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Abstract— This paper describes a long-baseline under-
water acoustic localization system that was developed to
provide three-dimensional position information for the
Seaglider underwater vehicle. The accurate inertial posi-
tion of the glider can be used to estimate performance
characteristics and to validate novel motion control and
path planning strategies in future experiments. The system
consists of three acoustic transponders that are placed at
known locations at the surface of the water. An extended
Kalman filter with RTS smoothing was used to obtain
filtered estimates of the states. The filtering methods have
been tested both in simulations and in field experiments.

I. INTRODUCTION

Buoyancy-driven underwater gliders are highly effi-
cient marine vehicles that were originally developed to
perform oceanographic data collection missions [2] [6].
Their flight characteristics depend on the amount of
negative or positive net weight and on the location of
movable internal masses. These vehicles are extremely
efficient because they spend most of their time in a
steady, trim flight condition, where they do not actively
expend energy. Apart from the occasional sensor mea-
surements and automatic scheduled self-tests, they only
use energy when they change their trim flight condition,
such as transitioning from steady descent to ascent, or
rolling to one side in order to turn. Since much of the
energy used is expended during these trim adjustments,
significant energy savings are anticipated by the use of
efficient maneuvering strategies that help achieve these
desired flight conditions faster and with less control
effort [9].

Recently developed efficient motion planning algo-
rithms (see [7] [8] [11]) remain to be validated in
underwater glider experiments. The focus of the research
presented here was to devise a set of field experiments
and develop the corresponding field equipment and data
processing tools to be able to validate underwater glider
motion control algorithms. The paper gives an overview
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of our initial results focused on developing a long-
baseline (LBL) positioning system to track the path
of the Seaglider underwater glider with high accuracy.
The precise knowledge of the vehicle position during
a dive enables computation of the vehicle speed, flight
path angle and turning rate. LBL systems have been
successfully used in the past for autonomous underwa-
ter vehicle (AUV) localization. The system described
here is a type of moving LBL system (MLBL), in
which the nodes are not stationary, but are equipped
with navigation instruments (GPS), and act as moving
reference beacons. The positioning system relies on
acoustic round-trip travel time measurements that are
processed by an extended Kalman filter (EKF). The
EKF has the ability to incorporate the dynamic motion
of the glider into the estimation algorithm, improving
the estimation accuracy over that of less sophisticated
geometric positioning methods. EKFs have been used in
the past to estimate AUV positions and the magnitude
of prevailing currents (see e.g. [5]). If data are avail-
able for post-processing, further improvements can be
achieved by using smoothing algorithms. In this work a
hybrid nonlinear RTS smoother has been implemented
and its effectiveness verified in both simulations and
experiments. These well-established algorithms proved
very effective for precise underwater localization of the
Seaglider AUV in a challenging shallow environment
featuring multipath sources and strong tidal currents.

II. BACKGROUND

A. Seaglider

The Seaglider is a long-range, long-endurance un-
derwater glider that was developed at University of
Washington as a collaboration between the Applied
Physics Lab and the School of Oceanography [2]. The
vehicle is equipped with conductivity-temperature-depth
(CTD) sensors and optional additional scientific sensors,
such as dissolved oxygen or optical backscatter. Other
than science sensors, it also carries various navigation
instruments, including: 1) a GPS unit to obtain a position
fix when it surfaces, 2) a 3D compass to measure head-
ing and tilt angle, and 3) an acoustic pinger/altimeter to
obtain bottom depth and to be able to respond to acoustic
interrogations in the low-frequency band (7-15 kHz).
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B. Underwater Acoustic Ranging

In underwater applications, acoustic signals are pri-
marily used for communication rather than radio signals
due to poor propagation characteristics of radio signals
in water [12]. The measured round-trip travel time of an
acoustic signal is given by the equation

tRTT = tTAT +
2R3D

c
+ ε, (1)

where tTAT is the turn-around time (the amount of time
the electronics needs to detect the signal and send a
response), R3D is the slant range to the vehicle, and c
is the speed of sound in water. The term ε represents
the error between the true and measured round-trip
travel time. Since the amount of error in the slant range
measurements has a profound effect on the positioning
accuracy, the sources of the errors need to be well
understood.

Since the Seaglider provides temperature, salinity and
depth information during its dive, the sound velocity
profile can be calculated explicitly to minimize the scale
factor error in the measurement equation (1) (see [10]
or [12] for a survey). The variations in speed of sound
at our test-site were minimal due to shallow operating
depths and relatively minor salinity and temperature
changes. We used the depth-averaged velocity profile
in the calculations. (We note that the water in Port
Susan exhibits strong salinity stratification due to the
large amounts of freshwater entering the bay, creating
a freshwater lens at the top of the water column. We
excluded the top 20 m from our data processing due to
poor acoustic returns in that region.)

Outliers often appear in the ranging solution due to
multipath errors [13]. Reference [17] presents methods
to remove outliers using spatial and temporal plausibility
tests. Outliers in our ranging solution were infrequent
and mostly isolated; we had success with a simple dif-
ference filter relying on temporal plausibility validation.

The error term in equation (1) can be written as the
sum of two components: ε = εs + v, where εs repre-
sents the systematic errors, and v is the random noise
component. After elimination of the major systematic
error components, one is left with random measurement
noise, which is primarily attributed to the residual timing
errors in the signal processing. The probability distribu-
tion of the slant range (R3D) measurement errors was
estimated experimentally by building a sample relative
likelihood histogram. The variance was found to be
σ2
R = 1.023 m2, with the distribution closely approx-

imating a Gaussian distribution. Similarly, the variance
of the compass measurement error was estimated exper-
imentally as σ2

ψ = 7.6 · 10−5 rad2.

C. LBL System Overview

The precise underwater location of the Seaglider may
be found using a long-baseline (LBL) acoustic local-
ization system. LBL systems are composed of several
beacons in a network. The acoustic travel times between
these beacons and the glider can be used to calculate the
distance to each of the beacons. If the locations of the
beacons are known, then the spatial position of the glider
can be calculated using a suitable geometric algorithm
(static position estimation) or a Kalman filter (dynamic
position estimation).

The LBL system developed as part of this work
consists of three identical nodes that are placed at known
locations on the surface of the water. The nodes are
placed on flotation devices to keep them above the water
surface. To prevent them from drifting away from their
deployment locations, they are anchored to the sea-floor.
Each of the nodes consists of an acoustic ranging unit,
a GPS antenna, a computer to synchronize the ranging
measurements and to log data, and batteries to power
all the components. All the electronics are housed inside
Pelican case enclosures that were fitted with waterproof
connectors for communication between the components.
The measurement times were synchronized using GPS
time so that only one transponder would ping at a time.

III. POSITION ESTIMATION

Given an initial guess, the glider’s position can be
found using an iterative nonlinear least-squares algo-
rithm

θ = (HTV −1H)−1HTV −1r,

where θ is the vector of estimated position correction, V
is the measurement covariance matrix,H is the Jacobian
matrix of the measurement equations, and r is the vector
composed of the range measurements. Position estimates
obtained this way will be referred to as “LS estimates.”

The estimation accuracy can be significantly improved
by using knowledge of the underlying vehicle dynamics
and employing a dynamic filter. We used the commonly
employed navigation equations extended with trivial dy-
namics for the velocities to allow the filter to adaptively
estimate these unknown parameters:

ẋN (t) = Va cosψ(t) + Vx (2)
ẏE(t) = Va sinψ(t) + Vy (3)

ψ̇(t) = u(t) (4)
V̇a = 0 (5)
V̇x = 0 (6)
V̇y = 0. (7)

In the above equations (xN , yE)T are the planar position
coordinates, Va is the flow-relative speed of the glider,
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Vx and Vy are the North and East components of
the current velocity vector, ψ(t) is the heading angle
measured from North, and u(t) is the turn rate of
the vehicle, the only external input in this model. The
turn rate is determined by the vehicle roll angle –
information that can be obtained from the glider log
files during post-processing. Notice that the velocities
Va, Vx and Vy are treated as states in the model with
trivial dynamics. In reality they are unknown parameters,
assumed to be constant or slowly varying, the values of
which are to be estimated. Define the state vector as
x = (xN , yE , ψ, Va, Vx, Vy)

T . Then equations (2)-(7)
take the form ẋ = f(x, u) +w, where w ∼ N (0,W )
is the process noise, which is assumed to be zero-mean,
Gaussian and white. At discrete time intervals, t = kT ,
measurements are available as defined by the output
equations y(kT ) = h(x(kT )) + v(kT ), where T is the
sampling period, k ∈ Z and v(kT ) ∼ N (0,V ) is the
measurement noise which is also assumed to be zero-
mean, Gaussian and white. The measurement vector for
the underwater localization problem is

y(kT ) =

(
R(kT )
ψ(kT )

)
, (8)

where R(kT ) is the in-plane range measurement from a
corresponding node, and ψ(kT ) is the vehicle heading
angle obtained from the compass. Due to the uncertain-
ties, the state of the dynamic system is a random process,
and the best one can hope is to obtain its expected
value x̂ and covariance matrix P . The EKF gives these
estimates, and under certain assumptions also guarantees
that the solution is asymptotically optimal in the sense
that the estimate is unbiased and of minimal variance.
We used the EKF to estimate the states of the above
dynamic system. Since the full data set was available
for post-processing, we used the RTS smoothing method
to improve the estimation accuracy of the filter (EKF +
RTS). References [1] and [14] both provide a thorough
treatment on batch state estimation algorithms. These
methods are considered classical tools in the literature,
and we will omit the corresponding equations. A com-
prehensive account including the specific equations is
given in [15].

IV. SIMULATION RESULTS

The flight of an underwater vehicle described by
equations (2)-(7) was simulated on a computer. The
constant glider velocity and current velocity components
in the simulations were Va = 0.3 m/s, Vx = 0.1 m/s,
Vy = −0.2 m/s. These values were not known a priori
to the algorithm; instead they were estimated by the
EKF. The initial values for the filter were selected as
V̂a0 = 0.2 m/s, V̂x0

= 0 m/s, V̂y0 = 0 m/s. During the
simulations, a constant turn rate was used: u = 0.9◦/s.
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(b) Close-up version of Figure 1a.

Fig. 1: Planar position of the glider in simulations. The
plots show the improved performance of the EKF + RTS
filter. Figure 1b is a close-up version of Figure 1a.

The turn rate of the vehicle was not known for the esti-
mator, so umodel = 0 was selected in the estimator equa-
tions. The process and measurement noise covariances
were selected as W = 10−5diag(0, 0, 7.6, 0.1, 0.1, 0.1),
and V = diag(10σ2

R, σ
2
ψ). The noise variance for the

range measurement was selected an order of magnitude
larger than the value estimated during calibration to
simulate a worst-case scenario.

In the derivation of the Kalman filter, the process
noise is assumed to be zero-mean and white, which is
rarely the case in practice. Nevertheless, the Kalman
filter exhibits a certain amount of robustness in erro-
neous selection of the process covariance matrix. For this
reason the introduction of fictitious process noise in the
Kalman filter equations has become common practice
as a tuning method for the filter. Formally justified in
[14], large process noise results in a filter that trusts
the measurements more, and assumes that the model is
incorrect or heavily corrupted with noise. Small process
noise results in a filter that trusts the underlying model
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Fig. 2: Trace of the covariance matrix (top) and magni-
tude of the planar position error (bottom) in simulations
for the EKF and the EKF+RTS filters.
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Fig. 3: Current speed components and glider flow-
relative speed in simulations. Solid lines are true (con-
stant) values; dashed lines are the EKF estimates;
dashed-dotted lines are the EKF+RTS smoothing esti-
mates (nearly identical to the true values).

more, yielding smoother paths in navigation problems,
such as the one discussed in this paper.

Equations (2)-(3) represent simple translational kine-
matics and are assumed to be true and noise-free. The
corresponding variances are hence zero. The turn rate
dynamics are determined by the vehicle bank angle,
which can be obtained from the glider log files in
experiments. Since the turning rate was assumed noisy, a
relatively large weight was selected for the correspond-
ing entry in the process noise covariance matrix, W .
Most of the uncertainty in the system comes in the
estimated current velocity components. Their values are
initially assumed to be zero; in practice they may be spa-
tially and temporally varying. The corresponding values
in the covariance matrix were selected by considering
the trade-off in convergence time versus the stability
in the estimate. Smaller values tend to yield smoother
convergence at a slower rate. If it is known that the
glider flow-relative speed does not vary much during a

dive and a close initial guess for the speed is available,
then the corresponding weight may be selected smaller
than for the other velocity components.

The simulation time was 20 minutes. A new mea-
surement was obtained every 4 seconds: yielding a total
of 300 consecutive range measurements. Three ranging
node locations were selected in a triangle pattern, each
approximately 1 km distance away from the origin where
the simulation was started. The ranging measurements
were obtained from the nodes one at a time in a
round-robin fashion: each individual node providing an
updated range every 12 seconds. In these simulations
the compass was also sampled every 4 seconds. The
simulation time-step for simulating the motion of the
vehicle between measurements was 50 ms. After every
third range measurement a static position estimate was
also obtained using a simple spherical localization al-
gorithm based on the iterative nonlinear least-squares
method.

Parallel to the true vehicle model, an EKF estimator
was also simulated. The measurements were obtained
from the true model output with the addition of normally
distributed measurement noise v ∼ N (0,V ). The EKF
estimates were then used to calculate the RTS smoothed
estimate (EKF + RTS).

Figures 1 - 3 show the results of these simulations.
Planar plots of the glider position can be seen in
Figure 1. As expected, the EKF estimates provide signif-
icant improvement over the static nonlinear least-squares
based estimation algorithm. The dynamic filter produces
estimates that take into account the dynamics of the
underlying physical system. Furthermore, the EKF with
RTS smoothing provides even greater improvement in
the state estimates, as it uses all the measurements over
the entire sampling interval including past and future
times. Figure 2 shows the trace of the covariance matrix
and the estimation error measured by ||e|| = ||x− x̂||.
The convergence of the estimated speed components is
shown in Figure 3.

V. EXPERIMENTAL RESULTS

The underwater localization methods described in
Section III were used to estimate the underwater position
of the Seaglider from experimental data collected in Port
Susan on July 15, 2010. The simulation environment of
Section IV was selected to be as representative of a typ-
ical experiment as possible. The same filter parameters
were used for the experimental data processing that were
identified to give good estimation results in simulations.

The results from dive number 18 can be seen in
Figures 4-6. The dive started at 11:56 a.m. PDT, and
lasted approximately 50 minutes. The data were reduced
to include only the 30 minute portion that the glider
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(b) Close-up showing smoothness of the estimated posi-
tion.

Fig. 4: Underwater localization experimental results
from July 15, 2010. The plots show planar position
estimates for dive number 18 of the Seaglider.

spent below 20 m depth, due to deterioration of acous-
tic responses near the water surface, as mentioned in
Section II-B. Figures 4a-4b show the planar coordinates
of the glider estimated position. The blue diamonds
indicate the estimates obtained with the LS algorithm.

The trace of the covariance matrix of the state es-
timates, tr(P ), can be seen in Figure 5. The major
contributors of tr(P ) are the spatial position variances.
From the plot it is seen that the estimation accuracy
is on the order of 30 cm and the filter converges to
this value after three minutes into the experiment. The
estimation covariance increases temporarily between 8
and 10 minutes. This corresponds to the point where
the glider transitions from steady descent to ascent at
the bottom of the dive. During this maneuver the glider
is relatively close to the ocean bottom and the obtained
responses suffer from multipath. The RTS smoothing
algorithm appears to provide significant improvement in
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Fig. 5: Experimental results from July 15, 2010. The
plots show the trace of the state covariance matrix P .
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Fig. 6: Experimental results from July 15, 2010. Shown
are the current velocity components (Vx,Vy) and the es-
timated flow-relative speed (Va). The plot also shows the
estimated flow-relative speed obtained from independent
performance calculations: Vap [2].

terms of the position estimation accuracy, measured by
the magnitude of the estimation covariance matrix.

Figure 6 shows the estimates of the glider speed and
the current velocity components. Low tide occurred in
Port Susan at 2:07 p.m. on July 15, 2010: over two
hours after the beginning of dive number 18. The current
velocity estimates in Figure 6 indicate mostly East-
Southeast current direction, which is in agreement with
the expected tidal motion at that time. Figure 6 also
shows the estimated flow-relative glider speed obtained
from independent performance calculations. The per-
formance calculations use the vehicle vertical descent
rate, the pitch angle, and the vehicle hydrodynamic
parameters to calculate the glide path angle and vehicle
speed as described in [2]. There is good agreement
between the two independent speed calculations.

We have deferred the discussion of observability until
this point. The dynamic model (2)-(7) involves the
adaptive estimation of both the current velocities and
the vehicle’s flow-relative velocity, which clearly raises
observability concerns. The interested reader may find
relevant information on this topic in [4] and [3]. The
simulations confirmed that, as long as the system is
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persistently excited, the EKF will converge if the ocean
currents are constant or at most slowly varying. Such
persistent excitation is achieved by having the vehicle
travel along a curved pattern such as the one shown
in Figure 1, as opposed to traveling along a straight
line. Given that the currents identified by the EKF
show significant variability, it is difficult to assess how
accurate the current estimates identified during the field
experiments truly are. The accuracy could be assessed
by obtaining an independent measurement with Acoustic
Doppler Current Profiler (ADCP) instrument, or by
comparing the estimates to the output of computational
ocean models for the given day and time. No ADCP
instrument was at our disposal during the field experi-
ments, and the comparison with the output of the Puget
Sound Princeton Ocean Model (PSPOM) for July 15,
2010 did not yield satisfactory result.

Finally, we remark that the current estimation accu-
racy could be further improved if precise knowledge
of the glider’s flow-relative velocity, Vap, is available.
The flow-relative speed could be obtained from perfor-
mance calculations as outlined in [2]. Such performance
calculations presume accurate knowledge of the vehicle
hydrodynamic parameters, which can be obtained from
wind tunnel studies [16].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we described experimental underwater
acoustic localization results that were performed with
the Seaglider underwater glider in Port Susan in July
2010. An extended Kalman filter was used for dy-
namic parameter estimation and localization. The filter
provides significant improvement over static estimation
methods that do not consider the motion of the vehicle
and only use present measurements to calculate the
position. The accuracy can be further improved by em-
ploying an RTS smoother. The method provides smooth
vehicle trajectories and significant error reduction con-
firmed by simulations and field experiments.

In our future work we will use the tools described
in the paper in controlled glider experiments, to obtain
a lookup table of flight parameters as a function of
control actuator inputs. The localization system will be
used to validate the efficiency of novel motion control
algorithms.
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