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Abstract— We discuss time-optimal path planning for a

Dubins vehicle operating in a planar environment required to

investigate a series of static objects of interest. The objects are

obscured such that they can be viewed only from a specified

direction. The vehicle is equipped with an arbitrary number

of sensors projecting circle sector viewing areas of arbitrary

size and offset angle from the vehicle’s heading, allowing for a

range of vehicle orientations at which the objects can be viewed.

Our objective is to minimize the total path distance the vehicle

must travel while ensuring that the vehicle views all targets once

from their respective required viewing direction. We discretize

the sensors’ area and examine the resulting possible solutions

with an exhaustive search algorithm and show Monte Carlo

simulation results of the exhaustive search algorithm compared

to a standard Dubins algorithm.

I. INTRODUCTION
A. Motivation

In the practical world, many objects of interest must be
viewed from only a certain angle. These include doorways
and windows along a street, dangerous objects that could
be mistaken for harmless objects if seen from the wrong
direction, and other objects whose identification depends on
the angle at which they are viewed. Unmanned Aerial Vehi-
cles (UAVs), which follow the kinematic constraints defined
by the Dubins vehicle, equipped with conical (projected as
circle sectors in a plane) field of view sensors, such as optical
sensors, are often used to investigate these objects.

One can imagine that different sensor and vehicle prop-
erties could dramatically change the required travelling dis-
tance of the vehicle. For example, a vehicle with a nearly
zero turning radius equipped with enough long-range sensors
that it could see all 360 degrees would not need to travel
nearly as far as a vehicle with a large turning radius required
to go directly to the objects to see them. In this paper, we
investigate the effects of these different properties as well as
the effects of different properties of the objects of interest
on the total travelling distance, or path length.

B. Literature Review

Dubins [1] found a geometric method to minimize the
travelling distance of a vehicle restricted to a planar path with
bounded curvature moving from one position and heading
to another position and heading. The Dubins vehicle has
been used extensively as a kinematic model in path planning
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algorithms for waypoint navigation, including the Traveling
Salesperson Problem (TSP) [2] [3] [4]. These and similar
works have been used to incorporate viewing objects of
interest with ranged optical sensors [5]. In [8], the objects of
interest must additionally be viewed from prescribed angles
and the presence of a second fixed side-mounted camera has
been taken into account.

The field-of-view of the sensors has been taken into
account in [6] [7], though only for loitering on viewing
one object of interest from any angle. This removes the
difficulty of navigating between multiple waypoints and the
difficulty of viewing the objects from a specific angle. To the
authors knowledge, no literature exists that investigates the
effects of both the viewing radius (range) of sensors and the
viewing angle (field-of-view) of sensors for a Dubins vehicle
tasked with viewing multiple objects of interest of prescribed
viewing angles with multiple fixed sensors mounted with
arbitrary orientations on the vehicle.

C. Original Contributions

1) In this paper we improve upon existing path planning
techniques for single vehicle algorithms. We begin by
analyzing the results if the vehicle is equipped with a
camera and associated viewing angle.

2) In addition to looking for solutions at different angles,
we also look for solutions that lie within the vieiwng
area, rather than just the outer most solutions.

3) Further, we go on to look at the areas where the best
improvements can be found.

4) We also investigate the savings assosciated with dif-
ferent positions of multiple cameras.

D. Organization

In Sec. II we explain the mathematical models used for
both our brute-force method and for the standard Dubins
method. Next in Sec. III we explain the problem investigated
in this paper and then detail the two methods. Then in
Sec. IV we show the numerical simulation results for the
two methods, and conclude with Sec. V. Acknowledgments
are given in Sec. VI with references following.

II. MODELING
A. Dubins Path Solutions

In 1957 Dubins developed a method for determining the
minimum path length for a vehicle with a constant forward
velocity, travelling from one position and heading to another
position and heading. It was shown that the optimal solution
always consists of three line segments. Each line segment
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is either a straight line or a turn of the minimum turning
radius. All solutions of this type begin and end with turns
of minimum turning radius. If we denote a straight line with
S, L as a left turn and R as a right turn we can list all
the possible solution types {LSL,LSR,LRL,RSR,RSL,RLR}.
When we refer to a Dubins solution we are referring to the
solution from that set with the minimum path length, shown
by Dubins to be optimal for that situation [1]. Dubins path
navigation techniques are commonly used in situations where
objects are obscured or can only be identified from certain
viewing angles, as well landing and take-off situations. An
object of interest, coupled with a sensor’s viewing range is
sufficient to create a waypoint and orientation needed to view
said object, and it is these values that are then plugged into
the Dubins algorithm.

B. Vehicle

We consider a single vehicle travelling in a two-
dimensional static plane defined by R2, so that aerial vehicles
remain at a fixed altitude and ground vehicles are on a
relatively level terrain. In addition to its position in the
two dimensional space, a heading angle defined as between
the velocity vector and x-axis of the inertial space, is used
to adequately define the vehicle state. At the start of all
missions we place the vehicle at a position of (0,0) and a zero
heading angle, without loss of generality. The kinematics are
described using the unicycle model.

Ẋv =V cosψv

Ẏv =V sinψv

ψ̇v = ω

The velocity of the vehicle is set to be constant throughout,
and always in the same direction with respect to the body
fixed axis of the vehicle. The maximum turn rate is also
preset, while no minimum is specified. Defining a maximum
turning speed is equivalent to defining a minimum turning
radius, such that

Rv ≥ V

ωmax

C. Object Model

An object of interest is something that occupies the planar
environment defined above. Each object is required to be
sensed from a specified direction in order for a mission
to be successfully completed. Objects are defined in a
predetermined order prior to being run through our system.
Given W objects we define M to be the ordered set such as

M = {O1,{O1,O2}, ..,{O1, ...,OW}}

Each object is described using a position and orientation
in the two dimensional plane, similar to that of the vehicle,

Oi = {Xi,Yi,ψdesiredi
}

A success set for each object, S, can be created using
both object and sensor information. This set describes all
possible vehicle orientations and positions that constitute
successfully viewing an object of interest. The success set
size is determined by N, the number of discretizations

performed on the sensor. This is the point at which our
system differs from that of a standard Dubins algorithm. In
the standard algorithm, this success set would be comprised
of a single vehicle state. S can be defined as

Si = {[Xvi1 ,Yvi1 ,ψvi1 ], [Xvi2 ,Yvi2 ,ψvi2 ], ...., [XviN
,YviN

,ψviN
]}

D. Sensor Model

The sensor model used throughout the paper is that of a
three dimensional cone, projected onto a two dimensional
plane perpendicular to the base of the cone. The origin of
this shape is at a fixed location on the vehicle. Each sensor
is described by three parameters, the viewing range, viewing
angle, and the center of the sensor’s cone offset from the
velocity vector. These values can be seen in relation to the
vehicle in Figure 1.
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Fig. 1. Parameters used to define a sensor

Everything within the area of the sensor is considered
visible, however this set needs to be discretized in order
to be computationally executable. From a vehicle’s position,
orientation and sensor information, a discretized visualization
set, I, can be created. This set is described as a list of objects,
which may or may not be objects of interest.

I = {OI1 ,OI2 , ...,OIN
}

The direction in which an object is sensed, ψdesired , within
the sensor cone is simply the angle made between the x-axis
and the line connecting the object with the origin of the cone.
A typical discretized sensor can be seen in Figure 2.

III. PROBLEM FORMULATION
We consider a single vehicle tasked with viewing N objects

contained within R2. Each object is defined by its position
{X,Y} and desired heading angle, ψdesired , from which to be
viewed. The vehicle is similarly defined with a position and
current heading angle {Xv,Yv,ψv}. The vehicle is given an
initial position and orientation, and travels at a constant speed
in a body-fixed forward direction. The inclusion of wind and
sideslip are not considered. The vehicle is outfitted with a
number of sensors of arbitrary orientation with respect to
the vehicle’s body fixed axis. Each sensor is modeled as a
3-dimensional cone projected onto a two-dimensional plane,
forming a circle sector. Each sensor is defined by a viewing
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Fig. 2. Discretizations preformed on a typical sensor

Desired Viewing Direction

Sensor Cone Bound 
Rightmost Configuration

Sensor Cone Bound Leftmost 
Configuration

Fig. 3. Geometry associated with angular solution set. Region in the dashed
box represents all the different vehicle heading angles with the given sensor
configuration that satisfactorily view the object of interest.

angle, viewing radius, and offset of the center of the sensor
area from that of the heading angle.

A. Creating Discrete Solution Sets

To create the discretized solution, the sensor radius, view-
ing angle, sensor offset, object position and number of
discretizations performed on the sensor need to be accounted
for. To do so, we first look for the solutions as far from the
vehicle as possible and the effect of the viewing angle on
the results, geometrically, as shown in Figure 3.

Figure 4 shows the resulting solution family from simply
accounting for the viewing radius.

In addition to the angular discretization, a radial discretiza-
tion is performed. Figure 5 shows the solution family from
only discretizing in the radial direction. It is interesting to
note that all solution positions are in a line originating at
the object of interest, with length determined by the viewing
radius and direction identical to ψdesired .

These discretizations form possible solution sets of a size
determined by the number of discretizations performed on
the sensor, which is where our algorithm differs from that of
the standard Dubins algorithm, for in the standard algorithm
each solution set would contain only a single vehicle state.

B. Method for Determining Best Solution

To determine the best solution an exhaustive search is
performed on the different possible solutions. If there are
W objects in a given mission, with N discretizations of the
sensor, there are a total of N

(2W−1) possible ways to complete
a mission. Recall that an object of interest has a success set,
S, that describes all the vehicle orientations and positions, P,
that allow for the object to be viewed.

Si = {[Pvi1 ], [Pvi2 ], ...., [PviN
]}

We can say that paths that satisfactorily complete a mis-
sion, Q, consist of at least one state from each of the success

Viewing Angle

Fig. 4. Effects of angular discretization on possible solutions
Viewing Radius

Fig. 5. Effects of radial discretization on possible solutions

sets, in the specified order defined. The goal of this algorithm
is to find the solution with the minimum path length. This
type of situation is often referred to as one-in-a-set path
planning. Although every possible path from one object of
interest to another needs be calculated, not every complete
path needs be calculated to ensure the optimal solution is
found.

Q = {{Wv11 , ..,Wv1N
}, ..,{WvM1 , ..,WvMN

}}

C. Quantification of Results

To determine the effectiveness of a particular solution, we
always compare the resulting path length with the path length
of the solution if Dubins path planning were applied under
identical conditions. For example, if we model a vehicle as
having a minimum turning radius of 5 meters, and a sensor
of viewing radius 10 meters, we would build our Dubins
comparison solution around those parameters as well. The
same object of interest locations and orientations are also
used. In addition the ordering of these objects remains the
same, so if a TSP solver is employed the resulting ordering
is also used in the Dubins comparison.

IV. SIMULATION RESULTS
Many Monte Carlo simulations were run to determine

the effectiveness of the system as compared to the standard
Dubins solution, each examining different parameters. In
order of analysis, the simulations examine the effect of the
distance between objects of interest, the effect of the turning
radius, field size, and object ordering, and the effect of
multiple sensors.

A. Distance between Objects of Interest

To determine the effect of the distance between objects
of interest, we begin by running simulations keeping all
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parameters static except the distance between objects of
interest. For each static configuration of the vehicle, we run
a total of 500 scenarios. The simulations use Monte Carlo
simulation methods, with both random heading and direction
from previous object. Shown in Figure 6 we fix the viewing
radius and angle to be 1m and 30◦. We averaged the 20
different simulation results for each distance, the data for
which is shown in Figure 6.

Fig. 6. Effectiveness of system against Distance between Objects of Interest

It is clear from the figures that the effectiveness of the sys-
tem is quite dependent upon the conditions of the simulation.
Under certain conditions, results as much as 45% shorter,
on average, paths can be achieved, while that same vehicle
and sensor configuration can result in only 5% savings in
other areas. As the proximity of the objects increases, a more
significant improvement over standard Dubins path planning
can be expected, to a point. The expected improvement
reaches a point, at which placing the objects any closer will
degrade in effectiveness. After a certain distance between
objects, the averaged improvements seen for larger turning
radii are actually greater than that of the shorter radii. This
is due to the fact that we expect no contributions from
the introduction of the viewing angle as the ratio between
the distance between objects of interest and turning radius
increases. This is due to the fact that as this ratio approaches
infinity, the vehicle is able to head straight for the object, or
the time spent in the straight portion of the Dubins curve
is much larger than that of the turning portions combined.
Having a zero turning radius yields almost identical results
to that of a 360◦ sensor while the objects are sufficiently far
apart. Thus, we should expect the improvement over Dubins
to peak at a certain point then for greater distance between
objects of interest all curves should curve towards a zero
percent improvement.

B. Various Single Sensor Configurations

In these simulations, the effects of different viewing radii
and viewing angles are studied. For completeness, we also
study how these results change with varying turning radii,
varying field size, and varying number of objects. Varying
the field size varies the maximum distance possible between
objects. Figures 7 and 8 are the averaged results of 25 runs
with randomly ordered and randomly oriented objects of
interest. Though not visible in the figures, simulations show
that the improvements reach an asymptote when the viewing
angle reaches 360◦.

Fig. 7. Effects of turning radii on viewing radii and viewing angles

Fig. 8. Effects of field sizes on viewing radii and viewing angles

In Fig. 7, the field size is set to be 50m by 50m and
the number of objects of interest is set to be 25. This
system yields the best improvements when the vehicle has a
low minimum turning radius, high viewing radius, and high
viewing angle. However, the exact dependence on minimum
turning radius depends on the viewing radius and viewing
angle. When the viewing angle is 45◦, the system yields
better results for higher minimum turning radius when the
viewing radius is less than about 12 m and yields better
results for lower minimum turning radius when the viewing
radius is greater than the 12m threshold.

This threshold increases with viewing angle - when the
viewing angle is 180◦, the threshold is 25 m. It also increases
with field size - when the field size is 100m by 100m and
the viewing angle is 45◦, the threshold is at about 22 m as
opposed to 12 m when the field size is 50m by 50m.

It is important to note that the lower the minimum turning
radius, the less important the sensor’s viewing angle and the
more important the sensor’s viewing radius. Conversely, for
large minimum turning radii, the sensor’s viewing angle is
extremely important and the sensor’s viewing radius is less
important.

Some important design considerations can be taken from
this analysis. Clearly, a vehicle with a sharp turning radius
would be best equipped with long-range sensors. On the
other hand, a vehicle with a large turning radius would
benefit greatly from many wide sensors and, to a lesser
extent, from long-range sensors.

In Fig. 8, the vehicle has a turning radius of 5 meters and
the number of objects of interest is set to be 25. This system
yields the best improvements when the objects of interest
are placed in a small field, and when the viewing radius
and viewing angle are high. Note that the viewing radius is
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Fig. 9. Effects of GA ordering

important for all field sizes, especially for small field sizes,
but that the viewing angle has more of an effect for small
field sizes than for large field sizes.

One cannot generally choose the configuration of the
objects, but Fig. 8 shows what types of sensors are effective
in different configurations. If the objects are restricted to
a small field, multiple wide range sensors would be more
effective than a single long range sensor. However, increasing
the range of the sensors would also help, though to a lesser
extent. On the other hand, if the objects are restricted to a
large field, increasing the range of the sensors is by far the
better option.

Additional simulations were run to evaluate the effects of
ordering the objects of interest with a TSP heuristic solver.
In this case, a fixed start open genetic algorithm1 [9] run
with 10000 generations was used to order 25 objects of
interest oriented randomly in a 50 by 50 field. It is important
to note that neither the vehicle parameters nor the sensor
parameters were taken into account in this genetic algorithm
- it is a standard fixed start open genetic algorithm. 10000
generations brings the solution to within a few percent of
optimal for a standard TSP. The vehicle has a turning radius
of 5 meters. Fig. 9 shows the averaged results of 50 different
random configurations of objects of interest.

The total possible percent savings are higher with the ge-
netic algorithm TSP solver. Additionally, the improvements
increase significantly more with increasing viewing angle
when using the genetic algorithm, and marginally more for
increasing viewing radius.

This figure clearly shows that this system is even more
effective in ordered scenarios, which are often characteristic
of realistic urban settings. It also shows that in such sce-
narios, increasing the viewing angle of a sensor, or adding
more sensors, as well as increasing the viewing range of
the sensor will often significantly increase the improvements
even though this is less often the case in randomly ordered
scenarios.

After these simulations were run for differing numbers of
objects, we found that this system is as effective for a few
objects as it is for many. Of course, total time increases with
an increasing number of objects.

1An iterative approach to finding a near-optimal solution to a TSP. “Fixed
start” means that the starting point is specified, “open” means that the vehicle
does not return to the starting point, as is appropriate for our scenarios.

The trends explored in the analysis of Fig. 7, 8, and 9
all hold together. When the minimum turning radius of the
vehicle is large or the field size is small, the viewing angle
becomes very important. The viewing radius also remains
important though to a lesser extent than the viewing angle.
When the minimum turning radius of the vehicle is small or
the field size is large, the viewing angle has very little effect
and thus the viewing radius becomes important. For example,
improvements of nearly 78% on average can be obtained
when the field size is 10x10, the viewing radius 50 meters,
the viewing angle 180 ◦, the turning radius 1 meter, and the
objects ordered are by a genetic algorithm TSP solver.

C. Multiple Sensor Configurations

We investigated the case with a random waypoint distribu-
tion with a set distance between each waypoint against sev-
eral different dual sensor configurations. In this simulation,
we created 100 different scenarios, each having a distance
between objects of interest of 20 meters, and 25 objects of
interest. The system assumed a minimum turning radius of
3m. In the case of dual sensors, one was placed straight
forward, with a viewing radius of 6 and viewing angle of
30◦, while the second sensor, whose offset is being varied,
had a viewing radius of 6m and viewing angle of 15◦. The
average results of the multiple sensor configuration can be
seen in Figure 10. For completely stochastic missions there
is in fact an optimal location for the second camera.

Fig. 10. Effectiveness of various placements of a second visual sensor

It is important to note that these results come from the
waypoints made with completely random approach angles.
In urban scenarios or situations where the objects of interest
are arranged such that common angles are formed between
direct paths and the desired viewing angle the optimal
second camera placement is not necessarily at 180 ◦ from
the first camera. An example of a mission where the optimal
placement is perpendicular to the forward mounted camera
is shown in Figure 11.

D. Computational Complexity and Scalability

Computational complexity scales linearly with the number
of objects, viewing angles, viewing radii, turning radii, field
sizes, sensors, and iterations but scales with the square of
the number of discretizations of the sensor in both the radial
and angular directions. The standard Dubins solution also
scales linearly with the number of objects. The algorithms
work very well with multi-core processing, this is due to the
number of computations that can be performed in parallel in
the one-in-a-set path planning techniques.
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Fig. 11. Sample mission segment with side mounted sensor. The longer
path with loops represents the Dubins solution. The sensor footprints are
used to illustrate where the side mounted camera visualizes each object and
to show the size of the sensor. The circles represent the objects of interest.

V. CONCLUSIONS

From the simulation results it is clear that accounting
for the entire viewing area encompassed by the sensor we
choose to model can achieve significant improvements to
the solution time when compared to standard the Dubins
path planning technique. The results are strongly correlated
to all the aspects of the vehicle, the turning and viewing
radius, viewing angle, and the average distance between
objects of interest. The best results can be expected when
objects of interest are relatively close together, in relation
to the turning and viewing radius. It is also clear that
the effectiveness of a sensor is not based primarily on
the viewing angle of a particular sensor. It is shown that
sensors are much more effective when the viewing radius
is maximized. The placement of a second sensor was also
shown, in a stochastically created environment, to be optimal
when placed directly behind the vehicle.

A. Sensor Design Considerations

Based on the simulation results, design considerations
pertaining to the sensor configuration can be made. It is
difficult to make design considerations for the vehicle as
these are much more difficult to change based on mis-
sion specifications. This does not mean that information
pertaining to varying the vehicle parameters are without
use, they should be used to determine the average savings
expected given mission parameters and determine if running
the algorithm is indeed worth the time taken to compute a
solution.

Sensor information clearly shows that the most effective
attribute of a sensor is the viewing radius. When comparing
the average savings against area, maximizing the radius is
still the most beneficial, as can be seen in Figure 12.

B. Future Work

The future work related to the optimal path planning
accounting for the full range of a sensor will focus on
a variety of things. First, the environment will be three-
dimensional. The sensor will have an optional property

Fig. 12. Improvement over Dubins against viewing area of a sensor

pertaining to a gimbaled mount. Additionally, in order to
couple the viewing angle and radius the focal length of the
camera, which pertains to optical zoom properties, will be
analyzed. With the addition of the altitude, gimbaled mount
and the optical zoom, the sensor footprint size, shape and
orientation with respect to the vehicle would need to be
dynamic.

Location of secondary or tertiary sensors will also be
investigated in more detail. An algorithm that looks at angles
formed between lines of sight between objects of interest
(this is the approximate approach angle) and desired viewing
angle to determine optimal placement of extra sensors.

Finally using the information pertaining to all aspects
of the mission, developing a genetic algorithm specifically
tailored to find the optimal ordering of objects of interest
prior to running through our algorithm.
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