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Abstract—An adaptive attitude controller for a small satellite
utilizing variable speed control moment gyroscopes (VSCMGs)
is proposed, which performs integrated singularity avoidance
and momentum management using null motion. An adaptive
controller yields accurate attitude tracking while the VSCMG
null motion achieves singularity avoidance and momentum
management. The proposed controller compensates for para-
metric uncertainties present in the nonlinear satellite dynam-
ics. Asymptotic attitude tracking and exponential momentum
tracking are proven via Lyapunov stability analysis. Simulation
results indicate the performance of the proposed controller as
a VSCMG steering law.

I. INTRODUCTION

Research on the control of variable speed control moment

gyroscopes (VSCMGs) has shown up in literature for about

the last twenty years [1]–[4]. Integrated Power and Attitude

Control System (IPACS) and/or Flywheel Attitude Control

and Energy Transmissions Systems (FACETS) use VSCMGs

for power storage by de-spinning the flywheels for the decel-

eration mode of the VSCMG and absorbing their kinetic en-

ergy [5]–[9]. An adaptive attitude controller for a VSCMG-

based satellite is proposed where attitude control torques

are generated by means of a pyramidal arrangement of four

single gimbal VSCMGs. The proposed controller functioning

as a VSCMG steering law is developed in terms of the gimbal

rates and the flywheel accelerations which are weighted

by the singularity measure to actively exploit the benefit

of VSCMGs which has the additional degree of freedom.

Using null motion, a strategy is developed to simultaneously

perform the gimbal reconfiguration for internal singularity

avoidance and the wheel speed regularization for reduced

power and external singularity avoidance. Responding to the

singularity measure, the gimbal reconfiguration contributes

to internal singularity avoidance and the wheel regularization

redistributes momentum to the spacecraft for attitude control

in a way that reduces the total power to control the system

of VSCMGs. Lyapunov stability analysis was performed to

ensure that the controller is capable of achieving globally

asymptotically attitude tracking and exponential momentum

tracking. A simulation, staring at elliptic singularity, was

performed to demonstrate the performance of the composite

adaptive VSCMG steering law to demonstrate the efficacy

of singularity avoidance with reduced reaction wheel modes

and the reduction of input power for control of VSCMGs.

Furthermore, to evaluate the performance of the proposed

controller in a severe situation, a sudden disturbance or task

assignment, modeled as a smooth s-function, was executed

during the simulation. The simulation demonstrates that the

controller was capable of handling these severe disturbances

(e.g., significant increases in friction due to foreign ob-

ject debris). In summary the nonlinear adaptive controller

compensates for inertia uncertainties while reducing the

power needed for control and maintaining stability. The

proposed controller has a combined form of the gimbal

angular velocity and the flywheel acceleration rather than

a control torque to solve the attitude tracking problem,

therefore the development has complication by the fact that

the control input is multiplied by a time-varying, nonlinear

uncertain matrix. Sections II and III develop the dynamic

and kinematic models of the system. The overall control

objectives are described in section IV and a detailed analysis

of the adaptive VSCMG steering law is presented in section

V. Simulation results in Section VI illustrate performance

of the proposed adaptive attitude controller as a VSCMG

steering law. Conclusions are presented in section VII.

II. DYNAMIC MODEL

The dynamic model for a rigid satellite with a pyramid

configuration of four VSCMG units can be expressed as [10]

M$̇ + Ṁ$ + $×M$ = �DjLfj �̈ �DwLzv[
]
g�̇ (1)

�$×DjLfj �̇ �DvLzv
̇

�$×DvLzv
=

In (1), $(w)> $̇(w) 5 R
3 denote the angular velocity and

acceleration of the satellite body-fixed frame F with respect
to the inertial frame I expressed in F , 
(w)> 
̇(w) 5 R4 are
the angular rate and acceleration of the VSCMG wheels, and

�(w)> �̇(w)> �̈(w) 5 R4 are the angle, rate, and acceleration of
the VSCMG gimbals. The uncertain total spacecraft inertia

matrix M(�) 5 R3×3 is positive definite and symmetric such
that

1

2
�min {M} k�k

2
� �WM� �

1

2
�max {M} k�k

2
;� 5 Rq

(2)

where �min {M} > �max {M} 5 R are the minimum and max-
imum eigenvalues of M(�), respectively. In (1), Lfj 5 R

4×4

is an uncertain constant diagonal matrix whose elements are

the centroidal inertia components of each VSCMG assembly
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about its gimbal direction, Lzv 5 R
4×4 denotes a known

positive-definite symmetric flywheel inertia matrix about its

spin axis, [
]g is the diagonal matrix, and $× is the skew-
symmetric matrix defined as

$× =

5

7
0 �$3 $2
$3 0 �$1
�$2 $1 0

6

8 =

Also in (1), the measurable matrices Dj> Dv (�) > Dw (�) 5
R
3×4 ensure the gimbal, spin, and transverse inertia com-

ponents of each flywheel/gimbal assembly about its gimbal,

spin, and transverse direction are transformed to the satellite

body-fixed frame.

III. KINEMATIC MODEL

The rotational kinematics of the rigid-body satellite can

be expressed as

ṫy =
1

2

¡
t×y $ + t0$

¢
(3)

ṫ0 = �
1

2
tWy $= (4)

In (3) and (4), t(w) , {t0(w)> ty(w)} 5 R×R
3 represents the

unit quaternion describing the orientation of the body-fixed

frame F with respect to I, subject to the constraint

tWy ty + t
2
0 = 1= (5)

Using (3) and (4), $(w) can be expressed in terms of the
quaternion as

$ = 2 (t0ṫy � ty ṫ0)� 2t
×
y ṫy= (6)

The desired angular velocity of the body-fixed frame Fg with
respect to I expressed in Fg can also be determined as

$g = 2 (t0gṫyg � tygṫ0g)� 2t
×
ygṫyg= (7)

The subsequent analysis is based on the assumption that

the desired quaternion tyg(w), t0g(w), and the respective
first three time derivatives are bounded for all time. This

assumption ensures that $g(w) of (7) and its first two time
derivatives are bounded for all time.

IV. CONTROL OBJECTIVE

A. Attitude Control Objective

The attitude control objective is to develop a flywheel

acceleration and gimbal rate control law to enable the attitude

of F to track the attitude of Fg. An attitude tracking error
denoted by Ũ(hy> h0) 5 R

3×3 can be stated as

Ũ (hy(w)> h0(w))$ L3 as w$4= (8)

The open-loop quaternion tracking error is given as

ḣy =
1

2

¡
h×y + h0L

¢
$̃ ḣ0 = �

1

2
hWy $̃= (9)

Based on the tracking error formulation, the angular velocity

of F with respect to Fg expressed in F , denoted by $̃(w) 5
R
3, is defined as

$̃ , $ � Ũ$g= (10)

From the definitions of the quaternion tracking error vari-

ables, the following constraint can be developed:

hWy hy + h
2
0 = 1> (11)

where

0 � khy(w)k � 1 0 � |h0(w)| � 1> (12)

where k·k represents the standard Euclidean norm. From
(11),

khy(w)k$ 0, |h0(w)|$ 1 (13)

and hence, the control objective in (8) will be achieved if

(13) is satisfied.

B. Flywheel Angular Momentum Tracking Objective

The angular momentum tracking control objective is to

develop a flywheel accleration control law so that the actual

angular momentum k (w) = Lzv
 (w) tracks a preferred
constant angular momentum ki = Lzv
i while simultane-
ously tracking a desired time-varying attitude. To quantify

the momentum tracking objective, an angular momentum

tracking error � (w) 5 R4 is defined as

� = ki � k (w) = (14)

In addition to the simultaneous desire to achieve attitude

tracking, the momentum tracking is achieved in the null

space of the VSCMGs.

V. DEVELOPMENT OF ADAPTIVE VSCMGS

CONTROLLER

A. Adaptive Attitude Control Development

To facilitate the control design, an auxiliary signal u(w) 5
R
3 is defined as [11]

u , $ � Ũ$g + �hy> (15)

where � 5 R
3×3 is a constant, positive definite, diagonal

control gain matrix. After substituting (15) into (10), the

angular velocity tracking error can be expressed as

$̃ = u � �hy= (16)

Motivation for the design of u(w) is obtained from the

subsequent Lyapunov-based stability analysis. After taking

the time derivative of (15) and multiplying both sides of the

resulting expression by M (�), the following expression can
be obtained:

Mu̇ = M$̇ + M$×Ũ$g � MŨ$̇g +
1

2
M�
¡
h×y + h0L

¢
$̃> (17)

where the fact that

·

Ũ = �$×Ũ

was utilized. After substituting $̇ (w) of (17) into (1), the
expression in (1) can be rewritten as

Mu̇ = 
1�̇ �DwLzv [
]
g �̇ �DvLzv
̇+ \2�2 (18)

�$×DvLzv
�
1

2
Ṁu>
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where the uncertain matrix 
1 ($> �) 5 R
3×4 can be rede-

fined via the parameterization


1�̇ , �
CM

C�
�̇

µ
1

2
u + Ũ$g � �hy

¶
� $×DjLfj �̇= (19)

To compensate for the linearly parametrizable uncer-

tainty present in 
1 (hy> u> $> $g> �), the quantity 
1�̇ is
reparametrized in terms of a known regression matrix

\1

³
hy> u> $> $g> �> �̇

´
5 U3×s1 and a vector of s1 unknown

constants �1 5 U
s1 as

\1�1 , 
1�̇= (20)

To address the fact that the control input �̇ (w) is premultiplied
by the nonsquare, time-varying uncertain matrix 
1 (·), an
estimate of the uncertainty in (20), denoted by 
̂1 (w) 5
U3×4, is defined as

\1�̂1 , 
̂1�̇> (21)

where �̂1 (w) 5 Us1 is a subsequently designed estimate
for the parametric uncertainty in 
1 (·). Also in (18),

\2

³
hy> h0> u> $> $g> $̇g> �> �̈>


´
�2 is defined via the parame-

terization as

\2�2 , �$×M$ �DjLfj �̈ + M$
×Ũ$g

�MŨ$̇g +
1

2
M�
¡
h×y + h0L

¢
$̃= (22)

In (22), \2 (·) 5 R
3×s2 is a measurable regression matrix,

and �2 5 R
s2 is a vector of unknown constants. Based on

(19) and (21), the expression in (18) can be rewritten as

Mu̇ = 
̂1�̇ �DwLzv [
]
g
�̇ �DvLzv
̇+ \1�̃1 (23)

+\2�2 � $
×DvLzv
�

1

2
Ṁu>

where the notation �̃1(w) 5 R
s1 is defined as

�̃1 = �1 � �̂1= (24)

To facilitate the subsequent development, (23) is rewritten as

Mu̇ = T̂�̇ + \1�̃1 + \2�2 � $
×DvLzv
�

1

2
Ṁu> (25)

where the torque rendered by the VSCMGs can be re-

designed as

T̂�̇ = �DvLzv
̇+ 
̂1�̇ �DwLzv [
]
g
�̇> (26)

where �̇ (w) =
h

̇
W �̇

W
iW

5 U8×1 is premultiplied by a

nonsquare, time-varying uncertain matrix, an estimate of the

uncertainty in (26), represented by T̂ 5 U3×8. Based on the
expression in (25) and the subsequent stability analysis, the

weighted adaptive attitude controller is designed as

�̇ = �T̂+z

³
\2�̂2 + hy + nu � $

×DvLzv

´

�

³
L8 � T̂

+
zT̂
´
V�> (27)

where T̂+z =ZT̂
W
³
T̂ZT̂W

´�1
and Z is a weight matrix

determining whether the VSCMG system uses a CMG mode

or a RW (Reaction Wheel) mode designed as [2], [12]

Z ,

�
Z
L4×4 04×4
04×4 Z�L4×4

¸
> (28)

where Z
 is defined as

Z
 ,Z
0 exp (�1i) >

where �1>Z
0>Z� 5 R are positive constants and the

objective function i measuring singularity can be denoted
as

i = �det
¡
DwD

W
w

¢
= (29)

In (27), the second term
³
L8 � T̂

+
zT̂
´
V� generates the

VSCMG null motion for an efficient momentum manage-

ment and gimbal reconfiguration, and n 5 R is a positive
control gain. Since the matrices T̂+z and T̂ are nonsquare,

the pseudo-inverse T̂+z 5 R
8×3 is defined so that T̂T̂+z = L3,

and the matrix L8 � T̂
+
zT̂, which projects vectors onto the

null space of T̂, satisfies the properties
³
L8 � T̂

+
zT̂
´³
L8 � T̂

+
zT̂
´

= L8 � T̂
+
zT̂ (30a)

T̂
³
L8 � T̂

+
zT̂
´

= 0= (30b)

To generate null motion for momentum tracking and gimbal

reconfiguration, the null motion � (w) 5 R8×1 is defined as

� ,

�
nzj

n�
C�
C�

¸
> (31)

where nz> n� 5 R are positive constants and j (w) is a
subsequently designed auxiliary control signal to track the

desired flywheel angular momentum. The second row in (31)

allows the null motion to perform the gimbal reconfiguration

corresponding to variation of singularity measure index �,
which is defined as [13]

� = �0 exp (�2i) > (32)

where the objective function i is denoted in (29) and

�2> �0 5 R are positive constants. A matrix V (�) 5 R
8×8 is

used as a weight matrix for the VSCMG null motion, which

can select a proper mode based on the singularity measure.

Specifically, V (�) is designed as

V , gldj ([vz> vj]) (33)

=

5

7sech
µ

1

ng det(DwDWw )+%

¶
04×4

04×4 sech
¡
nj det

¡
DwD

W
w

¢¢

6

8 >

where nj> ng> % 5 R. In (33), vz, vj 5 R
4×4 weight either

the momentum tracking or the gimbal reconfiguration corre-

sponding to how approximate or far the CMG configuration

is to a singularity. When the CMG configuration is singular,

V � gldj ([0> 1]) and V � gldj ([1> 0]) otherwise. In the
former case, the VSCMGs can be operated in RW mode

corresponding to the weight of (28) and issued to enable

the null motion of CMGs to avoid the singularity using

1017



the gimbal null motion (i.e., gimbal reconfiguration). In the

latter case, the VSCMGs can track the desired momentum by

generating the wheel null motion according to the momentum

tracking objective (i.e., momentum tracking or wheel speed

regularization). The control input �̇ (w) in (27) is partitioned
as �


̇

�̇

¸
=

�
�U1 � nzQ1v̄zj

�U2 � n�Q2v̄j
C�
C�

¸
> (34)

where Ul =
h
T̂+z

³
\2�̂2 + hy + nu � $

×DvLzv

´i

l
indi-

cates components of each (4× 1) control input. Also in (34),
Q1, Q2 are denoted as

Q =

�
[Q1]4×8
[Q2]4×8

¸
> (35)

and v̄z, v̄j are also given as

v̄z =
£
vz 04×4

¤W
v̄j =

£
04×4 vj

¤W
=

In (35), [Ql] ; l = 1> 2 is each upper and lower (4× 8)
matrix where Ql = [(L �T+zT)]l ; l = 1> 2 are null
components, and each vg, vj of switch matrix V of (33)
has (4× 4) dimension. After substituting (27) into (25) and
using the property (30b), the following closed-loop dynamics

for u (w) are obtained:

Mu̇ = �
1

2
Ṁu + \1�̃1 + \2�̃2 � nu � hy> (36)

where the notation �̃2(w) 5 R
s2 is defined as

�̃2 = �2 � �̂2= (37)

Based on (23) and the subsequent stability analysis, the

parameter estimates �̂1 (w) and �̂2 (w) are designed as
·

�̂1 = surm
¡
�1\

W
1 u
¢ ·

�̂2 = surm
¡
�2\

W
2 u
¢
> (38)

where �1 5 R
s1×s1 and �2 5 R

s2×s2 are constant, positive-

definite, diagonal adaptation gain matrices, and surm(·) de-
notes a projection algorithm utilized to guarantee that the lwk

element of �̂1(w) and �̂2(w) can be bounded as

�1l � �̂1l � �̄1l �2l � �̂2l � �̄2l> (39)

where �1l, �̄1l 5 R and �2l, �̄2l 5 R are known, constant
lower and upper bounds for each element of �̂1(w) and �̂2(w),
respectively.

B. Adaptive Momentum Tracking Control Development

Based on the tracking error of (14), the flywheel angular

momentum tracking error can be quantified as

� = ki � Lzv
 (w) = (40)

For development of the closed-loop dynamics regarding the

momentum tracking error, the time derivative of (40) is given

as

�̇ = �Lzv
̇ (w) = (41)

Multiplying (41) by the known positive-definite symmetric

matrix L�1zv , and substituting the first row of (34) into the
resulting expansion yields

L�1zv �̇ = U1 +Q1v̄znzj= (42)

Based on the structure of (42), the signal j (w) is designed
to satisfy the following relationship

Q1v̄znzj = �U1 � np�> (43)

where np 5 R is a positive constant control gain. Based

on the Moore-Penrose pseudo-inverse property in (30a) and

(30b), the minimum norm solution of (43) is given as

j = (nzQ1v̄z)
�1
(�U1 � np�) = (44)

The result in (44) indicates that simultaneous attitude and

momentum tracking is possible when nzQ1vz is invertible.
After substituting (44) into (42) for j (w), the following
closed-loop error system is obtained:

L�1zv �̇ = �np�= (45)

C. Stability Analysis

Theorem 1: The weighted control input (27) including the

flywheel acceleration and the gimbal rate along with the

adaptive update laws given in (38) ensure global asymptotic

attitude tracking such that

khy(w)k$ 0 as w$4 (46)

and that (13) is satisfied, and then (8) is achieved, and

exponential momentum tracking in the sense that

k�(w)k � �0 exp (�Lzvnpw) (47)

where �0 5 R is a positive bounding constant.
Proof: The exponential momentum tracking result is evi-

dent from (45).

To prove the attitude tracking result, consider the nonnega-

tive and radially unbounded function Y (hy> h0> u> �̃1> �̃2> w) 5
R defined as

Y , hWy hy + (1� h0)
2
+
1

2
uWMu (48)

+
1

2
�̃
W

1 �
�1
1 �̃1 +

1

2
�̃
W

2 �
�1
2 �̃2=

Let G � R7 be a domain containing | (w) = 0, where | (w) 5
R
7 is defined as

| (w) ,
£
}W (w)

p
T (w)

¤W
> (49)

and }(w) 5 R6 is defined as

} ,
£
hWy uW

¤W
= (50)

The auxiliary function T (w) 5 R included in (49) is defined
as

T (w) ,
1

2
�̃
W

1 �
�1
1 �̃1 +

1

2
�̃
W

2 �
�1
2 �̃2> (51)

where the function T (w) � 0 since � is positive-definite. The
defined Lyapunov function candidate satisfies the following

inequalities:

Z1 (|) � Y (|> w) �Z2 (|) > (52)

where the continuous positive definite fuctions Z1 (|),
Z2 (|) 5 R are defined as

Z1 (|) ,
1

2
k|k

2
> Z2 (|) , k|k

2
>
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where Z1(|), Z2(|) 5 R are continuous positive definite
functions. After using (24), (36), and (37), the time derivative

of Y (w) can be expressed as

Ẏ = hWy
¡
h×y + h0L

¢
$̃ + (1� h0) h

W
y $̃ (53)

+uW
³
\1�̃1 + \2�̃2 � nu � hy

´

��̃
W

1 �
�1
1

·

�̂1 � �̃
W

2 �
�1
2

·

�̂2=

By using (16), (38), and exploiting the fact that

hWy h
×
y $̃ = 0>

the expression in (53) can be upper bounded as

Ẏ � �� k}k
2
> (54)

where � = �min {�> n} 5 R. The bounding result given in
(54) achieves the following equivalent inequality:

Ẏ � �Z (|) > (55)

where Z (|) = f k}k2 is a continuous positive semi-definite
function for a positive constant f 5 R. The Lyapunov func-
tion in (48) and the inequality in (55) can be used to conclude

that u(w)> hy (w) > �̃1 (w) > �̃2 (w) 5 L4. Thus, from (12), (16),
and (50), hy(w)> h0(w)> $̃(w)> }(w) 5 L4, and (15) can be
used to conclude that $(w) 5 L4. Equation (9) then shows
that ḣy(w)> ḣ0(w) 5 L4. Exploiting hy(w)> h0(w)> }(w) 5 L4,
(21), (26), and (39) can be used to show that j (w) 5 L4.
The fact that u(w)> hy (w) > �̃1 (w) > �̃2 (w) 5 L4 yields u̇(w) 5
L4 from (36). From �̃1 (w) > �̃2 (w) 5 L4, (24), and (37),
�̂1 (w) > �̂2 (w) 5 L4. Hence, (22), (26), (27), (31), (39), (44),
and (47) can be used to prove that the control input �̇ (w) 5
L4. Standard signal chasing arguments can then be utilized
to prove that all remaining signals remain bounded during

closed-loop operation. Since hy (w) > u (w) > ḣy(w)> u̇ (w) 5 L4,
hy(w) and u (w) are uniformly continuous. Therefore, X (|)
is uniformly continuous in G. Now, choose g A 0 such that
Eg � G, let � ? mink|k=g X1 (|), and consider the set V
satisfying V � G � R7 denoted as

V , {| (w) 5 Eg | X2 (|) � �} =

Then, the result in (46) can now be obtained under all initial

condition | (0) in the set V (i.e., hy (w) $ 0 as w $ 4,

;| (0) 5 V).

VI. SIMULATION ANALYSIS

The proposed controller was numerically simulated us-

ing the following dynamic parameters from the University

of Florida (UF) CMG testbed: the total inertia (Mwrwdo =
gldj

©
6=10× 10�2 6=10× 10�2 7=64× 10�2

ª
) and

each 4-VSCMG unit mass (pyvfpj = 0=165 nj) [14].
The simulation is started at an internal elliptic singularity

configuration (�90�> 0�> 90�> 0�), which is known as an
inescapable singularity that cannot be avoided using null

motion in conventional CMG system [15], [16]. The angular

velocity $ (w) of the testbed tracks the desired angular
velocity which is generated in {-axis and }-axis (after 100v)
shown in Fig. 1. A sudden task assignment given in }-axis
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Fig. 1. Actual angular velocity $ (w) and desired angular velocity $g (w)
during closed-loop operation from start of elliptic singularity.
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Fig. 2. Quaternion tracking error h(w) during closed-loop operation from
start of elliptic singularity.
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Fig. 3. Control input gimbal rates �̇ (w) (top) and wheel accelerations l̇ (w)
(bottom) from start of elliptic singularity.
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Fig. 4. Null motion: gimbal reconfiguration (top) and wheel speed
regularization (bottom) from start of elliptic singularity.
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Fig. 5. Total torque and gimbal acceleration torque during closed-loop
controller operation from start of elliptic singularity.

after 100v is to evaluate the performance of the proposed
controller in a severe situation. Figs. 2 - 5 show the simu-

lation results of the closed-loop system when starting at the

elliptic singularity. Specifically, Fig. 2 shows the quaternion

tracking error. Fig. 3 shows the gimbal rate �̇ (w) and the
wheel acceleration 
̇ (w) as the control inputs. The wheel
acceleration control input 
̇ (w) contributes to the momentum
management by regulating the wheel speed to the preferred

wheel speed 
i = 200 udg@v (� 2> 000 usp). While the
VSCMG system avoids an isolated point in the geometric

configuration space by invoking RWs, the null motion of (31)

depicted in Fig. 4 simultaneously brings about the gimbal

reconfiguration as well as wheel speed regularizaion, which

achieves the momentum management objective by making

the momentum tracking error � (w) of (14) approach zero
as illustrated in Fig. 4. Fig. 5 shows the commanded total

torque and the gimal acceleration torque which have been

generally ignored as relatively small magnitudes comparing

to the other torque terms. However, Fig. 5 shows that the

magnitude of the gimbal acceleration torque with a unit of

nj ·p2@v2 is not trivial and provides about 10% of the total
torque.

VII. CONCLUSIONS

In this paper, an adaptive attitude controller for a VSCMG-

actuated satellite is presented. In the presence of uncertain,

nonlinear, and time-varying inertia in the satellite, the con-

troller is capable of achieving globally asymptotical attitude

tracking while simultaneously performing singularity avoid-

ance and momentum management by the null motion. The

simulation shows that the controller as a VSCMG steering

law is robust at start from elliptic singularity and even in

sudden task assignment test. The wheel speed regularization

resulting from the null motion achieves the momentum

management which can help the system reduce power and

hold the approach to the external saturation singularity. In

addition, the controller compensates for the effects of uncer-

tain, time-varying satellite inertia properties. The difficulty

arising from uncertain satellite inertia is mitigated through

an innovative development of the error system along with a

Lyapunov-based adaptive law. The attitude tracking and mo-

mentum tracking results are proven via a Lyapunov stability

analysis and demonstrated through numerical simulations.
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