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Abstract— This paper develops nonlinear observers by using
the newly developed homogeneous observer for a class of lower-
triangular nonlinear systems whose solution trajectories are
bounded. We show that the estimated states of the proposed
observer can converge to the real states in a finite time for
small initial estimation errors. We also show that by adjusting
the observer gain the required range of the initial estimation
errors can be expanded.

I. INTRODUCTION

The objective of this paper is to design a finite-time

convergent state observer for a class of nonlinear systems

described by:

ẋ1 = x2 + f1(x1)

ẋ2 = x3 + f2(x1, x2)

...

ẋn−1 = xn + fn−1(x1, x2, · · · , xn−1)

ẋn = fn(x1, x2, · · · , xn)

y = x1 (1.1)

where y ∈ R is the system output. The nonlinear functions

fi = fi(x1, · · · , xi) for i = 1, 2, · · · , n, are C1 (continuously

differentiable).

The problem of estimating the unmeasurable states of a

nonlinear system from its output has been receiving a great

deal of attention and there are quite a number of early

works have been devoted. One existing method is using

linearization of the system [3], [9], [11]. In addition, a

locally convergent nonlinear observer by using back-stepping

method is constructed in [10]. The estimation error goes to

zero when the initial value of estimation error is not too

large. This method can be easily implemented because of its

recursive algorithm. A high gain observer introduced in [5]

is another observer designing method for nonlinear systems.

The paper [12] introduced a high gain observer for systems

with bounded solutions.

More recently, new design methods based on homoge-

neous systems theory are developed to construct homoge-

neous observers. The work [14] introduced a nonlinear ob-

server with a homogeneous structure even for a linear system.

The new construction of the observer enables us to relax

the long-existing linear growth condition used for nonlinear
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observer design. Later, the papers [1], [13] extended the

homogeneous observer introduced in [14] to more general

nonlinear systems. In addition, the observers constructed in

the papers [13] and [15] have a fast convergence rate, i.e. the

estimates will converge to the original states in a finite time,

rather than asymptotically. However, to achieve this, various

conditions have been imposed on the nonlinearities.

In this paper, we are also interested in designing a finite-

time homogeneous observer for a class of lower-triangular

nonlinear systems. Instead of pursuing global finite-time

convergence, we will prove the estimated states are finite-

time convergent to the real states of system (1.1) when the

initial errors are small. By pursuing this less ambitious goal,

we can show that there is no need of growth conditions

imposed on the nonlinearities [13] and [15]. In addition, we

will also prove that under the assumption of bounded solution

trajectories, the requirement for small initial condition can

be lifted by introducing and adjusting a scaling gain in the

homogeneous observer.

The rest of this paper is organized as follows: In Section II,

we introduce some useful lemmas and existing homogeneous

design methods. In Section III, we construct a low-order

homogeneous observer for lower-triangular systems and we

prove it is finite-time convergent when the initial error is

small. Several illustrative examples are discussed in this

section. Our conclusion is included in Section IV.

II. PRELIMINARIES OF HOMOGENEOUS OBSERVERS

In this section, we introduce some useful definitions and

lemmas from homogeneous system theory which will be

constantly used in proving the main results. The innovative

idea of homogeneity was introduced for the stability analysis

of a nonlinear system [6] and has led to a number of interest-

ing results. Listed below are the definitions of homogeneous

functions and homogeneous systems with weighted dilation

(refer to References [8], [4], [7], [2] for details).

Weighted homogeneity: For fixed coordinates

(x1, · · · , xn) ∈ R
n and real numbers ri > 0, for

i = 1, 2, · · · , n,

• the dilation ∆ε(x) = (ε
r1x1, · · · , ε

rnxn), ∀ε > 0, with

ri being called as the weights of the coordinates.

• a function V ∈ C(Rn,R) is said to be homogeneous of

degree τ if there is a real number τ ∈ R such that

∀x ∈ Rn\{0}, ε > 0, V (∆ε(x)) = ε
τV (x1, x2, · · · , xn).

• a function f : Rn → R
n is said to be homogeneous if

there exists (r1, r2, · · · , rn) ∈ ((0,+∞))
n and τ ∈ R such
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that ∀x = (x1, x2, · · · , xn)
T ∈ Rn ∀ε > 0, and

fi(ε
r1x1, · · · , ε

rnxn) = ε
τ+rifi(x), i = 1, · · · , n.

• a vector V ∈ C(Rn,Rn) is said to be homogeneous

of degree τ if there is a real number τ ∈ R such that for

i = 1, 2, · · · , n

∀x ∈ Rn\{0}, ε > 0, fi(∆ε(x)) = ε
τ+riV (x1, x2, · · · , xn).

• a homogeneous p-norm is defined as

‖x‖∆,p = (

n
∑

i=1

|xi|
p

ri )
1
p ,∀x ∈ Rn

for a constant p ≥ 1. For the simplicity, in this paper, we

choose p = 2, and write ‖x‖∆ for ‖x‖∆,2.

In what follows, we list some useful properties of homo-

geneous systems.

Lemma 2.1: If the trivial solution x = 0 of the ∆ε-
homogeneous system

ẋ = f(x), f(0) = 0

is globally stable, there exists a ∆ε-homogeneous Lyapunov

function V , which is positive definite and proper, such that

V̇ =
∂V

∂x
f(x) < 0, ∀x 6= 0.

Lemma 2.2: Given a dilation weight ∆ =
(r1, r2, · · · , rn), suppose V1(x) and V2(x) are respectively

homogeneous functions of degree τ1 and τ2. Then

V1(x)V2(x) is also homogeneous with respect to the same

dilation weight ∆. Moreover, the homogeneous degree of

V1(x)V2(x) is τ1 + τ2
.

Lemma 2.3: Assume V : Rn → R is a homogeneous

function of degree τ with respect to the dilation weight ∆.

Then the following holds: (A) ∂V
∂xi

is homogeneous of degree

τ−ri with ri being the homogeneous weight of xi. (B) There

is a constant c such that

V (x) ≤ c‖x‖τ∆.

Moreover, if V (x) is positive definite, c‖x‖τ∆ ≤ V (x) for a

constant c > 0.

Next we review an existing result on homogeneous ob-

servers. The paper [14] introduced a homogeneous observer

estimating the nonlinear parts of unmeasurable states. In

what follows, we list the homogeneous observer for the

following system:

ẋ1 = x2
...

ẋn−1 = xn

ẋn = u

y = x1. (2.2)

The low-order observer for system (2.2) is constructed in

the form of:

˙̂x1 = x̂2 + c1(x1 − x̂1)
r2

˙̂x2 = x̂3 + c2(x1 − x̂1)
r3

...

˙̂xn−1 = x̂n + cn−1(x1 − x̂1)
rn

˙̂xn = u+ cn(x1 − x̂1)
rn+1 (2.3)

where r1 = 1. For i = 1, 2, · · · , n and −1/n < τ1 < 0,
ri+1 = ri + τ1, and ci are appropriately chosen constants.

Define ei = xi − x̂i, i = 1, 2, · · · , n, then we obtain the

error dynamics as follows:

ė1 = e2 − c1(x1 − x̂1)
r2

ė2 = e3 − c2(x1 − x̂1)
r3

...

ėn−1 = en − cn−1(x1 − x̂1)
rn

ėn = −cn(x1 − x̂1)
rn+1 . (2.4)

It was shown in [14] that the above error dynamic is globally

asymptotic stable for appropriate constants ci’s.

III. HOMOGENEOUS OBSERVER FOR

LOWER-TRIANGULAR SYSTEMS

In this section, we show that the homogeneous observer

introduced in [14] can be applied to estimate states of lower-

triangular nonlinear systems. First we review an existed

back-stepping method. The paper [10] introduced an observer

using a back-stepping method, which is applicable to a class

of smooth nonlinear systems in the following form:

ẋ1 = x2
...

ẋn−1 = xn

ẋn = fn(x)

y = x1 (3.5)

where fn(x) is a smooth function with fn(0) = 0.

The observer using back-stepping method is in the follow-

ing form:

˙̂x1 = x̂2 + ϕ1(x̂)(x1 − x̂1)

˙̂x2 = x̂3 + ϕ2(x̂)(x1 − x̂1)

...

˙̂xn−1 = x̂n + ϕn−1(x̂)(x1 − x̂1)

˙̂xn = fn(x̂) + ϕn(x̂)(x1 − x̂1) (3.6)

where gain functions ϕi, i = 1, · · · , n are computed in the
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following way:

ϕ1(x̂) = bn+1,n(x̂) + fn;n(x̂)

ϕ2(x̂) = bn+1,n−1(x̂) + fn;n−1(x̂)

...

ϕn−1(x̂) = bn+1,2(x̂) + fn;2(x̂)

ϕn(x̂) = bn+1,1(x̂) + fn;1(x̂) (3.7)

with fn;i =
∂fn
∂xi
(x̂), i = 1, · · · , n and

b2,1 =c1

bi,1 =bi−2,1−ϕi−3+ci−1(bi−1,1−ϕi−2)

+(bi−1,1−ϕi−2)
′ −

i−2
∑

j=1

(bi−1,j−ϕi−j−1)ϕj

bi,j =bi−2,j−ϕi−j−2+ci−1(bi−1,j−ϕi−j−1)

+(bi−1,j−ϕi−j−1)
′−bi−1,j−1

bi,i−2 =1+ci−1(bi−1,i−2−ϕ1)+(bi−1,i−2−ϕ1)
′−bi−1,j−3

bi,i−1 =ci−1 + bi−1,i−2. (3.8)

Defining ei = xi − x̂i, for i = 1, 2, · · · , n, the error

dynamics are presented as following:

ė1 = e2 − ϕ1(x̂)e1

ė2 = e3 − ϕ2(x̂)e1
...

ėn−1 = en − ϕn−1(x̂)e1

ėn = fn(x)− fn(x̂)− ϕn(x̂)e1. (3.9)

According to the results in [10], with the gain functions

ϕn(x̂) for 1 ≤ i ≤ n selected as (3.7)-(3.8), e(t) → 0 as

t→∞ for small ei(0)’s.

The method introduced in [10] is based on back-stepping,

and it is locally convergent (refer to [10] for proof detail).

This method is easily implemented because of its recursive

algorithm, and it has good accuracy of estimating.

As shown in [10], this observer is locally convergent,

which requires the initial errors ei(0) = xi(0)− x̂i(0) to be

small. Moreover, the functions ϕi(x̂) are quite complicated.

Now we provide an alternative solution based on homoge-

neous observer without computing ϕi(x̂) .

Consider the lower-triangular system in the form of (1.1).

Based on the homogeneous observer design method we

introduced in the previous section, we can construct a low-

order homogeneous observer for (1.1)

˙̂x1 = x̂2 + f1(x1) + c1e
r2
1

˙̂x2 = x̂3 + f2(x1, x̂2) + c2e
r3
1

...

˙̂xn−1 = x̂n + fn−1(x1, x̂2, · · · , x̂n−1) + cn−1e
rn
1

˙̂xn = fn(x1, x̂2, · · · , x̂n) + cne
rn+1
1 (3.10)

where constants ci and ri are defined in (2.3).

By defining the error as ei = xi − x̂i, we can obtain the

error dynamics.

ė1 =e2 − c1e
r2
1 + f1(x1)− f1(x1)

ė2 =e3 − c2e
r3
1 + f2(x1, x2) + f2(x1, x̂2)

...

ėn−1 =en − cn−1e
rn
1 + fn−1(x1, x2, · · · , xn−1)

− fn−1(x1, x̂2, · · · , x̂n−1)

ėn =−cne
rn+1
1 +fn(x1, x2, · · · , xn)−fn(x1, x̂2, · · · , x̂n).

(3.11)

Theorem 3.1: Suppose that K is a compact and positively

invariant set for system (1.1). For the initial condition x̂(0)
of equation (3.10) close to x(0) in (1.1), the error dynamics

(3.11) are finite-time stable.

Proof. The error dynamics can be written as:

ė =















ė1
ė2
...

ėn−1
ėn















=















e2 − c1e
r2
1

e3 − c2e
r3
1

...

en − cn−1e
rn
1

−cne
rn+1
1















+















f1(x1)− f1(x1)
f2(x1, x2)− f2(x1, x̂2)

...

fn−1(x1, x2,· · ·, xn−1)−fn−1(x1, x̂2,· · · ,x̂n−1)
fn(x1, x2,· · ·, xn)−fn(x1, x̂2,· · ·, x̂n)















.

(3.12)

For i = 1, 2, · · · , n, by the continuous differentiability of

the functions fi’s and the mean value theorem, we have the

following for small error ‖e‖:

|fi(x1, x2, · · · , xi)− fi(x1, x̂2, · · · , x̂i)|

≤ Hi(x1, x2, · · · , xi, x̂2, · · · , x̂i)(|e2|+ · · ·+ |ei|)

≤ H̃i(x1, · · · , xi)(|e2|+ · · ·+ |ei|) (3.13)

where H̃i are smooth functions for i = 1, 2, · · · , n. For our

low-order observer, noting that 0 < ri < ri−1 < 1 for i =
1, 2, · · · , i, one obtains

ri+1
r2
< 1, · · · , ri+1

ri
< 1. Thus, here

we can use this property to lead to the following equations:

|fi(x1, x2, · · · , xn)− fi(x1, x̂2, · · · , x̂n)|

= H̃i(x1, · · · , xi)× (|e2|
ri+1

r2 · |e2|
1−

ri+1

r2 + · · ·

+ |ei|
ri+1

ri · |ei|
1−

ri+1

ri )

≤ H̃i(x1, · · · , xi)× (|e2|
ri+1

r2 + · · ·+ |ei|
ri+1

ri )

× (|e2|
1−

ri+1

r2 + · · ·+ |ei|
1−

ri+1

ri ). (3.14)

It has been proved in [14] that there are constants ci, for

i = 1, · · · , n, such that the homogeneous truncated system
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of (3.12), i.e.

ė =















e2 − c1e
r2
1

e3 − c2e
r3
1

...

en − cn−1e
rn
1

−cne
rn+1
1















is finite-time stable. By using Lemma 2.1, we can always find

a homogeneous Lyapunov function V with degree k, which

makes the above truncated system satisfy the following

relation:

∂V

∂e















e2 − c1e
r2
1

e3 − c2e
r3
1

...

en − cn−1e
rn
1

−cne
rn+1
1















= −ω(e) (3.15)

where ω(e) is a homogeneous function of degree k+ τ1 and

a positive definite function.

Combining (3.15) and (3.14), the derivative of the homo-

geneous Lyapunov function along the system (3.12) is

V̇ |(3.12) ≤ −ω(e) +

n
∑

i=2

∣

∣

∣

∣

∂V

∂ei

∣

∣

∣

∣

(|e2|
ri+1

r2 + · · ·+ |ei|
ri+1

ri )

× H̃i(·)[|e2|
1−

ri+1

r2 + · · ·+ |en|
1−

ri+1

ri ]. (3.16)

On the other hand, by Lemma 2.2,
∣

∣

∣

∣

∂V

∂ei

∣

∣

∣

∣

(|e2|
ri+1

r2 + · · ·+ |ei|
ri+1

ri ) (3.17)

is a homogeneous term with degree of k + τ1. Thus, by

Lemma 2.3, we can find a constant c such that
∣

∣

∣

∣

∂V

∂ei

∣

∣

∣

∣

(|e2|
ri+1

r2 + · · ·+ |ei|
ri+1

ri ) ≤ c · ω(e), (3.18)

for the positive definite homogeneous term ω(e).
Substituting (3.18) into (3.16) yields

V̇ |(3.12) ≤ −ω(e)
[

1− c
n
∑

i=2

H̃i(x1, · · · , xi)

× (|e2|
1−

ri+1

r2 + · · ·+ |ei|
1−

ri+1

ri )
]

. (3.19)

Since 0 < rn+1 < rn < · · · < r2 < r1 = 1, we have

0 < ri+1
ri
< 1, for i = 1, · · · , n, and the power 1− ri+1

ri
> 0

for i = 1, · · · , n. Consequently, when the error ei is small

enough, the term

c
n
∑

i=2

H̃i(x1, · · · , xi)(|e2|
1−

ri+1

r2 + · · ·+ |ei|
1−

ri+1

ri ) < 1,

(3.20)

for bounded x in K. Clearly, we have proven (3.19) is

negative definite due to the boundedness of x, and we can

conclude that the error dynamics (3.11) is finite-time stable

as long as ‖e‖ is small enough.

Example 3.1: Let’s consider the example studied in [10]

using back-stepping observer:

ẋ1 = 2x2

ẋ2 = 2x1 − 3x
2
1 − x2(x

3
1 − x

2
1 + x

2
2 − µ)

y = x1, (3.21)

where µ is a negative constant. This system is known as

homoclinic loop. According to our previous discursion, we

can construct a low-order observer as following:

τ1 = −
2

9

⇒ r2 = r1 + τ1 = 1−
2

9
=
7

9

⇒ r3 = r2 + τ1 =
7

9
−
2

9
=
5

9
. (3.22)

Thus our low-order observer is

˙̂x1 = 2x̂2 + e
7
9

1

˙̂x2 = 2y − 3y
2 − x̂2(y

3 − y2 + x̂22 − µ) + e
5
9

1 . (3.23)

In order to demonstrate the performance of our design, we

provide the simulations with different initial values.

In Fig.1, we choose initial errors x(0) =

(

0.1
0.1

)

and

x̂(0) =

(

1.0
1.0

)

, but both initial states and estimation

values are relatively small. Our low-order homogeneous

observer still have outstanding accuracy convergence rate.

In Fig.2, we further show the performance of con-

vergence rate of our low-order observer with larger ini-

tial values but small initial errors x(0) =

(

2.0
2.0

)

and

x̂(0) =

(

2.1
1.9

)

, we can learn that the convergence rate is

still acceptable. This example shows our finite-time observer

only asks for small initial estimation error, but the states

do not have to be bounded in a small neighborhood of the

origin.

So far, we have designed an observer which is convergent

if the initial errors between the observer states and real

system states are sufficiently small. In what follows, we

will show that this small initial condition can be relaxed

by designing a new observer which integrates the technique

introduced in [12].

First, we define a unit saturation function sat(s) as

sat(s) =







1, for s ≥ 1
s, for − 1 < s < 1
−1, for s ≤ −1

(3.24)

Lemma 3.1: [12] Given real numbers s1, s2 and m > 0,
suppose that |s1| ≤ m. Then,

|s1 −m · sat(
s2
m
)| ≤ |s1 − s2|. (3.25)
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Fig. 1. Estimation and error dynamics inside the homoclinic loop with
small initial state but big initial errors.

By using Lemma 2.5 and Claim 1 from [12], we can

construct a homogeneous observer as following:

˙̂x1 = x̂2 + f1(satN (x̂1)) + Lc1e
r2
1

˙̂x2 = x̂3 + f2(satN (x̂1), satN (x̂2)) + L
2c2e

r3
1

...

˙̂xn−1= x̂n+fn−1(satN (x̂1),· · ·, satN (x̂n−1))+L
n−1cn−1e

rn
1

˙̂xn = fn(satN (x̂1), · · · , satN (x̂n)) + L
ncne

rn+1
1 (3.26)

where the gain L is a constant greater or equal than 1, the

bound N ≥ |xi(t)|, and satN (x) = N · sat(
x
N
).

By defining a new error term εi = ei/L
i−1, the new error

dynamic is:

ε̇ =















ε̇1
ε̇2
...

ε̇n−1
ε̇n















= L















ε2 − c1ε
r2
1

ε3 − c2ε
r3
1

...

εn − cn−1ε
rn
1

−cnε
rn+1
1















+















f1(x1)− f1(satN (x̂1))
(f2(x1, x2)− f2(satN (x̂1), satN (x̂2)))/L

...

(fn−1(x1,· · ·,xn−1)−fn−1(satN(̂x1),· · · ,satN(x̂n−1)))/L
n−2

(fn(x1,· · ·, xn)−fn(satN(̂x1),· · · ,satN(x̂n−1)))/L
n−1















(3.27)
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Fig. 2. Estimation and error dynamics inside the homoclinic loop with big
initial states and small initial errors.

With the help of Lemma 3.1, similar to the proof of Theo-

rem 3.1, it can be proven that when the solution trajectories

are bounded, the error dynamics (3.27) is finite-time stable,

for a large enough L. This method significantly enlarges the

accepted range initial estimation, and the observer can still

be finite-time stable by adjusting L.

In what follows, we apply observer (3.26) to system (3.21).

We choose the initial states the same as those used in

Fig.1, and the constants L and N are chosen as 5 and 2,

respectively. The simulation is presented in Fig.3.

IV. CONCLUSIONS

In this paper, for a class of lower-triangular nonlinear

systems, we designed a homogeneous observer which is

finite-time convergent when the initial estimation error is not

too large. Then we integrate our design with the saturation

method introduced in [12] to show that under the condition

of bounded solution trajectories, the new observer has the

property of finite time convergence, if the constant gain L is

large enough.
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