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Abstract— We present a distributed discontinuous control
algorithm for a team of agents to track the average of multiple
time-varying reference signals with bounded derivatives. We
use tools from nonsmooth analysis to analyze the stability of
the system. For time-invariant undirected connected network
topologies, we prove that the states of all agents will converge to
the average of the time-varying reference signals with bounded
derivatives in finite time provided that the control gain is
properly chosen. The validity of this result is also established
for scenarios with switching undirected connected network
topologies. For time-invariant directed network topologies with
a directed spanning tree, we show that all agents will still
reach a consensus in finite time, but the convergent value is
generally not the average of the time-varying reference signals
with bounded derivatives.

Notation
R Real numbers.
R+ Nonnegative real numbers.
1 Vectors with all ones.
sgn(·) Signum function.
‖ · ‖1 1-norm of a vector.
‖ · ‖2 2-norm of a vector.
‖ · ‖∞ ∞-norm of a vector.
‖ · ‖ Any norm of a vector.
| · | Absolute value of a scalar.
#S Cardinality of the set S.
co Convex hull.
co Convex closure.
AT Transpose of A.
u(Ω) Lebesgue measure of Ω.
B(x, r) Open ball of radius r centered at x.
∇f Gradient of f.
a.e. Almost everywhere.
B(Rd) Collection of subsets of Rd.

I. INTRODUCTION

In multi-agent systems, consensus means to reach an
agreement on a quantity of interest. Here, the states of
all agents usually converge to the average or the weighted
average of the initial conditions of these agents, which is a
constant value (see, e.g., [1], [2]). In a consensus problem,
when there exists a dynamic leader (e.g., an agent that
moves by itself regardless of the other agents) or a time-
varying reference signal, the consensus problem becomes a
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coordinated tracking problem. Here, the objective is that the
states of all agents track the state of the dynamic leader or
the time-varying reference signal [3], [4], [5]. When there
exist multiple reference signals, dynamic average consensus
problems were studied. Here, the objective is that the states
of all agents track the average of the reference signals.
In [6], a distributed algorithm was proposed to guarantee
that a consensus is reached on the average of multiple
reference signals with steady-state values. The result was
proved by frequency-domain techniques and was applied in
[7] to obtain least-squares fused estimates based on spatially
distributed measurements, which is robust to changes in the
underlying network topology. In [8], two dynamic average
consensus algorithms were proposed, namely, a proportional
(or high-pass) algorithm and a proportional-integral algo-
rithm. With properly chosen parameters, the proportional al-
gorithm can guarantee the tracking of the average of multiple
constant reference signals provided that the estimators are
correctly initialized. With an integral term introduced in the
estimator, the proportional-integral algorithm can guarantee
the tracking of the average of multiple constant reference
signals without the need for the correct estimator initializa-
tion. However, for time-varying reference signals, a tracking
error is expected. These two algorithms were used in [9] to
build a framework for decentralized estimation and control,
which is a good complement to purely reactive memoryless
controller design. A consensus filter was used in [10] to study
swarm dynamics where inter-agent forces are governed by
repulsive-attractive forces. The consensus filter generates a
collective estimate of the swarm center that is used by the
agents to guide their movements. It was shown that if the
network topology is regular, i.e., the maximum out-degree
equals to the minimum out-degree, then the consensus filter
can reach a consensus regardless of the swarm size. But for
a general network topology, a consensus error is expected.

The contributions of this paper lie in the following facts.
We propose a simple but compelling control algorithm to
solve the distributed average tracking problem by using the
signum function. To the best of our knowledge, the proposed
algorithm is the first distributed algorithm that guarantees
accurate tracking of the average of multiple time-varying
reference signals with bounded derivatives. Because of the
discontinuity in the control algorithm, we exploit tools from
nonsmooth analysis to investigate the stability of the closed-
loop system. Under a time-invariant undirected network
topology, we show that all agents will track the average
of multiple time-varying reference signals with bounded
derivatives in finite time as long as the control gain is
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properly chosen and the network topology is connected. We
also establish the validity of the result for scenarios with
switching but connected network topologies. For a time-
invariant directed network topology with a directed spanning
tree, we show that all agents can still reach a consensus
in finite time, but the convergent value is generally not the
average of the time-varying reference signals with bounded
derivatives.

II. PROBLEM DESCRIPTIONS AND MATHEMATICAL
PRELIMINARIES

A. Problem Descriptions

Suppose that there are n time-varying reference signals,
ri(t) ∈ Rm, i = 1, . . . , n, satisfying the following dynamics:

ṙi(t) = fi(t).

Here fi(t) ∈ Rm is assumed to be measurable and bounded,
i.e., supt ‖fi(t)‖∞ ≤ f̄ for all i = 1, . . . , n, where f̄ is
a positive constant. Suppose that there are n agents with
single-integrator dynamics given by:

ẋi(t) = ui(t), i = 1, . . . , n, (1)

where xi(t) ∈ Rm is the state of agent i and ui(t) ∈ Rm is
the control input that needs to be designed.

We assume that agent i has access to fi and ri(0) [and
hence ri(t)], but does not have access to the other reference
signals rj(t), j 6= i. We also assume that agent i can obtain
information from a subset of the other agents, called its
neighbors and denoted by Ni. Here we assume that i /∈ Ni.

We use a graph G , {V, E} to describe the network
topology between the agents, where V , {1, . . . , n} is the
node set and E , {(i, j)|i ∈ Nj} is the edge set. A graph
is undirected if j ∈ Ni implies i ∈ Nj . If i ∈ Nj , node i is
the parent node while node j is the child node. A directed
path from node i to node j is a sequence of edges of the
form (i1, i2), (i2, i3), . . . in a directed graph. A directed
tree is a directed graph, where every node has exactly one
parent except for one node, called the root, and the root has
directed paths to every other node. A directed spanning tree
of a directed graph is a direct tree that contains all nodes
of the directed graph. A directed graph has a spanning tree
if there exists a directed spanning tree as a subset of the
directed graph. An undirected path in an undirected graph
is defined analogously. An undirected graph is connected if
there is an undirected path between every pair of distinct
nodes.

Our main objective is to design ui(t) based on fi(t), ri(0),
and xj(t), j ∈ Ni, such that all the agents will finally track
the average of the n time-varying reference signals, i.e.,

‖xi(t)−
1

n

n∑
j=1

rj(t)‖ → 0 as t→∞.

We initialize the states of all agents as

xi(0) = ri(0), (2)

and design the following control law

ui(t) = fi(t) + α
∑

j∈Ni(t)

sgn[xj(t)− xi(t)], (3)

where α > 0 is a constant, and sgn(·) is the signum function
defined component-wise. Using (3) for (1), we obtain the
following closed-loop system

ẋi(t) = fi(t) + α
∑

j∈Ni(t)

sgn[xj(t)− xi(t)] (4)

with the initial conditions (2). We note that each component
of xi(t) is decoupled in (4). Therefore, in the following, we
will only tackle the one-dimensional case, i.e., m = 1. The
same conclusions hold for any m ≥ 2.

B. Mathematical Preliminaries

In the following, we present some preliminaries in nons-
mooth analysis that will be frequently referred to. Because
the right-hand side of (4) is discontinuous, we first need to
define “What is a solution of the differential equation (4)?”.
In the existing literature on nonsmooth systems, we have seen
several definitions of solutions such as Filippov solutions and
Caratheodoory solutions. Here, we choose Filippov solutions
because some elegant tools have been developed to analyze
the stability of Filippov solutions, and these tools have been
applied very well in the context of multi-agent systems.
Filippov solutions are defined below.

Definition 1: [11] For a vector field f(t, x) : R × Rd →
Rd, define the Filippov set-valued map K[f](t, x) : R×Rd →
B(Rd) by

K[f](t, x) , ∩δ>0 ∩u(N)=0 cof(t, B(x, δ)−N),

where ∩u(N)=0 denotes the intersection over all sets of
Lebesgue measure zeroes.
Some useful rules are developed to simply the calculation
of Filippov set-valued maps, which are summarized in the
following lemma.

Lemma 1: [11]
1) Assume that f : Rm → Rn is locally bounded. Then
∃Nf ⊂ Rm, u(Nf) = 0 such that ∀N ⊂ Rm, u(N) =
0,

K[f](x) = co{lim f(xi)|xi → x, xi /∈ Nf ∪N}.

2) Assume that f, g : Rm → Rn are locally bounded, then

K[f + g](x) ⊆ K[f](x) +K[g](x).

3) Let f : Rm → Rn be continuous, then

K[f](x) = {f(x)}. (5)
Definition 2: [12] Consider a vector differential equation

ẋ(t) = f(t, x), (6)

where x(t) = [x1(t), . . . , xn(t)]T . A vector function x(·) is
called a Filippov solution of (6) on [t0, t1], where t1 could
be ∞, if x(·) is absolutely continuous and for almost all
t ∈ [t0, t1]

ẋ(t) ∈ K[f](t, x).

1651



The next lemma establishes mild conditions under which
Filippov solutions exist.

Lemma 2: [13] Given (6), let f(t, x) be measurable and
locally essentially bounded, that is, bounded on a bounded
neighborhood of every point excluding sets of measure zero.
Then, for all x0 ∈ Rn, there exists a Filippov solution of (6)
with the initial condition x(0) = x0.

It follows from Lemma 2 that Filippov solutions for the
system (4) exist because fi(t), i = 1, . . . , n, and sgn(·) are
measurable and bounded.

Let W be a locally Lipschitz function of x, where x =
[x1, . . . , xn]T . The generalized gradient of the function W
with respect to xi (cf. [12]) is defined by

(∂W )i , co{ lim
j→∞

∂W

∂xi
|x′j → xi, x

′
j /∈ ΩW ∪ S},

where ΩW is the set of points where W fails to be differen-
tiable and S is a set of zero measure that can be arbitrarily
chosen to simplify the calculation. Then the generalized
gradient of W is ∂W , [(∂W )1, . . . , (∂W )n]T .

The set-valued Lie derivative of W with respect to x, the
trajectory of (6) , is defined as

˙̃W , ∩ξ∈∂W ξTK[f].

We can use ˙̃W to study the evolution of W along the Filippov
solutions of (6), which is guaranteed by the following lemma.

Lemma 3: [14] Let t 7→ x(t) be a Filippov solution of
system (6), and let W : Rn → R be a Lipschitz and regular
function. Then Ẇ exists a.e. and

Ẇ ∈a.e. ˙̃W.
By using Lemma 3, a Lyapunov stability theorem is

established as follows.
Lemma 4: [14] Given (6), let f(t, x) be locally essentially

bounded and 0 ∈ K[f](t, 0) in a region Q ⊃ {t|t0 ≤ t <
∞} × {x ∈ Rn|‖x‖ < r}, where r > 0. Also, let V :
R× Rn → R be a regular function satisfying

V (t, 0) = 0,

and

0 < V1(‖x‖) ≤ V (t, x) ≤ V2(‖x‖), for x 6= 0

in Q for some class K functions V1 and V2. If in addition,
there is a class K function ω(·) in Q with the property

˙̃V (t, x) ≤ −ω(x) < 0, for x 6= 0,

or there exists a constant ω > 0 such that
˙̃V (t, x) ≤ −ω < 0, for x 6= 0,

then the solution x(t) ≡ 0 is uniformly asymptotically
stable.1

Lemma 5 (Comparison Lemma [15]): Consider the
scalar differential equation

u̇ = f(t, u), u(t0) = u0

1Here ˙̃V (t, x) ≤ a means that for all v ∈ ˙̃V (t, x), v ≤ a.

where f(t, u) is continuous in t and locally Lipschitz in u,
for all t ≥ 0 and all u ∈ J ⊂ R. Let [t0, T ) (T could be
infinity) be the maximal interval of existence of the solution
u(t), and suppose that u(t) ∈ J for all t ∈ [t0, T ). Let v(t)
be a continuous function whose upper right-hand derivative
D+v(t) satisfies the differential inequality

D+v(t) ≤ f(t, v(t)), v(t0) ≤ u0,

where v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t) for all
t ∈ [t0, T ).

III. STABILITY ANALYSIS

In this section, we analyze (4) under undirected and
directed network topologies. Before moving on, we need the
following lemmas.

Lemma 6: For the system (4), if the graph G(t) is
undirected and limt→∞ |xi(t)− xj(t)| = 0 for all i, j =
1, . . . , n, then

lim
t→∞

|xi(t)−
1

n

n∑
j=1

rj(t)| = 0,

for all i = 1, . . . , n.
Proof: The proof is omitted due to the space limit.

We next present the first main result of this paper.
Theorem 1: For the system (4), if G is time invari-

ant, undirected, and connected, and α > f̄ , then
|xi(t) − 1

n

∑n
j=1 rj(t)| → 0 in finite time for all i =

1, . . . , n, and the convergence time is upper bounded by
1

2(α−f̄)

∑n
i=1

∑
j∈Ni

|xi(0)− xj(0)|.
Proof: Define e(t) as the column stack vector formed

by all xi(t) − xj(t), (i, j) ∈ E . Consider the Lyapunov
function candidate

V [e(t)] =
1

2
‖e(t)‖1 =

1

2

n∑
i=1

∑
j∈Ni

|xi(t)− xj(t)|. (7)

Because V [e(t)] is nonsmooth, the time derivative of V [e(t)]
is not defined at some time instants. We first show that
the function V [e(t)] is regular. To prove this, it suffices to
show that the function h(x) , |x|, x ∈ R, is regular at the
discontinuous point 0. The right directional derivative of |x|
at 0 in the direction of v ∈ R is defined as

f
′
(0; v) = lim

h→0+

|x+ hv| − |x|
h

∣∣∣∣
x=0

= |v|.

The generalized directional derivative of |x| at 0 in the
direction of v ∈ R is defined as

fo(0; v) = lim sup
y→0,h→0+

|y + hv| − |y|
h

= lim
δ→0+,ε→0+

sup
y∈B(0,δ),h∈[0,ε)

|y + hv| − |y|
h

= lim
δ→0+,ε→0+

|hv|
h

= |v|. (8)

Therefore, |x| is a regular function.
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We next show that the function V (e) satisfies

V1(‖e‖2) ≤ V (e) ≤ V2(‖e‖2) (9)

for some class K functions V1(·) and V2(·). Because all
norms on a finite-dimensional linear space are equivalent,
it follows that there are positive constants a and b such that
a‖e‖2 ≤ ‖e‖1 ≤ b‖e‖2. Therefore, it is obvious that (9)
holds.

We can derive that

K[
∑
j∈Ni

sgn(xj − xi)] =


{#N+

i −#N−i },
if xi 6= xj ,∀j ∈ Ni,
{#N+

i −#N−i }
+[−#N 0

i ,#N 0
i ], otherwise.

Here, N+
i is the set of neighbors of agent i with xj > xi,

j ∈ Ni, N−i is the set of neighbors of agent i with xj < xi,
and N 0

i is the set of neighbors of agent i with xj = xi.
In addition, it can be shown that the generalized gradient of
V (e) with respect to xi is

(∂V )i =

 {#N
−
i −#N+

i }, if xi 6= xj ,∀j ∈ Ni,
{#N−i −#N+

i }+ [−#N 0
i ,#N 0

i ],
otherwise.

(10)

By using Lemma 1, the set-valued Lie derivative of V (e) is
calculated as follows

˙̃V ⊆ ∩ξ∈∂V ξT


K[f1] + αK

[∑
j∈N1

sgn(xj − x1)
]

...

K[fn] + αK
[∑

j∈Nn
sgn(xj − xn)

]
,

where ∂V , [(∂V )1, . . . , (∂V )n]T .
Define

( ˙̃V )i , ∩ξi∈(∂V )iξi

K[fi] + αK

∑
j∈Ni

sgn(xj − xi)

.
To show that ˙̃V < 0, we distinguish between two cases. The
first case is that xi 6= xj for all i = 1, . . . , n, j ∈ Ni. In this
case, we have that

( ˙̃V )i = ∩ξi∈(∂V )iξi
(
K[fi] + α{#N+

i −#N−i }
)
.

If ( ˙̃V )i 6= ∅, suppose that ai ∈ ( ˙̃V )i and afi ∈ K[fi]. From
(10), we know that ξi has only one value which equals to
#N−i −#N+

i . Because supt→∞ ‖fi(t)‖∞ ≤ f̄ , according
to the definition of K[fi], we know that K[fi] ⊆ [−f̄ , f̄ ],
which indicates that |afi | ≤ f̄ . Thus,

ai = (#N−i −#N+
i )afi − α

(
#N−i −#N+

i

)2
≤

∣∣#N−i −#N+
i

∣∣ (|afi | − α ∣∣#N−i −#N+
i

∣∣) .
If #N+

i − #N−i = 0, then ai = 0. If #N+
i − #N−i 6=

0, which implies that
∣∣#N−i −#N+

i

∣∣ is an integer that is
greater than or equal to one, we have

ai ≤ f̄ − α < 0.

If e 6= 0, there always exists a node p ∈ {1, . . . , n} such
that #N+

p − #N−p 6= 0, which immediately implies that
˙̃V =

∑n
i=1 ( ˙̃V )i ≤ f̄ − α < 0.

The second case is that there exists j ∈ Ni such that
xi = xj . If ˙̃Vi 6= ∅, suppose that ai ∈ ˙̃Vi and afi ∈ K[fi].
Then we know that ∀ξi ∈ (∂V )i,

ai = ξi(a
f
i + αvi),

where

vi ∈ {#N+
i −#N−i }+ [−#N 0

i ,#N 0
i ].

Choose

ξi = −vi ∈ {#N−i −#N+
i }+ [−#N 0

i ,#N 0
i ].

Thus, we have that

ai = −viafi − αv
2
i ≤ |vi|(f̄ − α|vi|).

If vi = 0, then ai = 0. If vi 6= 0, it follows from Proposition
2.2.9 in [12] that |vi| ≥ 1, which implies that

ai ≤ f̄ − α < 0. (11)

If e 6= 0, there always exists a node p ∈ {1, . . . , n} such that
vp 6= 0. Thus, we can conclude that

˙̃V ≤ f̄ − α < 0, for e 6= 0.

It follows from Lemma 4 that e(t) → 0 as t → ∞, which
implies that |xi(t) − xj(t)| → 0, ∀(i, j) ∈ E , as t → ∞.
Because G is connected, we know that |xi(t)− xj(t)| → 0,
∀i, j = 1, . . . , n, as t → ∞. It follows from Lemma 6 that
|xi(t)− 1

n

∑n
j=1 rj(t)| → 0, ∀i = 1, . . . , n, as t→∞.

From the Lebesgue’s criterion for the Riemann integrabil-
ity, we know that a function on a compact interval is Riemann
integrable if and only if it is bounded and the set of its points
of discontinuity has measure zero [16]. Write V [e(t)] as V (t)
for simplicity. Therefore, although the time-derivative V̇ (t) is
discontinuous at some time instants, it is Riemann integrable.
Then, we have that

V (t+ h)− V (t) =

∫ t+h

t

V̇ (τ)dτ ≤ (f̄ − α)h (12)

with h > 0. The upper right-hand derivative of the function
V is given by

D+V , lim sup
h→0+

V (t+ h)− V (t)

h
. (13)

One of the properties of lim sup is that if zk ≤ xk for each
k = 1, 2, . . . , then lim supk→∞ zk ≤ lim supk→∞ xk [16].
Thus, from (12) and (13), we know that

D+V ≤ f̄ − α.

Then it follows from Lemma 5 that

V (t) ≤ V (0)− (α− f̄)t,

which indicates that |xi(t)− 1
n

∑
i ri(t)| → 0 in finite time,

and the convergence time is upper bounded by V [e(0)]

α−f̄ .

1653



The first result for a switching topology is stated in the
following.

Theorem 2: For the system (4), if the proximity-based
graph G(t) is switching, undirected, and connected for all
t ≥ 0, and α > f̄ , then |xi(t) − 1

n

∑
j rj(t)| → 0 in finite

time for all i = 1, . . . , n.
Proof: Define

Vij(xi − xj) ,
{
|xi − xj |, if |xi − xj | ≤ R,
R, otherwise.

Let e be the column stack vector of all xi − xj , (i, j) ∈ E .
Define V (e) , 1

2

∑n
i=1

∑
j 6=i Vij(xi − xj). We can prove

that all Vij are regular functions. We can also show that
V1(‖e‖) ≤ V (e) ≤ V2(‖e‖) by using similar arguments to
those in Theorem 1, where V1(·) and V2(·) are some class
K functions.

Moreover, we can derive that

K[
∑
j∈Ni

sgn(xj − xi)] =


{#N+

i −#N−
i }+ [−#N 0

i ,#N 0
i ],

if agent i is not undergoing a switching,
{#N+

i −#N−
i }+ [−#N 0

i ,#N 0
i ]

+[−#N s
i ,#N s

i ], otherwise,

where N s
i is the set of neighbors of agent i that are undergo-

ing switchings. Similarly, we can show that the generalized
gradient of V (e) with respect to xi is

(∂V )i =


{#N−i −#N+

i }+ [−#N 0
i ,#N 0

i ],
if agent i is not undergoing a switching,
{#N−i −#N+

i }+ [−#N 0
i ,#N 0

i ]
+[−#N s

i ,#N s
i ], otherwise.

If all agents in the team are not undergoing switchings, we
have already proved in Theorem 1 that ˙̃V ≤ f̄ − α < 0 for
e 6= 0. Let ( ˙̃V )i be defined as in (11). If agent i undergoes
a switching and ( ˙̃V )i 6= ∅, suppose that ai ∈ ( ˙̃V )i and
afi ∈ K[fi]. Then we know that ∀ξi ∈ {#N−i −#N+

i } +
[−#N 0

i ,#N 0
i ] + [−#N s

i ,#N s
i ],

ai = ξi(a
f
i + αvi),

where vi ∈ {#N+
i − #N−i } + [−#N 0

i ,#N 0
i ] +

[−#N s
i ,#N s

i ]. Choose ξi = −vi. We immediately have

ai = −viafi − αv
2
i ≤ |vi|(f̄ − α|vi|).

Again, by using Proposition 2.2.9 of [13], we know that
|vi| ≥ 1 if vi 6= 0. It follows that

ai ≤ f̄ − α < 0, for vi 6= 0.

Therefore, we have

˙̃V =
∑
i

( ˙̃V )i ≤ f̄ − α < 0.

From Proposition 4 in [17], it follows that |xi(t) −
1
n

∑
i ri(t)| → 0 in finite time.

Theorem 3: For the system (4), let t 7→ σ(t) : R+ →
Ic be a switching signal. If α > (n − 1)f̄ , then |xi(t) −
1
n

∑
j rj(t)| → 0 as t→∞ for all i = 1, . . . , n.

Proof: Let x̃i(t) , xi(t)− 1
n

∑n
j=1 xj(t). Consider the

Lyapunov function candidate

V (t) ,
1

2
‖x̃(t)‖2 =

1

2
‖x(t)− 1

n
xT (t)11‖2. (14)

Because the function V (t) is continuously differentiable, we
know that the generalized gradient of V (t) with respect to
xi(t) is a singleton. In particular, we have

(∂V )i = { ∂V
∂xi
} = {xi −

1

n
xT1}.

In the following, we calculate the set-valued Lie derivative
of the function V (t). If ˙̃V (t) 6= ∅, suppose that a ∈ ˙̃V (t)
and afi ∈ K[fi]. By the definition, we know that

a =

n∑
i=1

(xi −
1

n
xT1)vi

with vi ∈ K[ui]. If ∀i = 1, . . . , n, xj 6= xi for all j ∈ Ni(t),
then K[ui] is

K[ui] = {afi + α
∑

j∈Ni(t)

sgn(xj − xi)}.

Define ˙̃Vs , {
∑n
i=1(xi − 1

nx
T1)[afi +

α
∑
j∈Ni(t)

sgn(xj − xi)]}. Then we have

˙̃Vs =

n∑
i=1

(xi −
1

n
xT1)afi − α

n∑
i=1

(xi −
1

n
xT1) ∑

j∈Ni(t)

sgn
[
(xi −

1

n
xT1)− (xj −

1

n
xT1)

] .

We can derive that
n∑
i=1

(xi −
1

n
xT1)afi

≤ f̄

n

n∑
i=1

∑
j 6=i

|xi − xj | ≤ f̄ max
i=1,...,n

{
∑
j 6=i

|xi − xj |}.(15)

Since each graph is connected, we know that ∀i 6= j, i, j =
1, . . . , n,

|xi − xj | ≤
1

2

∑
(i,j)∈E(t)

|xi − xj |. (16)

Then, (15) and (16) lead to
n∑
i=1

(xi −
1

n
xT1)afi ≤

f̄

2
(n− 1)

∑
(i,j)∈E(t)

|xi − xj |.

In addition, we have
∑n
i=1(xi− 1

nx
T1)

∑
j∈Ni(t)

sgn[(xi−
1
nx

T1)− (xj− 1
nx

T1)] = 1
2

∑
(i,j)∈E(t) |xi−xj |. Therefore,

we know that

˙̃Vs ≤ f̄

2
(n− 1)

∑
(i,j)∈E(t)

|xi − xj | −
α

2

∑
(i,j)∈E(t)

|xi − xj |.

Because α > f̄(n− 1), we know that ˙̃Vs < 0 for x̃ 6= 0.
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In the following, we will show that ˙̃Vs = ˙̃V for almost
every t ∈ R+ at the discontinuous points, that is, the points at
which there exists i ∈ {1, . . . , n}, j ∈ Ni such that xj = xi,
except for the point x1 = x2 = · · · = xn. Let P denote the
set of all discontinuous points. Then it suffices to show that
for all p ∈ P\{x|x1 = x2 = · · · = xn}, the system cannot
stay at p for a time interval whose length is greater than 0.
Define M , {k = 1, . . . , n, |xk = maxj xj}. Because each
graph is connected, there must be a node k ∈ M such that
node k has a neighbor in {1, . . . , n}\M . Because

afk + α
∑

j∈Nk(t)

sgn(xj − xk) ≤ f̄ − α < 0, (17)

we know that the system cannot stay at p during a time
interval. Therefore, we have ˙̃V =a.e. ˙̃Vs < 0 for all t ∈ R+,
which indicates that ‖x̃(t)‖ → 0 as t → ∞, which implies
that |xi(t) − xj(t)| → 0 as t → ∞ for all i, j = 1, . . . , n.
Therefore, according to Lemma 6, we know that |xi(t) −
1
n

∑
i ri(t)| → 0 as t→∞ for all i = 1, 2, . . . , n.

Theorem 4: For the system (4), if G(t) is directed and
has a directed spanning tree at each time instant, and α >
(n− 1)f̄ , then |xi(t)− xj(t)| → 0 as t→∞ for all i, j =
1, . . . , n. In particular, if k[G(t)] = 0 for all t ≥ 0, then
|xi(t)− 1

n

∑
j rj(t)| → 0 as t→∞ for all i = 1, . . . , n.

Proof: Consider the same Lyapunov function candidate
as defined by (14). Notice that (16) still holds because G(t)
has a directed spanning tree. In addition, we can show that
n∑
i=1

xi(t) =

n∑
i=1

ri(t) + α

∫ t

0

∑
(i,j)∈U(t)

sgn[xj(τ)− xi(τ)]dτ.

Therefore, by using similar arguments to those in the proof
of Theorem 3, we can obtain that

|xi(t)−
1

n

n∑
j=1

xj(t)| → 0

as t → ∞, which implies that |xi(t) − xj(t)| → 0 as
t → ∞ for all i, j = 1, . . . , n. Note that 1

n

∑n
j=1 xj(t) =

1
n

∑n
i=1 ri(t) + α

n

∫ t
0

∑
(i,j)∈U sgn[xj(τ)− xi(τ)]dτ . In par-

ticular, if k[G(t)] = 0 for all t ≥ 0, we know that
|xi(t)− 1

n

∑n
j=1 rj(t)| → 0 as t→∞.

IV. CONCLUSIONS

We have presented in this paper a simple but appealing
distributed control algorithm for a team of agents to solve
the average tracking problem, which could find applications
in various fields including mobile sensor networks, syn-
chronization of oscillators, distributed estimation, decision
making, or optimization. In the algorithm, each agent has a
reference signal or measurement whose derivative is assumed
to be bounded, and updates its states based on the infor-
mation received from its neighbors and its reference signal.
Our analysis started with undirected connected graphs. In
this part, we have shown that the average tracking problem
can be solved if the control gain is properly chosen. Then
the result was extended to switching graphs. We have also
considered the case of directed graphs.
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