conditions.
Future work includes simulation and experimental results to
illustrate the added performance value that is provided by
the fuzzy identifier.
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