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Abstract— This paper presents a method for recovering
Micro Air Vehicles (MAVs) in flight using a mothership and
towed drogue, in which the mothership executes an orbit
that places the drogue in a stable, slower orbit that can be
tracked by a MAV. This paper is particularly challenging
in the presence of wind. The equations of motion of the
cable using an elastic model are presented. Based on the
differential flatness of the system with the knowledge of the
wind, the desired mothership trajectory can be calculated from
the desired drogue orbit. A Lyapunov-based controller derived
using backstepping is proposed that enables tracking error of
mothership to exponentially converge to an ultimate bound,
where the size of the ultimate bound is a function of the
unknown portion of the wind. Simulation results verify the
feasibility of the approach.

I. INTRODUCTION

In the past decades, Unmanned Aerial Vehicles (UAVs)

have been employed for a wide variety of military and

civilian applications. The increasingly critical technology

and significant information gathered by the UAVs call for

protection and retrieval strategies after they complete their

missions. Wyllie [1] described a parachute recovery system

for fixed wing UAVs. This system has the merits such as

mobility, with its ability to land on unprepared ground, but

it will be subject to inaccuracies due to wind, and will largely

dictate the structural design of the airframe due to the higher

landing loads. Kahn [2] developed a vision-based guidance

law for small UAV to be recovered by a net on a moving

ship. This approach particularly focuses on the landing phase

of the UAV within a safe area. To develop a method for

a remote instant retrieval in deep enemy territory, Sun et.

al. [3] proposed a aerial recovery strategy using a towed-

body system. As shown in Figure 1, the basic idea is to

maneuver the towplane, or mothership, so that the drogue

enters a stable orbit at an airspeed that is slightly below

the nominal airspeed of the MAV. The MAV will then be

maneuvered to enter the same orbit at its nominal airspeed

and will therefore overtake the drogue with a relatively slow

closing speed. This paper further extends the aerial recovery

approach described in our previous work [3], [4], [5]. The

most significant portion to realize a successful recovery using

the cable-drogue system is to enable the drogue to enters an

easily followed orbit so that the MAV can detect and navigate

to the drogue.
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Fig. 1. This figure shows the baseline concept described in the paper. The
mothership recovers a MAV by towing a long cable attached to a drogue.
The drogue is actuated and can maneuver and communicate with the MAV
to facilitate successful capture. The MAV uses missile guidance strategies
to intercept the drogue.

The dynamics and stability of circularly towed-cable sys-

tems have received attention in the literature. Clifton et.

al. [6] explore the steady-state solution of a long wire

(20, 000 ft) towed by an aircraft whose airspeed is about

150 knots flying in a circular orbit. It was assumed that

the cable is non-elastic, and only small motion around

the cable equilibrium position was considered. Bourmistrov

et. al. [7] focus on the trajectory tracking control of the

towed body while the towing aircraft is assumed to be in

straight and level flight with a constant speed and the cable

is assumed to be flexible and non-elastic model. A 12-

state dynamic equations for the towed body is applied and

the nonlinear inversion technique is utilized to develop the

control law. Zhu and Rahn [8] derived equations of motion

for the perturbed cable-drogue system from steady state. The

vibrational equations are linearized and discretized using

Galerkin’s method and the analysis of the effects of non-

dimensional rotation speed, cable fluid drag, cable length,

and point mass is presented. More recently, Williams and

Trivailo [9] used an object-oriented cable modeling approach

to study the relative equilibria of the towed payload system

using multiple towplanes.

In this paper, we will continue to explore the trajectory

tracking strategy of the drogue in the presence of both known

and unknown components of wind. The effect of the wind

on the motion of the cable and drogue was first discussed by

Murray [10]. Winds cause a steady state offset in the North-

East position of the drogue and an oscillation in the altitude

direction. Even though the winds are purely in the North
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direction, the drogue is offset in both the North and East

direction. This phenomenon was also discussed in [5] based

on flight test results. To more precisely match behaviors

observed in flight tests, an elastic model of the cable will

be developed. Given a desired drogue trajectory, based on

the differential flatness of the model with the knowledge of

the known component of the wind, we calculate the desired

trajectory of the mothership. Figure 2 presents a block

diagram of the overall control strategy. Using a mothership

dynamic model in the presence of wind, we take a similar

approach and develop a Lyapunov-based control law derived

using backstepping approach to guarantee the tracking error

of the mothership converges exponentially to an ultimate

bound where the size of the bound is a function of an upper

bound on the unknown component of the wind.
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Fig. 2. Strategy diagram for the drogue trajectory tracking in the presence
of wind

II. CABLE-DROGUE DYNAMICS

In the literature, the dynamics of towed-body systems are

typically modeled by assuming that the cable is flexible and

non-elastic [3], [6], [7], [10], [11], [12]. However, in our

own flight tests we have observed that the cable stretches

considerably [5]. An elastic model for the cable is therefore

needed to match simulation results to flight results. Williams

and Trivailo [13] developed the equations of the motion of

the cable by introducing an elastic model together with two

attitude angles at each joint. In this paper, we will develop

the cable-drogue dynamics using an elastic model based on

Newton’s second law. Figure 3 depicts a cable-drogue system

Drogue

Mothership m
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Fig. 3. Cable-drogue systems using spring model

with an N−link cable modeled as a finite number point mass

nodes connected by springs. The forces acting on each link

are lumped together and applied at the joint. The drogue is

the last joint of the cable. Let pi ∈ R
3, i = 1, 2, · · · , N, be

the location of the ith joint. Based on Newton’s second law,

the dynamic equations for the drogue are

mN p̈N = TN +ΩN

ΩN = GN +DN + LN ,

and the other joints are

mj−1p̈j−1 = Tj−1 +Ωj−1 −Tj

Ωj−1 = Gj−1 +Dj−1 + Lj−1

j = 2, 3, · · · , N,

where mj , j = 1, 2, · · · , N are the masses of each joint,

Tj =
EA

ℓ0
(‖pj−1 − pj‖ − ℓ0)

pj−1 − pj

‖pj−1 − pj‖
,

j = 1, 2, · · · , N,

are the elastic tension forces exerted on each joint of the

cable, where E is the Young’s modulus, A is the cross-

sectional area of the cable, ℓ0 = L0/N , where L0 is

the original cable length, p0 = pm, where pm ∈ R
3

is the position of the mothership in the inertial frame,

and Gj ,Dj ,Lj ∈ R
3, j = 1, 2, · · · , N are the gravity,

aerodynamic drag and lift forces corresponding to each point

mass respectively.

III. MOTHERSHIP PATH PLANNING AND CONTROL IN THE

PRESENCE OF WIND

In [4] we developed a strategy based on differential

flatness to regulate the mothership so that the drogue follows

a desired trajectory in the absence of wind. In this paper, we

will utilize a similar approach but accounting for the presence

of wind.

A. Mothership trajectory calculation using differential flat-

ness

Based on the definitions in Section II, suppose that the

desired trajectory of the drogue (N th joint) is C∞, then the

position of the jth mass joint can be calculated as

pj−1 = pj + ℓ
Tj

‖Tj‖
,

Tj = mjp̈j − Ωj +Tj+1,

j = N,N − 1, · · · , 2,

where ℓ = ℓ0

(

1 +
‖Tj‖
EA

)

and TN+1 = 0. At each time

step, these equations are applied recursively to each link of

the cable until the trajectory of the mothership is calculated.

In this paper, we focus on circular trajectories for the drogue.
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B. Mothership trajectory tracking in wind

The dynamic equations of the mothership in the presence

of wind can be written as

ṗn = Va cosψ cos γa + wn +Nn (1)

ṗe = Va sinψ cos γa + we +Ne (2)

ṗd = −Va sin γa + wd +Nd (3)

V̇a = −g sin γa −
Dm

mm

+
1

mm

uT +
FV
mm

(4)

γ̇a = − g

Va
cos γa +

g

Va
(cosφ)un +

Fγa
mmVa

(5)

ψ̇ =
Lm

mmVa cos γa
sinφ+

Fψ
mmVa cos γa

(6)

φ̇ = uφ (7)

where pm , (pn, pe, pd)
T

is the position of the mother-

ship in the inertial frame, wc , (wn, we, wd)
T

is known

component of the wind expressed in the inertial frame,

Nw , (Nn, Ne, Nd)
T

is the unknown component of the

wind where we assume that ‖Nw‖ ≤ N̄ where N̄ > 0, Va
is the magnitude of the airspeed of the mothership,

Vm ,





Va cosψ cos γa
Va sinψ cos γa
−Va sin γa





is the velocity vector of the airframe relative to the surround-

ing air, ψ is the heading angle, γa is the air mass referenced

flight path angle, which is defined as the angle from the

inertial North-East plane to the velocity vector of the aircraft

relative to the air mass, φ is the roll angle, mm is the mass

of the mothership, g is the gravitational constant at Earth

sea level, un , Lm
mmg

is the (controlled) load factor, Lm and

Dm are the aerodynamic lift and drag forces respectively,

uT is the thrust and (FV , Fψ, Fγa) are the tension forces

in the velocity coordinates. The control inputs are the thrust

uT , the load factor un, and the roll angle command uφ.

The tension forces in the inertial coordinate system can be

expressed in the velocity coordinates via the transformation

(FV , Fψ,−Fγa)
T
= Γ ·Tm, where

Γ ,





cos γa cosψ cos γa sinψ − sin γa
− sinψ cosψ 0

sin γa cosψ sin γa sinψ cos γa



 ,

and Tm is defined as the components of tension in the

inertial frame for the first cable element connected to the

mothership.

Assuming that the desired mothership trajectory pcm(t) ∈
R

3, which is computed from the desired drogue trajectory

using differential flatness, is smooth, and defining the can-

didate inputs as uc , (uT , un, sinφ)
T , then rearranging the

dynamic equations of the mothership yields





V̇a
γ̇a
ψ̇



 =







−g sin γa − Dm
mm

+ Fv
mm

− g
Va

cos γa +
Fγa
mmVa

Fψ
mmVa cos γa







+





1

mm
0 0

0 g
Va

cosφ 0

0 0 Lm
mmVa cos γa





·





uT
un
sinφ





, F+Guc.

Theorem 3.1 Consider the system with the dynamic equa-

tions (1) - (7) under the stated definitions and assumptions,

let

ξ , − (MG)
−1

(em +MF− p̈cm + k1ėm − k2z
e

m) (8)

where

em , pm − pcm, (9)

M ,





cos γa cosψ −Va sin γa cosψ
cos γa sinψ −Va sin γa sinψ
− sin γa −Va cos γa

−Va cos γa sinψ
−Va cos γa cosψ

0





zem , −Vm −wc + ṗcm − k1em, (10)

and select the control inputs as
(

uT
un

)

=

(

1 0 0
0 1 0

)

ξ (11)

uφ =
1

cosφ

(

(

0 0 1
)

ξ̇+(zem)
T
MG





0
0
1



−k3zφm

)

(12)

where

zφm , sinφ−
(

0 0 1
)

ξ.

Suppose that pcm(t) = (pn, pe, pd)
T

is a sufficiently smooth

time-varying trajectory with bounded derivatives. Then, if the

constants k1, k2 and k3 are positive, then the tracking error

em has a uniform ultimated bound N̄/
√
λσ, where

σ = min
{

2k1, (min {k1, k2, k3})2
}

(13)

λ = min
{

1, 2 ·min
{(

k1 −
σ

2

)

, k2, k3

}}

. (14)

Proof:

Step 1. Error dynamics: The dynamic equation for the

inertial tracking error from Equation (9) is given by

ėm = ṗm − ṗcm = Vm +wc +Nw − ṗcm.
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Step 2. Error convergence: Define the Lyapunov function

candidate V1 , 1

2
eTmem, which has time derivative

V̇1 = eTm (Vm +wc +Nw − ṗcm) .

Introducing the error variable (10), we have

V̇1 = −k1eTmem − eTm (zem) + eTmNw.

Step 3. Backstepping for zem: Consider the augmented

Lyapunov function candidate

V2 , V1 +
1

2
(zem)

T
(zem) ,

with time derivative

V̇2 = −k1eTmem + (zem)
T
(

−em−V̇m + p̈cm

−k1ėm) + eTmNw.

From the mothership dynamic equations we have V̇m =
M (F+Guc) . Therefore

V̇2 = −k1eTmem + (zem)
T
(−em −MF−MGuc

+p̈cm − k1ėm) + eTmNw.

It can be seen that MG is invertible1, therefore using (8)

and defining η , sinφ and supposing that uT and un are

selected as in (11), then the time derivative of the zφm is

żφm = uφ cosφ−
(

0 0 1
)

ξ̇, and

uc =





uT
un
η



 = ξ + zφm





0
0
1



 .

Thus

V̇2 = −k1eTmem − k2 (z
e

m)
T
(zem)

+ (zem)
T



−MG





0
0
1



 zφm



+ eTNw.

Step 4. Backstepping for zφm: Consider the augmented

Lyapunov function candidate

V3 , V2+
1

2

(

zφm
)2

=
1

2
‖em‖2+ 1

2
‖zem‖2+ 1

2

(

zφm
)2

(15)

with time derivative

V̇3 = −k1eTmem − k2 (z
e

m)
T
(zem)

+zφm

(

uφ cosφ−
(

0 0 1
)

ξ̇

− (zem)
T
MG





0
0
1





)

+ eTNw.

If uφ is given by (12), then the time derivative of V3 becomes

V̇3 = −k1eTmem−k2 (zem)
T
(zem)−k3(zφm)2+eTNw. (16)

Step 5. Ultimate bound: From Equation (16), we obtain

V̇3 ≤ −k1 ‖em‖2 − k2 ‖zem‖2 − k3
(

zφm
)2

+ ‖em‖ ‖Nw‖ .
1By constraining V , γ, and χ to reasonable values, the matrices M and

G will be full rank. The product of two full-rank matrices is also full rank.

Defining the vector Y ,

(

(em)
T
, (zem)

T
, zφm

)T

, and

letting 0 < µ ≤ min {k1, k2, k3} , we have V̇3 ≤
−µ ‖Y‖2+‖Y‖ ‖Nw‖ . To use the term µ ‖Y‖2 to dominate

‖Y‖ ‖Nw‖, we rewrite the foregoing inequality as

V̇3 ≤ −µ (1− θ) ‖Y‖2 − µθ ‖Y‖2 + ‖Y‖ ‖Nw‖ ,
where 0 < θ < 1. The term −µθ ‖Y‖2 + ‖Y‖ ‖Nw‖ will

be less than zero if ‖Y‖ ≥ ‖Nw‖
µθ

. From the input-to-state

stability theorem [14], it can be concluded that

‖Y‖ ≤ β (‖Y (t0)‖ , t− t0) + γ

(

sup
t0≤τ≤t

Nw (τ)

)

,

where β is a class KL function and γ is a class K function

defined as γ (r) , r
µθ
. Therefore, according to the Lyapunov

stability theorem [14], ‖Y‖ is uniformly ultimately bounded,

and since ‖em‖ ≤ ‖Y‖ , ‖em‖ is also uniformly ultimately

bounded within a ball of radius N̄/µθ.

Step 6. Exponential convergence: By using the Young’s

inequality2, it can be concluded that for any σ > 0

V̇3 ≤ −
(

k1 −
σ

2

)

‖em‖2 − k2 ‖zem‖2

−k3
(

zφm
)2

+
1

2σ
‖Nw‖2 .

Suppose we choose 0 < σ < 2k1 so that the term k1 − σ
2

is positive. Then we can conclude that there is a sufficiently

small positive constant λ satisfying

0 <
λ

2
≤ min

{(

k1 −
σ

2

)

, k2, k3

}

such that

V̇3 ≤ −λV3 +
1

2σ
N̄2,

therefore, it can be concluded from the Comparison Lemma

[14] that

V3 (t) ≤ e−λtV3 (0) +
1

2λσ
N̄2, t ≥ 0.

Then all signals remain bounded and therefore the solution

exists globally. Moreover, V3 converges to a ball of radius

N̄2/ (2λσ) and em converges exponentially to a ball of

radius N̄/
√
λσ because of (15).

Selecting σ and λ using (13) and (14), we pick θ =
√
λ

and µ =
√
σ to guarantee that the ultimate bound is N̄/

√
λσ.

�

IV. SIMULATION RESULTS

Consistent with the configuration of the preliminary flight

test [5], the following parameters and operational boundaries

are used in the simulation: (1) mothership (a twin prop, 55-

inch wingspan, battery-powered, autonomous aircraft with

Kestrel autopilot): mm = 1.76 kg, 12m/s ≤ Va ≤ 20m/s,
−35 ≤ φ ≤ 35◦, −15◦ ≤ γa ≤ 35◦, lift coefficient

CLm = 0.28, drag coefficient CDm = 0.06, wing area Sm =
0.307m2; (2) drogue (hemisphere with Kestrel autopilot):

mass mdr = 0.11 kg, lift coefficient CLdr = 0.02, drag

2A special case of the Young’s inequality is ab ≤ (γ/2) a2+(1/2γ) b2,
where a, b ≥ 0, and γ is any positive constant.
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Fig. 4. Top-down view of mothership trajectory in the presence of wind.

coefficient CDdr = 0.2, wing area Sdr = 0.1m2; (3)

cable (fishing line): mass mc = 0.01 kg, L0 = 110m,

links N = 5, diameter d = 0.00041m, Young’s modulus

E = 1.904× 109N/m².

Given a desired drogue trajectory, the desired mothership

trajectory can be calculated using the approach in III-A.

Savitzky-Golay filter [15] was applied to locally smooth the

velocity and acceleration computations in which the process

is to compute the entire trajectory history of a given link

and then smooth the trajectory to remove high frequency

numerical noise before computing the trajectory of the next

link [10].

A desired circular trajectory of the drogue can be written

in parametric form as pdrn (t) = Rdr sin
(

V dr

Rdr
t
)

, pdre (t) =

Rdr cos
(

V dr

Rdr
t
)

, pdrd (t) = −900m, t ∈ [0,+∞), where

(pdrn , p
dr
e , p

dr
d )T are the coordinates of the drogue in North-

East-Down (NED) coordinates, Rdr and V dr are the desired

orbit radius and ground speed of the drogue respectively.

Due to the operational boundaries of the mothership, given

a constant wind component, we have to tune Rdr and V dr

to derive a feasible trajectory for the mothership to track.

For a constant wind speed vector wc = (5, 0, 0)
T
m/s, Rdr

and V dr can be selected as 110m and 13m/s. The control

gains are selected as k1 = 0.3, k2 = 4, k3 = 20. The

bound on the wind gusts can be given by N̄ = 0.5m/s,
therefore the ultimate bound can be calculated as 2.33m.
The initial positions of the mothership and drogue are

(0, 130,−950)
T
m and (0, 130,−840)

T
m respectively in

NED coordinates.

Figure 4 shows the North-East view of the mothership

trajectory, in which it can be seen that the mothership follows

the desired trajectory precisely after one circle of the orbit.

Figure 5 shows the North-altitude view of the mothership

trajectory, in which we can see the large inclined orbit

of the mothership. As mentioned in [10], even though the

mothership flies a flat orbit the presence of wind causes the

orbit of the drogue to be inclined. Therefore, to compensate

for the oscillation of the drogue altitude, the mothership must

incline its orbit. Figure 6 shows the error of the mothership.

Although the mothership has an original offset from desired
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Fig. 5. North-altitude view of mothership trajectory in the presence of
wind.
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Fig. 6. Mothership trajectory error in the presence of wind.

position, after 30 seconds, all the tracking errors converges

to a neighborhood of the origin. Figure 7 shows the top-

down view of the drogue trajectory. It can be seen that it

takes longer for the drogue to converge to desired orbit than

the mothership. This is because of the flexible connection

between the mothership and the drogue, which delays the

response of the drogue.
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Fig. 8. Drogue trajectory error in the presence of known wind.

Figure 8 gives the tracking errors of the drogue. It can be

seen that after the mothership tracking errors converge to a

neighborhood of the origin (t > 30 s), the drogue tracking

errors also enter a neighborhood of the origin (t > 40 s).
The delayed responding time (about 10 s in the current

simulation) of the drogue will vary with the different initial

positions of the mothership. Figure 9 shows the evolution

of the roll angle φ, the path angle γa, the thrust T and the
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Fig. 7. Top-down view of drogue trajectory in the presence of wind.

load factor n of the mothership during flight. Because of

the inclined orbit of the mothership, it has to fly up and

down explaining the oscillation of path angle and the load

factor. Since the constant wind dominates the noise, to keep a

constant ground speed, the mothership regulates its airspeed

to mitigate the effect of wind during flight explaining the

oscillation of the mothership thrust. Figure 10 shows the

magnitude of the mothership tracking error converges within

its ultimate bound after 40 seconds.
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Fig. 9. Time evolution of the roll angle φ, path angle γa, thrust T and
the load factor n of the mothership in the presence of wind.

V. CONCLUSION

In this paper we developed the equations of motion for

a cable-drogue system directly accounting for the elasticity

of the cable. An inverse dynamics method based on the

differential flatness of the system was used to calculate

the required mothership orbit to achieve a desired drogue

orbit. Using a Lyapunov-based backstepping approach, the

control law was designed to enable the tracking error of the

mothership to converge exponentially to an ultimate bound

where the size of the bound is proportional to the strength of

the unknown wind. Simulation results showed the feasibility

of the strategy.
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Fig. 10. Time evolution of the magnitude of the tracking error of the
mothership in the presence of wind.
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