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Abstract— This paper addresses distributed target tracking
and estimation using multiple mobile agents whose dynamics
are subject to uncertainties and disturbances. A consensus-
based distributed estimator is applied to estimate the motion of
the target. To compensate for the uncertainties in the dynamics
and prevent them from propagating into the communication
network, a cascaded control structure is proposed, which uses
the L1 adaptive controller to drive the real uncertain system to
an ideal closed-loop system obtained from an existing flocking
algorithm. Since the communication graph is induced by the
position of the real agents, we cannot exactly implement the
ideal flocking algorithm, which leads to coupling between
the communication topology and the system dynamics. The
guaranteed transient performance bounds of the L1 adaptive
controller are essential towards resolving this coupling issue.
Extensive simulation results demonstrate the capability of the
proposed algorithms to recover the desired flocking behavior.

I. INTRODUCTION

During the past decade there has been an increasing
interest in the area of distributed control and estimation
of multiple autonomous agents among the robotics and the
control communities. This interest has been highly motivated
by numerous applications such as distributed sensing, trans-
portation, space exploration, etc.

An important topic in the multi-agent system research
is the consensus algorithm, which aims to drive a team
of agents to reach an agreement on a common value by
negotiating with their neighbors. Originated from the area of
parallel computation and distributed optimization, consensus
algorithms have been extensively developed for various types
of systems with different assumptions on the communication
topology [1], [2], [3], [4].

In the area of distributed estimation, Stanković et al. pro-
posed a consensus-based overlapping estimation framework,
for both parameter and state estimation, in both continuous
time [5] and discrete time [6]. The idea is to combine a local
Kalman filter and the consensus algorithm for each agent.
The framework has been applied to deep space formation
control problems [7]. A distributed Kalman filter based on
consensus algorithm has also been studied by Olfati-Saber
[8], [9].

In [10], Olfati-Saber proposed a class of algorithms which
lead to flocking of agents, velocity consensus, target follow-
ing and obstacle avoidance. The algorithms are based on
artificial potential, consensus algorithm and a navigational
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feedback term. In [11], the authors combine the flocking
algorithm with a consensus based distributed Kalman filter
to track a moving target.

However, most of the above mentioned references consider
only ideal agent models, such as the ideal single/double
integrator or the ideal nonholonomic unicycle (Dubin’s car)
model. Few results can be found in literature that explicitly
consider uncertainties in the agent dynamics, which are
inherent to real applications. In the presence of uncertainty,
a consensus algorithm may fail to guarantee consensus or
even diverge, possibly due to the propagation of uncertainties
in the network, as is demonstrated in [12]. This motivates
us to investigate flocking algorithms in the presence of
uncertainties and disturbances in the agent dynamics.

This paper considers distributed target tracking and esti-
mation using multiple autonomous agents with uncertain dy-
namics, which is different from [11]. Each agent implements
a consensus based estimator from [5]. We propose a cascaded
control structure which generate a reference signal based on
the ideal flocking algorithm and use the L1 adaptive control
structure [13] to compensate for the system uncertainties.
The guaranteed transient performance of the L1 adaptive
control architecture plays the key role to resolve the coupling
issue introduced by the cascaded control structure.

This paper is organized as follows. Section II presents
the problem formulation and some preliminaries. Section
III applies the consensus-based distributed Kalman filter to
estimate the motion of the target using multiple agents.
Section IV proposes a cascaded control structure for a fleet
of agents with uncertain dynamics to track a moving target.
Section V verifies the proposed estimation and formation
control algorithms by numerical simulations.

II. PROBLEM FORMULATION

Consider a group of N mobile agents (UAVs or ground
robots) tasked to track a moving target in an n-dimensional
space, where n = 2, 3. The dynamics of each agent is
described by

q̇i(t) = pi(t) ,

ṗi(t) = ωiui(t) + θi(t)pi(t) + σi(t) ,

qi(0) = qi0 , pi(0) = pi0 , i = 1, 2, . . . , N ,

(1)

where qi , pi ∈ Rn are the position and velocity of the agent,
respectively, ui ∈ Rn is the control input, ωi ∈ Rn×n is
the unknown constant input gain matrix, θi ∈ Rn×n is an
unknown matrix of uncertain parameters, and σi ∈ Rn is
the unknown disturbance vector. We assume the following
conservative bounds for the system uncertainties:
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Assumption 1: The input gain matrix ωi is assumed to be
nonsingular. Also there exist known conservative sets Ωi ⊂
Rn×n, Θi ⊂ Rn×n and Σi ∈ Rn such that ωi ∈ Ωi, θi ∈ Θi

and σi ∈ Σi.
Assumption 2: Let θi(t) and σi(t) be continuously differ-

entiable with uniformly bounded derivatives: ‖θ̇i(t)‖ ≤ dθi
and ‖σ̇i‖ ≤ dσi .

The target is moving with a constant velocity which is
unknown to the agents. Some of the agents are able to
obtain noisy measurements of the target’s position, with
different noise levels. Each agent is equipped with wireless
communication device with a limited communication range.
To avoid the “blind” agent from being lost in the beginning,
we need the following assumption.

Assumption 3: At t = 0, each agent that cannot measure
the target’s coordinates is close enough to at least one agent
that has the measurement of the target.

The objective is to design distributed control and esti-
mation laws for each agent using only locally available
information to track the target cooperatively.

A. Preliminaries

This section briefly introduces some basic concepts from
algebraic graph theory [14]. Of particular importance are
the proximity net, which is used to describe the position
induced communication topology, and the collective potential
function which is the basis of the flocking algorithm [10].

A graph G is defined as a pair G = (V, E) that consists
of a set of vertices V = {1, 2, . . . , N} and a set of edges
E = {(i, j) : i, j ∈ V, j 6= i}. A graph G is undirected if
(i, j) ∈ E ⇔ (j, i) ∈ E .

The adjacency matrix of a graph G is defined as a matrix
A = [aij ], where aij 6= 0 if and only if (i, j) ∈ E . A graph
is called unweighted if aij ∈ {0 , 1}; otherwise it is called a
weighted graph. The set of neighbors of vertex i is defined
by Ni = {j ∈ V : aij 6= 0} = {j ∈ V : (i, j) ∈ E} .

For a group of N mobile agents, let q =
col(q1, q2, . . . , qN ), and let r > 0 be the interaction
range between the two agents, i.e., agents i and j can sense
and communicate with each other, only if ‖qj − qi‖ < r,
where ‖ · ‖ is the Euclidean norm in Rn.

A proximity net Gr(q) = (V, Er(q)) is a position-induced
graph defined by the vertices set V and the set of edges

Er(q) = {(i, j) ∈ V × V : ‖qj − qi‖ < r , i 6= j} .

Each vertex i ∈ V corresponds to an agent, and the collective
position vector q is called the configuration of the proximity
net. Given an interaction range r and a configuration q, the
set of spacial neighbors of vertex (agent) i of the proximity
net Gr(q) is given by

N r
i (q) = {j ∈ V : ‖qj − qi‖ < r , j 6= i} .

The “σ-norm” of a vector z ∈ Rn is a map Rn → R+,
defined as

‖z‖σ =
1

ε

[√
1 + ε‖z‖2 − 1

]
,
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Fig. 1: Example of a pairwise potential function ψα

with a parameter ε > 0 and its gradient given by σε(z) ,
∇z‖z‖σ = z√

1+ε‖z‖22
= z

1+ε‖z‖σ , where R+ denotes the

set of non-negative real numbers. Note that the “σ-norm”
is not a norm. An important property is that the map ‖z‖σ
is differentiable everywhere, while the 2-norm ‖z‖ is not
differentiable at z = 0.

For a proximity net Gr(q), consider a spacial adjacency
matrix A(q) = [aij(q)], given by

aij(q) =

{
0, if j = i ,
ρh(‖qj − qi‖σ/‖r‖σ), if j 6= i ,

where ρh : R+ → [0, 1], h ∈ (0, 1) is a bump function

ρh(z) =


1, if z ∈ [0, h) ,
1
2

[
1 + cos

(
π z−h1−h

)]
, if z ∈ [h, 1] ,

0, otherwise .

The graph Laplacian associated with the proximity net
Gr(q) is defined as L(q) = ∆(q) − A(q), where ∆(q) =

diag
(∑

j a1j(q),
∑
j a2j(q), . . . ,

∑
j aNj(q)

)
is called the

degree matrix of Gr(q).
The design of the flocking algorithm involves a smooth

collective potential function

V (q) =
1

2

∑
i

∑
j 6=i

Vij(q) =
1

2

∑
i

∑
j 6=i

ψα(‖qj − qi‖σ) , (2)

where ψα : R+ → R+ (see Figure 1) is a nonnegative
smooth attractive/repulsive pairwise potential function of the
“distance” ‖qi − qj‖σ between agents i and j. Here, ψα(z)
reaches its maximum and global minimum at z = 0 and
z = ‖d‖σ , respectively, and becomes constant for z ≥ ‖r‖σ ,
where 0 < d < r is the desired distance between two agents.
The detailed definition of ψα is given in [10].

III. CONSENSUS-BASED DISTRIBUTED ESTIMATION

The dynamics of the target are given by

ξ̇(t) = Aξ(t) + w(t) , (3)

where ξ = [q>t , p
>
t ]>, A =

[
0n×n In
0n×n 0n×n

]
and qt, pt ∈

Rn are the position and the velocity of the target, respec-
tively. The subscript t denotes the target.

Each mobile agent (sensor) may or may not measure
the position of the target. For each measuring agent i, the
measurement equation is given by

yi(t) = Ciξ(t) + vi(t) ,

2205



where Ci = [In , 0n×n]. In the aforementioned equations,
w(t) and vi(t) are zero-mean white Gaussian noise with
covariances

E{w(t)w>(τ)} = Q(t)δ(t− τ) ,E{vi(t)w>(τ)} = 0 ,

E{vi(t)v>i (τ)} = Ri(t)δ(t− τ) ,E{vi(t)v>j (τ)} = 0 .

In [5], a consensus-based overlapping distributed state
estimation algorithm is proposed for a general class of LTI
systems. Since each measuring agent accesses the same part
of the target dynamics, namely, the position, our estimation
problem can be viewed as a special case of the problems
covered by the algorithm of [5].

The consensus-based distributed estimator consists of a
local filter flocali and a first order consensus law fconi

˙̂
ξi(t) = flocali + fconi , (4)

where flocali = Aξ̂i(t) +Li(yi(t)−Ciξ̂i(t)) for agent i that
can measure the target position and flocali = 0 for agent
i that cannot measure, and fconi =

∑
j∈N̄ ri (q)Kij(ξ̃ij(t) −

ξ̂i(t)). In the above equations, Li is the steady state Kalman
gain given by Li = PiC

>
i R
−1
i , Pi is the solution of the alge-

braic Riccati equation APi+PiA
>−PiC>i R

−1
i CiPi+Q =

0, N̄ r
i (q) consists of agent i’s neighbors that can measure the

target’s position, Kij is the matrix of the consensus gains,
and ξ̃ij = ξ̂j + wij is the estimate of the states of agent
j received by agent i, where wij is a 2n-dimensional zero-
mean white communication noise between agents j and i
with covariance E{wij(t)w>ij(τ)} = Wij(t)δ(t− τ). For the
selection of consensus matrix, please refer to [5].

IV. FLOCKING ALGORITHM FOR UNCERTAIN AGENT
DYNAMICS

This section starts with a brief introduction to the tracking
algorithm in [10] for ideal double-integrator agent dynamics.
For uncertain agent dynamics, a cascaded control structure
is proposed, which uses the ideal closed-loop system as a
reference model and compensates for the uncertainty by an
L1 adaptive controller. The guaranteed transient performance
of the L1 adaptive control is the key to resolve the coupling
between the communication topology and the collective dy-
namics introduced by the cascaded structure. In this section
we assume that the target’s motion is known to all agents.

A. Flocking Algorithm for Ideal Agents
Without uncertainties and disturbances, the ideal agent’s

dynamics are given by
q̇id
i = pid

i ,

ṗid
i = uid

i ,
(5)

where qid
i , p

id
i , u

id
i ∈ Rn are the position, velocity, and

acceleration, respectively, of the ideal agent i, i =
1, 2, . . . , N . Let qid = [(qid

1 )>, . . . , (qid
N )>]> and pid =

[(pid
1 )>, . . . , (pid

N )>]> be the collective position and velocity,
respectively.

For the ideal agents (5) to track a target, Olfati-Saber
proposed a flocking algorithm (see Algorithm-2 in [10]):

uid
i = fgi + fdi + fγi , (6)

where fgi = −∇qiV (qid) is a gradient-based force to
regulate the distance between agent i and its neighbors, fdi =
−
∑
j∈N ri (qid) aij(q

id)(pid
i − pid

j ) is the velocity consensus
term aligning the speed of each agent to its neighbors, and
fγi =−c1(qid

i −qt)−c2(pid
i −pt), c1, c2 > 0 is the navigational

feedback due to the tracking objective of the group.
To analyze the algorithm (6), define q̃id

i = qid
i −qt and p̃id

i =
pid
i − pt as the relative position and velocity between each

ideal agent and the target, respectively. Notice that qid
i −qid

j =
q̃id
i −q̃id

j , pid
i −pid

j = p̃id
i −p̃id

j , and∇qidi V (qid) = ∇q̃idi V (qid).
Thus, we have the following ideal relative dynamics:

˙̃qid
i =p̃id

i ,

˙̃pid
i =− c1q̃id

i − c2p̃id
i −

∑
j∈N ri (qid) aij(q)(p̃

id
i − p̃id

j )

−∇q̃idi V (qid) ,

(7)

which can be further rewritten in a compact form as

ẋid
i (t) = Amx

id
i (t) +Bmr

id
i (t) , xid

i (0) = xid
i0 (8)

where xid
i = [(q̃id

i )>, (p̃id
i )>]>, rid

i = −∇q̃idi V (qid) +∑
j∈N ri (qid) aij(q

id)(p̃id
j − p̃id

i ), Am =

[
0n×n In
−c1In −c2In

]
,

and Bm = [0n×n In]
>.

In order for the ideal relative dynamics (8) to serve as
a desired reference model, it is important to have rid

i (t)
bounded. The following lemma is similar to the result in
[15], in which only part of the agents have the knowledge
of the target.

Lemma 1: Consider a system of N mobile agents, each
with dynamics (5) and steered by the control protocol (6).
Suppose that the initial energy Q0 , Q(qid(0), pid(0)) is
finite. Then

1) ‖qid
i (t)− qt(t)‖2 ≤

√
2Q0/c1 for all t > 0 and i;

2) The velocities of all agents approach the target’s ve-
locity pt asymptotically,

where Q(qid, pid) = 1
2

∑N
i=1(Ui(q

id) + ‖p̃id
i ‖22) and

Ui(q
id) =

∑N
j=1 ψα(‖qid

i − qid
j ‖σ) + c1‖q̃id

i ‖22.
Proof: Let q̃id = [q̃id

1 , . . . , q̃
id
N ]> and p̃id =

[p̃id
1 , . . . , p̃

id
N ]> be the collective relative position and veloc-

ity, respectively. Then (7) can be written as

˙̃qid = p̃id ,

˙̃pid = −∇q̃idV (qid)− L̂(qid)p̃id − (c1q̃
id + c2p̃

id) ,
(9)

where L̂(qid) = L(qid) ⊗ In. By the definitions of q̃id, p̃id

and V (qid), Q(qid, pid) can be written as

Q(qid, pid) = V (qid) +
1

2
(p̃id)>p̃id +

1

2
c1(q̃id)>q̃id .

Taking the time derivative of Q and considering the collective
relative dynamics (9), we have

Q̇ = ( ˙̃qid)>∇q̃idV (qid) + c1(q̃id)> ˙̃qid + (p̃id)> ˙̃pid

= −(p̃id)>(L̂(qid) + c2I2N )p̃id ≤ 0 , (10)

which implies Q(qid, pid) ≤ Q0 for all t ≥ 0. Hence, the
distance between each agent and the target verifies ‖q̃i(t)‖ ≤√

(q̃id(t))>q̃id(t) ≤
√

2Q0/c1 for all t ≥ 0. From LaSalle’s
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invariance principle, all the solutions of (9), starting from
Ψ , {(q̃id, p̃id) : Q(q̃id, p̃id) ≤ Q0}, converge to the largest
invariant set {(q̃id, p̃id) ∈ Ψ : Q̇ = 0}, which, according to
(10), leads to p̃id

i = 0 for all i.
The ideal double-integrator agents, if the conjectures in

[10] hold, will form a flock asymptotically with all the
agents’ velocity converging to the target’s velocity asymp-
totically. However, in the presence of uncertainties, if the al-
gorithm (6) is applied blindly, these properties may not hold
any more, as demonstrated in Section V-A. This motivates
the design of a cascaded control structure (similar to [12])
for compensation of the uncertainties locally and preventing
the propagation of those into the network, as is presented in
the next section.

B. Cascaded Control Structure
Similar to the ideal agent case, let q̃i = qi − qt and p̃i =

pi−pt be the relative position and velocity between each real
agent and the target, respectively. Letting xi = [q̃>i , p̃

>
i ]>, the

relative dynamics between the real agent i and the target can
be written as

ẋi(t) = Amxi(t) +Bm (ωiui + ϑ(t)xi(t) + σi(t)) , (11)

where xi(0) = xi0 , [(qi(0)− qt(0))>, (pi(0)− pt(0))>]>,
and ϑ(t) = [c1In c2In + θ(t)]. From Assumption 1, there
exists Θ1 ⊂ Rn×2n, such that ϑ ∈ Θ1.

The basic idea of the cascaded control structure is to make
the real system behave like the ideal system, while avoiding
propagation of the uncertainties into the communication
network. To achieve this, each agent i implements the double
integrator model (5) of the “virtual ideal agent”, using its own
initial conditions for initialization, i.e., setting qid

i (0) = qi(0)
and pid

i (0) = pi(0). As the system evolves, each agent
exchanges its virtual ideal agent’s states with its neighbors
and calculates the ideal control input uid

i , which yields the
closed-loop ideal relative system (8) with the initial condition
xid
i0 = xi0. Next, a local L1 adaptive controller is designed

for each agent, using the closed-loop ideal system as the
reference model, to compensate for the uncertainties and
disturbances of the real agent.

Figure 2 shows the block diagram of the cascaded control
structure. Note that instead of broadcasting the position and
velocity of the real states, each agent broadcasts the states
of the virtual ideal dynamics.

C. L1 Adaptive Controller Design
The L1 adaptive controller for the system in (11) consists

of three components [13]:
• State Predictor:

˙̂xi(t) = Amx̂i(t) +Bm

(
ω̂iui(t) + ϑ̂(t)xi(t) + σ̂(t)

)
,

x̂i(0) = xi0 (12)

• Adaptive Law:
˙̂ωi(t) = ΓProj(ω̂i(t),−(x̃>i (t)PBm)>u>i ) ,

˙̂
ϑi(t) = ΓProj(ϑ̂i(t),−(x̃>i (t)PBm)>x>i (t))

˙̂σi(t) = ΓProj(σ̂i(t),−(x̃>i (t)PBm)>)

(13)

• Control Law:

ui(t) = −KiDi(s)
(
η̂i(s)− rid

i (s)
)
, (14)

where rid
i (s) and ηi(s) are the Laplace transforms of rid

i (t)
and η̂i(t) , ω̂i(t)ui(t) + ϑ̂i(t)xi(t) + σ̂i(t), respectively.

In the above definitions, x̃i(t) = x̂i(t)−xi(t), P = P> >
0 is the solution to the algebraic Lyapunov equation A>mP +
PAm = −Q, Q > 0, Γ > 0 is the adaptation gain, and
Proj(·, ·) denotes the projection operator [16].

The design of the L1 adaptive controller involves a strictly
proper transfer matrix Di(s) and a gain matrix K ∈ Rn×n,
which lead to a strictly proper stable low-pass filter

C(s) , ωK(In +D(s)ωK)−1D(s) (15)

with DC gain C(0) = In.
The L1 adaptive controller is defined via (12), (13), (14),

subject to the following L1 norm condition:

‖G(s)‖L1
L < 1 , (16)

where G(s) , (sI − Am)−1Bm(I − C(s)) and L ,
maxϑ∈Θ1 ‖ϑ‖1.

An important property of the L1 adaptive controller is that
xi(t) and ui(t) of the uncertain system (11) can be rendered
arbitrarily close to xref(t) and uref(t) of a closed-loop
reference system (see Section 2.2 of [13]), given according
to

ẋref(t) = Amxref(t) +Bm(ωuref(t) + θ(t)xref(t) + σ(t)) ,

uref(s) = ω−1C(s)(rid
i (s)− ηref(s)) , xref(0) = xi0 (17)

by increasing the adaptation gain Γ and the bandwidth
of the filter C(s), where ηref(s) is the Laplace transform
of ηref(t) = θ(t)xref(t) + σ(t). We have the following
proposition.

Proposition 1: The transient error between xi(t) and
xid
i (t), measured by ‖xi−xid

i ‖L∞ can be rendered arbitrarily
small by increasing the adaptation gain Γ and the bandwidth
of the low-pass filter C(s).

Proof: The closed-loop reference system (17) can be
written in frequency domain as xref(s) = G(s)ηref(s) +
(sI−Am)−1BmC(s)rid

i (s)+(sI−Am)−1xref(0). Similarly,
the ideal system (8) can be written as xid

i (s) = (sI −
Am)−1BmC(s)rid

i (s)+(sI−Am)−1xid(0). Since xref(0) =
xid
i (0) = xi(0), we have xref(s)− xid

i (s) = G(s)ηref(s).
Since the reference system is stable [13], ηref is bounded.

By the inequality ‖xref −xid
i ‖L∞ ≤ ‖G(s)‖L1

‖ηref‖L∞ and
definition of G(s), which is a low-pass filter (sI−Am)−1Bm
cascaded with a high pass filter I−C(s), ‖xref−xid

i ‖L∞ can
be rendered arbitrarily small by increasing the bandwidth of
C(s). The conclusion of the proposition follows from the
triangle inequality.

D. Coupling between dynamics and topology

Notice that in Section IV-A, the ideal control input is
generated based on the proximity net Gr(qid) induced by
ideal configuration qid. However, to run the “virtual ideal
agent” dynamics and generate the corresponding rid

i , each
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Fig. 2: Flocking control for uncertain agent dynamics

real agent identifies its neighbor based on the real configura-
tion q. This discrepancy may invalidate the results of Lemma
1, because some terms in (10) may not be canceled. An
example is shown in Figure 3, in which the real agents i and
j cannot communicate, but the vertices i and j in Gr(qid)
are neighbors.

Fig. 3: Coupling Between Dynamics and Topology

To solve this issue, we select an interaction range r̄ < r
for the ideal agents such that (i, j) ∈ Er(q) ⇒ (i, j) ∈
E r̄(qid). This is possible because the L1 adaptive controller
guarantees that ‖qi − qid

i ‖ can be arbitrarily small. In this
case, whenever the ideal agents i and j are neighbors, the
corresponding real agents are also neighbors, but not vice
versa.

It is worthwhile to mention that the coupling between
the topology and the dynamics is due to the fact that the
flocking algorithm from [10] does not impose any artificial
assumption on the communication network, which is induced
naturally by the motion of the agents. This makes it crucial
for the adaptive controller to have guaranteed transient
performance instead of having only asymptotic convergence
results; because otherwise, the real agents may deviate from
their corresponding “virtual ideal agents” before the asymp-
totic convergence could happen finally, which will reduce the
connectivity of the network without an option of recovering.

V. SIMULATION RESULTS

In this section we present simulation results of the pro-
posed estimation and tracking algorithms. In Sec V-A we
demonstrate the case when the tracking law (6) is applied
directly to the uncertain agent dynamics, and each agent
broadcasts the its real states to its neighbors. Then in
Section V-B we show the results, when the cascaded control
structure is used. The following parameters remain fixed
throughout all simulations.

• In the ideal flocking algorithm: d = 5, r = 1.4d, ε = 0.1,
h = 0.2, c1 = c2 = 0.5 for the bump function.
• In L1 adaptive controller: Γi = 104, Ki = 20, Di(s) =

1
s In, for each i.

A. Failure of the Flocking Algorithm for Dynamics with
Uncertainties

To clearly demonstrate the effects of the uncertainties on
the flocking algorithm, we use only 4-agents, each following
the dynamics (1). The initial position and velocity of each
agent are assigned randomly from the boxes [−20 , 20] ×
[−20 , 20] and [−1 , 1] × [−1 , 1], respectively. The target is
initialized at position [80 , 80]> and velocity [3 , 3]>.

The unknown parameters ωi, θi(t) and the disturbances

σi(t) are given by ω1 =

[
0.7 2
0 1.2

]
, ω2 =

[
3 2.5

1.5 1.6

]
,

ω3 =

[
0.6 0.4
0.5 0.8

]
, ω4 =

[
3 2
2 3

]
; θ1 =

[
−1 0.9
1.7 −1.8

]
,

θ2 =

[
−0.2 0.1
0.1 −0.8

]
, θ3 =

[
−1 1.5
0.5 −0.8

]
, θ4 =[

−2 2.5
1.3 −1.8

]
, σ1 = [3 + 2 sin(2t+ 0.9) , 4 + 3 sin(0.5t−

0.5)]>, σ2 = [2 + 1 sin(1.8t + 2) , 1.5 sin(3.2t)]>,σ3 =
[1 + 4 sin(t + 1) , 1.5 + 0.5 sin(3t + 1.5)]>,σ4 = [0.5 +
3 sin(4t+ 0.5) , 3 + 2 sin(2t− 3)]>.

When we apply (6) to the above agents directly, assuming
each agent knows the position and the velocity of the target,
the flocking algorithm fails in a sense that the velocities of all
agents do not converge and the system is not self-assembled.
Figure 4 shows the time history of the agents’ velocity.
Figure 5 shows some snapshots of the target positions (de-
noted by squares), agent positions (denoted by circles), agent
velocity directions (denoted by arrows) and communication
links (denoted by solid lines) at different times. Notice in
Figure 5 that a formed link breaks as the system evolves.

B. Flocking with Cascaded Control Structure

To demonstrate the benefits of the cascaded control struc-
ture, we first implement the control algorithms proposed in
Sections IV-B-IV-C to the same uncertain agent dynamics
given above. Figure 6 shows that the velocity of all the agents
converge to the target’s velocity, and the group of agents form
a flock.
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Fig. 4: Velocities of 4 agents without adaptive control
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Fig. 5: Flocking for 4 agents without adaptive control

Next, we implement the proposed algorithm to a larger
group with 100 agents, 10 of which cannot measure the target
and are initialized close to some measuring agents. The initial
position and velocity of each measuring agent are assigned
randomly from the boxes [−50, 50]× [−50, 50] and [−2, 1]×
[−2, 2], and the target is initialized with position [100 , 0]>

and velocity [5 , 0]>. The time history of the velocities and
the snapshots of the agents are shown in Figure 7 and 8,
respectively.
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Fig. 6: Flocking for 4 agents with L1 adaptive control

Fig. 7: Velocities of 100 agents with L1 adaptive control

VI. CONCLUSIONS

In this paper we address distributed target tracking and
estimation using multiple mobile agents whose dynamics are
subject to uncertainties and disturbances. By investigating
an existing flocking algorithm, we find that the uncertainties
may lead to undesired behavior of the system. We propose a
cascaded control structure, in which each agent implements
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Fig. 8: Flocking for 100 agents with L1 adaptive control

a “virtual ideal agent model” and exchanges the states of the
ideal agents instead of the real agents. The resulting closed-
loop ideal system is then used as a reference model of the real
uncertain system, for which the L1 adaptive control structure
is applied to compensate for the uncertainties.The guaranteed
performance bounds of the L1 adaptive controller can be
used to resolve the coupling between the communication
topology and the system dynamics by slightly modifying the
ideal flocking algorithm.
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