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Abstract— In a recent paper [1] the authors proposed a new
methodology for the adaptive control of a linear time-invariant
plant using multiple models which is significantly different from
the “switching” and “switching and tuning” methods which
have been in use for over a decade. Extensive simulation studies
have also revealed that the performance using the new method
is far superior to earlier methods.

In this paper an attempt is made to extend the same concepts
to the adaptive control of discrete-time systems. It is well
known that the control of discrete-time systems is simpler
than the control of their continuous-time counterparts, that
they find wider application in practice, and that the proofs
of stability are substantially simpler. Also, in many cases (e.g.
periodic systems) discrete-time control may be possible when
even the formulation of tractable problems in continuous-time
is impossible. The objective of this paper is to examine how
the methodology proposed differs in the two cases with regard
to transparency of the principal concepts, and effectiveness in
practical applications.

I. INTRODUCTION

In a recent paper [1] a new methodology for adaptively

controlling a linear time-invariant continuous-time system

using multiple models was proposed. Assuming that the

compact region Sθ in which the unknown parameter vector

θp ∈ R
m of the plant lies is specified, N identification

models are chosen so that θp belongs to the convex hull

K(t0) of θi(t0) (i ∈ Ω = {1, 2, . . . , N}) at the initial time

t0. Under certain conditions it was shown in [1] that θp also

belongs to the convex hull K(t) of θi(t) i ∈ Ω, and that

it is the only element in Sθ which satisfies the condition

for all t as t → ∞. For more general cases the result

was shown to be asymptotically valid. Using this general

property, and the parametric trajectories of the N adaptive

models, a new adaptive procedure was proposed (referred to

as second level adaptation) which was demonstrated to be

stable and robust under bounded perturbations. Simulation

studies were carried out to compare the above scheme with

well established “switching” [2], and “switching and tuning”

[3] schemes. The performance of the former was shown to

be far superior to those of the latter. As a further step it was

shown that similar results could also be obtained by carrying

out second level adaptation using N fixed models.

In this paper an attempt is made to extend the same con-

cepts for the adaptive control of discrete-time systems. It is

well known that in most practical applications discrete-time
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control is used. Since the latter involves algebraic equations,

they are considerably easier to analyze than continuous-time

systems. Also, it has been shown recently [4] in the context

of periodic systems, that when mathematically tractable

problems are impossible to formulate in the continuous-

time case, elegant adaptive solutions can be obtained while

dealing with their discrete-time counterparts. In this paper,

the study of discrete-time adaptive control using multiple

models is undertaken to determine the insights that they

provide.

II. DISCRETE-TIME ADAPTIVE CONTROL

Three main reasons have been given for considering

discrete-time adaptive control using a single identification

model. An obvious reason is that complex systems are gen-

erally controlled by computers which result in discrete-time

systems. A second and significantly more important reason is

the fact that random noise or disturbances can be dealt with

more easily in the theoretical analysis in the discrete case.

Finally if the methods developed for continuous-time systems

prove successful, and are to be extended to nonlinear systems

with artificial neural networks as components, a discrete-time

framework is preferable.

Discrete-time adaptive control of linear time-invariant sys-

tems has been investigated for four decades. In [5], similar

methods using multiple models, were proposed and explored

in detail for both deterministic and stochastic systems, and

during the past decade the results have been used in numer-

ous applications where adaptation has to be carried out in

the presence of large uncertainty. In the following sections

we develop a general framework for extending the adaptive

methods introduced in [1] to discrete-time systems.

It is well known that the judicious choice of the param-

eter estimation algorithm used in adaptive control plays an

important role in the proof of stability, as well as in the per-

formance of the adaptive methods in practical applications.

We start our investigations with a plant described by the

equation

φT [k − 1]θp = y[k] (1)

since most problems can be conveniently reduced to this

form. In equation (1), φ[k] ∈ R
n is a regression vector at

time k, composed of past values of the outputs and the inputs

of the plant, θp ∈ R
n is a constant unknown plant parameter

vector that has to be estimated, and y[k] ∈ R is the output

of the plant.
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A model described by the equation

φT [k − 1]θ̂[k − 1] = ŷ[k] (2)

is set up to estimate θp, where θ̂[k] is the estimate at time k,

and ŷ[k] is the corresponding output of the model. From

equation (1) and (2) the following error equation can be

derived

φT [k − 1]θ̃[k − 1] = e[k] (3)

where θ̂[k − 1] − θp = θ̃[k − 1] is the parametric error and

ŷ[k]− y[k] = e[k] is the output error.

Numerous adaptive algorithms have been proposed in

the past for updating the parameter estimates. A simple

algorithm has the form

θ̂[k] = θ̂[k − 1]−
aφ[k − 1]e[k]

c+ φT [k − 1]φ[k − 1]
(4)

where 0 < a < 2 and c > 0, which is convenient while

discussing proof of concept. A more complex but well tested

algorithms is the Recursive Least-Squares (RLS) Algorithm

in which

θ̂[k] = θ̂[k − 1]− P [k − 1]φ[k − 1]e[k] (5)

where

P [k − 1] = P [k − 2]

−
P [k − 2]φ[k − 1]φT [k − 1]P [k − 2]

1 + φT [k − 1]P [k − 2]φ[k − 1]

(6)

with P (−1) any symmetric positive definite matrix P0.

In view of its speed of convergence and robustness in

the presence of disturbances, this method is commonly used

in all discrete-time adaptive control problems. It has been

shown that if the algorithms (4) and (5) are used, the

following results follow

a) ‖θ̂[k]− θ0‖ ≤ k1‖θ̂[0]− θ0‖
2 k ≥ 1 (7)

b) lim
k→∞

e[k]

1 + k2φT [k − 1]φ[k − 1]
= 0 (8)

c) lim
k→∞

‖θ̂[k]− θ̂[k − ℓ]‖ = 0 for any finite ℓ. (9)

Equations (7) and (9) assure that the parameter estimates

are bounded and tend to constant values, and (8) assures that

the estimation error can grow only at a slower rate than the

regression vector. Using (a)-(c), the stability of an adaptive

system has been demonstrated in the past [5].

III. MULTIPLE MODELS AND THE CONVEX HULL

PROPERTY

Let Sθ, the domain of uncertainty, be a compact set in R
m

and let θp ∈ Sθ. The need for multiple models arises because

Sθ is relatively so large that the adaptive control algorithms

suggested earlier cannot assure sufficiently fast convergence

of the output error and the parameter error vector to zero.

To cope with the large uncertainty N models are set up as

shown below:

Σi : φT [k − 1]θi[k − 1] = yi[k] i ∈ Ω = {1, 2, . . . , N} (10)

with the initial parameter estimates θi[0] assuming different

independent values.

Comment: If θp ∈ R
n, only N = n + 1 models are

needed so that Sθ ⊂ K[0], where K[0] is the convex hull

in parameter space of the N model θi[0] i ∈ Ω. The number

of models required here is consequently much smaller than

that needed in conventional (multiple-model based) adaptive

control methods available at the present time, as discussed

later in this paper. This is one of the major advantages of

the method proposed here.

The parameter estimates are adjusted using the adaptive

laws

θi[k] = θi[k − 1] + P [k − 1]φ[k − 1]ei[k]

= θi[k − 1] +
P [k − 2]φ[k − 1]ei[k]

1 + φT [k − 1]P [k − 2]φ[k − 1]

(11)

where P [−1] = P0.

Since it is known a priori that the unknown plant parameter

vector θp lies in K[0], at time k = 0, it follows that non-

negative constants αi exist such that

N
∑

i=1

αi = 1,

N
∑

i=1

αiθi[0] = θp. (12)

We then have the following theorem which is the discrete-

time counterpart of Theorem 1 in [6].

Theorem 1: If N adaptive identification models described

in (10) are adjusted using adaptive laws (11) with initial

conditions θi[0], and if the plant parameter vector θp lies in

the convex hull K[0] of θi[0] (i ∈ Ω), then θp lies in the

convex hull K[k] of θi[k] (i ∈ Ω) for all integers k > 0.

Proof: We prove Theorem 1 using induction. From equa-

tion (12) it follows that

N
∑

i=1

αiθi[k] = θp (13)

for k = 0. Let (13) be valid for k = k0, i.e.
∑N

i=1
αiθi[k0] =

θp. When k = k0 + 1, it follows from equation (11) and

(3) that θi[k0 + 1] = θi[k0] + P [k0]φ[k0]ei[k0 + 1] =
θi[k0] +P [k0]φ[k0]φ

T [k0]θ̃i[k0]. Therefore,
∑N

i=1
αiθi[k0 +

1] =
∑N

i=1
αiθi[k0]+P [k0]φ[k0]φ

T [k0]
∑N

i=1
αiθ̃i[k0] = θp.

(Since by definition the last term is zero). This concludes the

proof. �

Example 1: This example is included here to illustrate

Theorem 1. The input and output of a plant are related

by the equation y[k + 1] = 0.8y[k] + 0.7u[k] where the

coefficients are assumed to be unknown. The uncertainty

region Sθ is assumed to be Sθ = [0.5, 1.5]× [0.5, 1.5]. Four

adaptive models Σi (i = 1, 2, 3, 4) are used to identify the

plant. The initial values of the parameters θi[0] are chosen as
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θ1[0] = [1.5, 1.5]T , θ2[0] = [0.5, 1.5]T , θ3[0] = [0.5, 0.5]T ,

and θ4[0] = [1.5, 0.5]T , whose convex hull K[0] is the same

as Sθ. In Figure 1, the evolution of the convex hull as a

function of time is indicated, and it is seen that the parameter

vector θp is contained in the convex hull at every instant.
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Fig. 1: Convex Hull Property of Multiple Adaptive Models

Comment: As illustrated in Example 1, the plant remains

in the convex hull of the adaptive models for all time instants

k ≥ 0. However, it is not necessarily true that the convex

hulls K[k] are nested, i.e. K[k2] is not contained in K[k1] if

k2 > k1.

IV. SECOND LEVEL ADAPTATION

The property discussed in the previous section leads to

new and novel ways of viewing the adaptive identification

and control problems, and has resulted, as shown in [1] for

continuous-time systems, in powerful methods for adaptive

control.

As shown in the previous section, if θp ∈ K[0], θp =
∑N

i=1
αiθi[0]. This also assures that θp ∈ K[k] k ≥ 0, with

θp =

N
∑

i=1

αiθi[k]

N
∑

i=1

αi = 1 αi ≥ 0 (14)

for
∑N

i=1
αi = 1 and αi ≥ 0.

The fact that the coefficients αi in equation (14) remain

the same for all k ≥ 0, makes it relatively easy to estimate

them. Also, the value θp is seen to depend upon the N =
(n+1) trajectories of the models chosen. Equation (14) can

be expressed in matrix form as

[θ1[k], θ2[k], . . . , θN [k]]α = Θ[k]α = θp (15)

where α = [α1, α2, . . . , αN ]T ∈ R
N , Θ[k] ∈ R

n×n+1, and

θi[k] is the ith adaptive parameter vector at time k. Since

Θ[k − 1]α = θp (16)

we have from (15) and (16)

∆Θ[k]α = (Θ[k]−Θ[k − 1])α = 0. (17)

It readily follows that the ith column of ∆Θ[k] is θi[k]−
θi[k − 1], (which by the adaptive law for adjusting the

parameter θi) is given by

θi[k]− θi[k − 1] = −P [k − 1]φ[k − 1]ei[k]. (18)

From equation (18), it follows that equation (17) can be

rewritten as
∑N

i=1
P [k − 1]φ[k − 1]ei[k]αi = 0 or

P [k − 1]φ[k − 1]E[k]α = 0 (19)

where E[k] is the row vector [e1[k], e2[k], . . . , eN [k]].

Defining

M [k] = P [k − 1]φ[k − 1]E[k] (20)

equation (19) reduces to

M [k]α = 0 (21)

which represents n equations in (n+1) unknowns where the

latter satisfy the constraint
∑N

i=1
αi = 1. Equation (21) can

be expressed as

W [k]α = b (22)

to take into account the constraint, where

W [k] =





M [k]

ℓT



 , ℓ =







1
...

1






, (23)

and b = [0, . . . , 0, 1]T .

Comment: Equation (22) is an algebraic equation in (n+1)
unknowns, of which only n are independent. From classical

adaptive control theory it is well known that it can be solved

either algebraically or adaptively using a model. It is the

latter that we refer to as second level adaptation.

Comment: In the discrete case the form of equation (20)

defining M [k] provides considerable insight into the adaptive

model. P [k − 1]φ[k − 1] ∈ R
n is a common vector at any

instant, and the errors ei[k] i ∈ Ω vary from column to

column. Due to space limitations, the advantages of this fact

are not described here in detail.

Second Level Adaptation (Method I):

In Method I, the N(= n+ 1) adaptive models at the first

level provide the information to adjust the parameters of an

estimation model having the form

W [k]α̂[k] = b̂[k] (24)

where α̂[k] is the estimate of α ∈ R
n+1 and b̂[k] is the

corresponding estimate of b. At this stage α̂[k] can be
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adjusted using any standard adaptive law. We use the law

α̂[k + 1] = α̂[k]−
µWT [k]b̃[k]

1 + ‖W [k]‖2
(25)

where b̃[k] = b̂[k] − b. As shown in [7], [5], the optimal

adaptive gain is µopt = 1 in the ideal case when no

observation noise is present.

At every instant the estimate α̂[k] of α provides the

estimate of the plant parameter θp, using the equation

θ̂p[k] =
N
∑

i=1

α̂i[k]θi[k], (26)

and this, in turn, is used to control the plant.

Comment: From the above discussion it is seen that the

second level adaptation is carried out where no distinction is

made among the N identification models on the first level.

As shown in [1], a different approach can also be used where

one of the identification models is chosen to be a base and

the other N − 1 models provide information relative to it.

These two approaches use essentially the same information

provided by the N models and give similar results.

Comment: The main difference between second level

adaptation as discussed above and currently existing methods

is that the outputs of all the N models are used in computing

the estimate of the plant parameter vector.

Example 2: A second order unstable plant described by

the equation y[k+1] = 0.97y[k]+0.26y[k−1]+0.66u[k]+
0.528u[k − 1] is simulated to illustrate the effectiveness of

second level adaptation. The coefficients of the plant are

assumed to be unknown but lie in the uncertainty region

Sθ = [0, 1] × [0, 1] × [0, 1] × [0, 1]. The objective is to

adaptively stabilize the plant and control it in such a fashion

that the output tracks the reference signal ym[k] = sin[πk
20
]+

sin[πk
10
]. Two simulations are plotted in Figure 2 where the

plant output and the reference signal are shown together

while the output error is given separately on the same scale.

In the first simulation a single adaptive model is used to

identify and control the given plant based on the measured

input and output. The initial estimation of the coefficients are

chosen randomly in the unit cube Sθ. It is seen from Figure

2(a) that the performance of the system suffers from large

and oscillatory initial transients which has a magnitude of

about four times that of the reference signal. In the second

simulation, five models are used for second level adaptation

since the parameter space has a dimensionality of four. The

initial values of the adaptive models are chosen such that

K[0] ⊃ Sθ. It is seen from Figure 2(b) that the response is

improved significantly.

V. SECOND LEVEL ADAPTATION WITH FIXED MODELS

(METHOD II)

As stated earlier, all the N first level adaptive models

continue to evolve with k in the previous method. However,

from equations (17)-(20) it is seen that only a knowledge of
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(a) Adaptive Control Using One Model
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(b) Adaptive Control Using Second Level Adaptation

Fig. 2: Adaptive Control of a Second Order System

∆Θ[k] = Θ[k]−Θ[k − 1] is needed to set up the equations

for adaptation. The columns of this matrix depend only on

the adaptive laws used by the N models. This implies that

the information for second level adaptation can be obtained

from all N models, even when they are fixed. This gives rise

to a second method of adaptation which is distinctly different

from the first.

Comment: A brief comparison of Method I and Method II

is provided after the details of the latter are described below.

We now take a closer look at equation (19)

P [k − 1]φ[k − 1]E[k]α = 0. (27)

Recall that from equation (3), ei[k] = φT [k − 1]θ̃i[k − 1], it

follows that (19) can be rewritten as

P [k − 1]φ[k − 1]φT [k − 1]Θ̃[k − 1]α = 0. (28)
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where the ith column of Θ̃[k] is θ̃i[k].

Since θ̃i[k] = θi[k]− θp, it follows that

P [k − 1]φ[k − 1]φT [k − 1](Θ[k − 1]−Θp)α = 0. (29)

Since P [k] is always positive definite, it follows that

φ[k − 1]φT [k − 1](Θ[k − 1]−Θp)α = 0, (30)

i.e. φ[k − 1]φT [k − 1]Θ[k − 1]α = φ[k − 1]φT [k − 1]θp =
φ[k − 1]y[k]. If fixed models are used, Θ[k] = Θ[0] for all

k ≥ 0.

If the reference input is persistently exciting during the

interval 0 ≤ k ≤ T , we have

T
∑

k=0

φ[k]φT [k] , Φ(0, T ) > δI (31)

for some positive constant δ [8]. It then follows that

Φ(0, T )Θ[0]α =
∑T

k=0
φ[k]y[k + 1], and consequently

Θ[0]α = Φ(0, T )−1

T
∑

k=0

φ[k]y[k + 1]. (32)

If the initial convex hull K[0] is chosen such that
[

Θ[0]
1

]

(33)

is of full rank, it follows that

α =

[

Θ[0]
1

]

−1 [

Φ(0, T )−1
∑T

k=0
φ[k]y[k + 1]

1

]

. (34)

Comparison of Method I and Method II:

Two methods for estimating α̂[k] were described in this

section. In Method I, the N models in the first level are

adaptive. In the second, the N models in the first level

are fixed but the information provided by them is used in

determining α̂[k]. The latter information is merely the error,

and the regression vector which would have been used for

adaptation if the models had been adaptive (and were used

in Method I).

It is well known that one of the drawbacks of adaptation

based on all adaptive models is that they need to be re-

initialized, since they all converge to the same point in

parameter space i.e. θp. However, before this stage is reached

the method is very effective in estimating θp. In contrast to

this, the second method is based only on fixed models located

at the boundary of the region of uncertainty and consequently

whose effectiveness is less than that of the adaptive models.

Methods of combining the advantages of the two have

been investigated and will be reported elsewhere. Simulation

results comparing a single model (classical adaptive control)

with Method I and Method II for a time-invariant plant and

a time-varying plant are shown in Examples 3 and 4.

Example 3: The same problem discussed in Example 1

is now simulated for comparison of three different schemes:

(i) adaptive control using a single model, (ii) second level

adaptation method I, and (iii) second level adaptation method

II.

In simulation 1, a single identification model is randomly

initialized in the uncertainty region. In simulation 2, five

adaptive models are employed whose initial locations form

a convex hull containing Sθ. Second level adaptation is then

carried out as described earlier based on the parameter esti-

mates generated by the five adaptive models. In simulation

3, five fixed models are used whose convex hull contains the

uncertainty region and provides information for the second

level adaptation.

It can be seen from Figure 3 that second level adapta-

tion results in smooth and rapid adaptation, while adaptive

control using a single model leads to large oscillation and

unsatisfactory transients. It is seen that adaptive control using

second level adaptation gives significant improvement in the

system response.

Example 4: In this example, the plant to be controlled

switched from Σ1 to Σ2 at time k = 100, where

Σ1 : y[k + 1] = 0.5y[k] + 1.0u[k], (35)

Σ2 : y[k + 1] = 1.2y[k] + 0.7u[k]. (36)

The system response and output error of second level adap-

tation method I with and without re-initialization of the first

level adaptive models are shown in Figures 4(b) and (a)

respectively. The same plots using second level adaptation

method II are given in Figure (c). It is seen that if second

level adaptation method I is not properly re-initialized, it

would degenerate to a single model after an interval of

convergence and would not perform satisfactorily to sudden

changes in the system parameters. On the other hand, second

level adaptation method I with re-initialization and second

level adaptation method II respond smoothly and rapidly to

a plant parameter switching as seen in Figures 4(b) and (c).
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(a) Adaptive Control With A Single Model
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(b) Second Level Adaptation Method I
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(c) Second Level Adaptation Method II

Fig. 3: Adaptive Control of a Time-Invariant Second Order

System
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(a) Second Level Adaptation Method I: No Re-Initialization
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(b) Second Level Adaptation Method I: With Re-Initialization
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(c) Second Level Adaptation Method II

Fig. 4: Adaptive Control of a Time-Varying Second Order

System
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