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Abstract—This paper is concerned with the design of a
vision-based algorithm for on-line estimation of position and
rate control errors in the guidance of autonomous underwater
vehicles for path tracking of underwater lines. The algorithm
uses techniques of pattern recognition with different degrees
of morphological operations. Ad-hoc experiments with a sub-
aquatic vehicle in a test tank show the features of our approach
under strong conditions of light perturbations and cloudy water.

I. INTRODUCTION

The world of subaquatic vehicles is being expanded con-
tinuously. Applications embrace not only the classical ones
of the off-shore industry but also have begun to get widely
into oceanographic and scientific applications [1].
This paper deals with one of the most relevant technical

application concerning path tracking of lines over the sea
bottom [2]-[3]. In the general case control actions are con-
structed by sonar signals from the navigation system (usually
provided by a side scan sonar or a multibeamer). Rarely it
is fallen back on systems that are based on image motion
(egomotion) provided, for instance, from an onboard camera
in the vehicle. One reason may be the poor state of the water,
which may be cloudy and muddy [4]. Therefore, the design
of vision-based guidance systems with blurred vision come
into consideration in scenarios when the altitude to bottom
is relatively small. This in turn restricts the applications to a
particular class of vehicles that possesses the ability to react
rapidly in order to bypass potential obstacles on the sea floor.
However achieving real-time processing of blurred frames

is not a trivial goal because of the diverse and numerous
operations involved. They may range from a simple image
conversion to gray scale up to complex pattern-recognition
techniques.
In any described scenario above, an intelligent vision

sensor to extract motion properties from images on the sea
floor could be significant for autonomous navigation and in
any case could be a complement of other navigation sensors
[5]-[6].
Image-based sensors have the ability to provide informa-

tion of position and velocity through image processing with
certain index of confidence. A combination of techniques
like pattern recognition and optical flow is a common way
to build up this kind of sensors [7]-[8].
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One of the problems in the design of visual robust sensors
is commonly the growth of uncertainty in the estimations
under extreme situations in subaquatic environments. For
instance, the usually changes of light intensity which make
very difficult the information retrieval from image motion .
Also blurred scenes despite adequate lighting are common in
fluid medium so that the object recognition can not easily be
achieved with continuity like in the aerial medium. Finally
exogenous perturbations, like caustic waves on the sea floor
are quite hard to filter in the context of optical flow.
One indispensable step in the design is the evaluation

of sensors to be able for control purposes [9]. This step
could be advantageously done in the context of teleoperation
before designing an autonomous controller. So, the presence
of eventual "holes" in the provided sensor information can
be better anticipated in a previous study supported by tele-
operation. As result, robust properties can be conferred to
the sensor in order for the future control loop to be reliable.
In this paper, the design of a vision-based sensor for spa-

cial and kinematics measurements simultaneously is focused.
So we develop independently two algorithms to this end
and then we concatenate them interactively for navigation
in the context of path tracking of lines. A previous study
for enhancing sensor robustness is pursued by means ad hoc
experiments via teleoperation.

II. VEHICLE DYNAMICS

The dynamics of the underwater vehicle is generally
described by (cf [10])

M
.
v = −C(v)v−D(|v|)v+g(η)+τ t
.
η = J(η)(v+vc),

with η being defined as the generalized position in some
earth-fixed frame, v the generalized velocity vector in a
vehicle-fixed frame, vc is the current flow rate in vector
form. Also there are system matrices, namely: the inertia
matrixM , the Coriolis matrix C and drag matrixD. Besides,
g is the net buoyancy force and τ t the generalized force of
the thrusters. Finally, J is the well-known rotation matrix.
For autonomous vehicles, the achievement of a stationary

horizontal position is important to accomplish a stable image
of the ground without undesired effects of rotations due to
roll and pitch. Bearing in mind a vision-based path tracking,
we will refer them to as significant and less important modes.
The significant ones contain the position variables in η
namely x and y, but also the rotation variable ψ (yaw angle).
The remainder variables in η, namely the roll θ and pitch
φ angles are supposed inherently damped or automatically
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regulated independently of the path tracking goal. Finally,
the altitude z is also assumed to be regulated by autopilot to
a fixed value.

III. VISION-BASED SENSOR

In the framework of tracking a line, actually only the local
relative position of the vehicle with respect to the line is
required. In this sense, the sensed local position provides
the geometric error for a given path-tracking controller. This
includes the location of the vehicle over the line and its
tangential orientation. Moreover, the quantification of the
motion is necessary to push the vehicle at desired cruise
velocities.
In our goal, the identification of geometric and kinematic

variables of the vehicle is accomplished by vision with the
help of an onboard camera. This will provide the relative
position x, y, the course ψ, the cruise velocity v and the
rotation rate ψ̇. All these estimations must be provided by
the image moving (the so-called egomotion).
In order to abstract geometric and kinematic properties

from the relative motion, some texture characteristics of
the line and/or of the floor are indispensable. To this end,
we have focused the sensor design in this work to fit the
characteristics of a patterned line like the one depicted in
Fig. 1 (see also Fig. 3).

IV. GEOMETRIC FEATURE ABSTRACTION

Once the line is visualized in the frame, the position pa-
rameters are the slant α and the coordinates of the midpoint
of the line stretch with respect to the frame center (see Fig.
1). Both α and the position coordinates are related to ψ and
x, y, respectively.

Frame

Search zone
attracted by the 
confidence zone

Moving window
to template matching

Confidence zone

Estimated line

Vehicle advance direction

x

y

α
Real line

Fig. 1 - Pattern matching procedure when the estimated
line moves crossing completely the frame or partially

sidelong (this case is illustrated here)

The core of the sensor functions is the vision-based recog-
nition of the line stretch. Upon this, the position parameters
are determined.
In the following we develop an estimation algorithm to

perform these ends. We depart from a flow of frames that
arrive the estimator. Every cycle is composed by a number
of operations and transforms carried out on the frame. The
mathematical description of the cycle steps are given in
details in [12]. We only enumerate the step functions:
A) Image conversion to gray scale

Usually, a RGB-format image is received and transformed
into a grey scale.
B) Thresholding
In order to distinguish objects by contrast a binarization

process is started. Commonly the pattern appear as non
connected white regions (white speckles). For our purposes,
detectable speckles which are part of the patterned line are
as a rule totally white (without black interior).
C) Noise filtering
The differentiation between exogenous speckles and the

sought-after ones in a binary image can be done by a
morphological filtering. After two successive erosions, a
dilation operation is carried out in order to recuperate the size
of the original speckles that are not erased. Small speckles
are generally produced by caustic waves on the floor in
shallow water.
D) Contour detection
The resulting binary image can be further simplified. So

the next goal is to work with contours only. They preserve
the whole information we are needing for next identification
tasks. The best method to this end is based on the morphol-
ogy of the speckles. Contours can be obtained by substracting
the dilation and the erosion of the binary image. Particularly,
is adequate describe the contours as sequences as they are
sparse in the number of pixels. In this way the levels of
processing can be maintained relatively low. In case of an
empty one picks up the next frame in step K).
E) Counting of detected objects
At this stage small contours (little regions that pass the

previous erosions) are eliminated . One counts finally the
number of contours. If there are not sufficient contours or
not at all, one picks up the next frame in step K).
F) Centroids determination
A further reduction of information is attained by replacing

the contours by their centroids.
G) Selection of centroids within the confidence zone
From all calculated centroids there are only those taken

into account that are in the so-called confidence zone. This
zone is a band delimited by two parallel lines. The outtake
of centroids is performed by an ad-hoc flag.
H) On-line estimation of line stretch
If there is no, at least one, pair of flags with the logical

value TRUE, one picks up the next frame in step K).
On the contrary, one searches for a line that better fits

in the sense of least squares the alignment of the centroids
in the confidence zone. So the slope of the estimated line
(referred to as α) and the midpoint of the visible segment of
the line determine the parameters of the estimated line.
I) Statistic correction
With the sake of reducing the number of wrong estima-

tions and giving certain continuity to the algorithm in the
identification of the line, some statistical modifications are
introduced. Also the contribution of this step would be to
make the algorithm more robust against perturbations. The
modification takes into account results from previous cycles.
Two algorithm were comparatively tested.
a) Method of the affine data averaging.
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One defines an affine parameter λwith 0 ≤ λ ≤ 1 that
weighs present and past data in the estimation. It can be also
adapted in the commissioning phase and change conveniently
later in the context of a supervision program.
b) Method of the forgetting factor
Here λ has the same range as before, but the discard of past

data is not abrupt but exponential. So the influence of past
data vanish as the cycles goes on. Here the employment of a
forgetting factor λ has proved to be very effective although
also we have compared the results with averaging of past
data.
J) Adaptation of the confidence zone
It is important to adapt permanently the confidence zone,

because the conditions of the image are commonly change-
able. One possibility is to adjust the width in the proportion
of the speckle areas, or alternatively, the simple count of
the pixels conforming any contour gives idea of the order of
magnitude of the change of the width. Another possibility
could be to let the border lines of the confidence zone be
not parallel.
K) Take the next frame
Return to step A).

V. KINEMATICS FEATURE ABSTRACTION

The second function of the sensor concerns the kinematic
estimation from egomotion. Generally spoken, the previous
algorithm to estimate relative position of the line is taken as
basis to work up to a new combined procedure. Once again,
we will emphasize the requirements of real-time calculations
so as to estimate measures on line for a future guidance
control system. This goal is hard to achieve when parameters
have to be extracted from image processing on-line.
We here developed a kinematic algorithm which takes full

advantage of the previous geometric algorithm. The readers
are referred to [11] and [12] for more details.
The novelty in this work is the combination of the geom-

etry and the kinematics estimation in a complete sensor.
The key idea in this module is to define a search zone over

the patterned line and the overlapping the confidence zone
as close as possible (see Fig. 1). Inside it, there is a small
moving window in where the pattern matching of a template
will take place. This window slides slightly everywhere in
all directions to pattern matching, but always enclosed in the
search zone.
Clearly, the recognition of motion properties is related

to techniques of optical flow. Since in general common
optical flow techniques are markedly time-consuming and
considered not fit for control systems with rapid response,
we will develop a simple but robust correlation-based method
instead.
First, we describe features of the problematic in order to

afterwards be able to organize the estimation steps.

A. Attracted search zone

One of the problems to be tackled in our goal is to share
the search zone in the confidence zone when, for instance,
the line is moving fast in the vision frame. This can occur,
above all, when perturbations affect the control system and

control actions do not avoid that the line slides rudely from
the frame center. Obviously, this problem is quite alien to the
vision-based sensor. However it is aimed by design to confer
robust properties to search procedure, that makes the sensor
more reliable. To this goal the search zone is continuously
being attracted by the confidence zone. In that way, if the
line is visible in the frame through the confidence zone, a
pattern matching is possible.

B. Time scale correction
In order to avoid wrong velocity estimation due to per-

spective projection, and since the equations that relate the
intrinsic camera parameters with the parameters involved in
the projection of 3D scenes onto the image plane are strongly
non-linear (radial-and tangential-distortion effects), we have
aimed a much more simple solution to time scale counter-
balance. This consists in searching the patterns horizontally
at a constant height in the frame (see Fig. 1). This is carried
out basically when the line crosses completely the frame and
cuts the top and bottom borders of the frame. The criterion to
select the constant height to slide the search zone is oriented
twice, first to a good local vision quality in the frame (it is,
with an appropriate sharpness), and second to the stability
of the pattern matching.
In cloudy and blurred waters, the best image quality occurs

approximately just about the lower border of the frame
(minimal distance between camera and target), however by
large outgoing pattern velocities there exists the risk of
losing them and consequently causing the interruption of the
algorithm. For those reasons, the optimal region is defined
just beneath the horizontal middle line. It can also occur that
the line moves sidelong and cuts the left or right borders of
the frame. So, in this case we let the search zone to glide
vertically up and down following the center of the confidence
zone.

C. Pattern matching

Let us suppose the search region stays overlapping the
confidence zone and a template with a pattern was selected
in the moving window a sampling time before. This template
has specific coordinates (xt−1, yt−1). After ∆t seconds a
new frame enter the algorithm to be processed at the present
sampling time. So, the search zone slides eventually a bit so
as to overlap the new position of the confidence zone. Then
the moving window inside the search zone begins the match-
ing process by correlation between the previous template
and the window contents. Varying the template coordinates
for the moving window in all directions, a maximum of
the correlation is searched for. This maximum occurs by
successful matching, say at coordinates (xt, yt). From this
value on, an actual value of the velocity is estimated as the
incremental quotient v̂t =

(xt,yt)−(xt−1,yt−1)
∆t .

It is worth noticing that the estimation suffers from
quantification errors and false perspective appreciation which
are proper from 2D image approaches. In fact, effects of
radial and tangential distortions are not taken into account.
So the evolution of the estimates may be irregular and a
filtering is needed. This is accomplished in two ways. On one
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side, a filter of maximum difference is used to reduce high
fluctuations that appears in some cases concerning images
with elevated noise level (change of contrast, caustic waves,
etc.). On the other side, a strong perturbation may be induced
when the estimated position of the line is incorrect. In such
a cases, the calculated value v̂t is averaged with the previous
value v̂t−1.
Moreover, this filtering is not sufficient enough to smooth

the time evolution of v̂t according to the expected quality for
control purposes. Therefore a second filter with a forgetting
factor allows a much more soft time evolution.
It is to remark that the estimations are displacements

expressed in pixels, so the velocity is measured in units of
pixels/frame. Knowing the frames per second of the camera
, one can obtain velocity in units of pixels/second.
Finally, a commissioning face will allow us to determine

parameters to tune the algorithm in order to give the vehicle
velocity in the physical units meters per second. Among
these parameters are the altitude, the tilt angle of the camera,
the extrinsic and intrinsic parameters of the camera, and
proper parameters of the image processing. Moreover, it is
supposed that an autonomous vehicle possesses an autopilot
to regulate altitude as well as to select a proper camera tilt
angle according to a convenient shortsighted or large-sight
vision of the bottom scene. Due to space limitations in the
paper we will not address the calibration procedures here.

D. Algorithm to rate estimation
A) Initialization at first frame
The template is located at the confidence zone according

to possible displacement regions. The search zone is defined
for the next frame around template location.
B) Acquisition of a new frame
C) Estimation of line position and angle
Use algorithm for spatial feature abstraction
D) Pattern matching
Here a match based in correlation of the previous template

with contents in the moving window inside the search zone
is performed.
E) Kinematic feature estimation
Determination of the template displacement as the sliding

point that produces the maximum correlation value.
F) Apply "maximum difference" filter
G) Apply "statistic correction" filter"
H) Select new template
Calculation of coordinates of the search zone . Adjustment

of template initial position.
I) Return to step B)

VI. SUPERVISION ALGORITHM
It is quite important for successful vision-based control

applications that the sensor can give the controller a certain
confidence about the quality of measures.
In customary operations, pattern estimations may fail:

a) due to bad sporadic image quality or b) simply when
patterns actually ran over the frame. In order to identify
such conditions, supervision is needed. This should provide
a flag, to stop estimations of position and rate in the two

abnormal conditions, and also to continue estimating when
such conditions have disappeared (case a) or have been
remedied by control (case b).

A. Presence and quality detector
To this end, a new module that performs histogram-based

operations is included in the whole algorithm. It works upon
the observed fact that both images of patterns and of the sea
floor alone, have typically distinct statistic properties when
contrasted. For instance, as seen in Fig. 2, the histogram
of a pattern is typical bimodal (two local maximums) and
well extended over the range [0, 255] due the high contrast
between black and white zones. On the other hand, the
environment on the bottom has a narrow range of intensities
instead (one typical maximum) with poor contrast. This last
scenario can also appear by blurred image even when the
pattern is in focal plane.
Accordingly these differences will be exploited here for

detecting "pattern presence/absence" or "bad/good measure
quality".

Maximum

Maximum

H(k)H(k)

k k255 2550 0
Density Density MedianMedian

Fig. 2 - Left: histogram of sea floor. Right: histogram of
pattern

B. Algorithm for image classification
1) Calculate the histograms on ROI´s (Region of Interest)
around the estimated pattern

2) Find maximum value of histogram
3) Calculate density ρ around this maximum
4) Find median
5) Calculate standard deviation σ
6) If (σ > σmin) and (ρ < ρmax), one concludes the
pattern is visible in the ROI, otherwise the ROI only
contains image of the sea floor (sensor failure).

Parameters σmin and ρmax are adjusted according to the
underwater image quality. Typical experimental values were
found about 95% and 30 units, respectively.
Selected ROI´s are commonly set on the image corners

and center. Once the pattern is located again after a sensor
failure, estimation modules are reset and sensor continues
working in normal estimation mode.

VII. EXPERIMENTS
A. Setups
To test the vision-based approach, a series of experiments

in a test tank were set up. These consisted in the employment
of a subaquatic vehicle (AUV prototype, see Fig. 4) that
navigates by telecontrol, following a visible path on the tank
bottom. The vehicle possesses a wireless camera onboard
that transmits the images during the egomotion. For the path
tracking purposes a patterned line which is bent according
to any circuital form is employed (see Fig. 4). In many
performed experiments there were perturbations of wind
producing currents from some slanted direction, or of caustic
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waves on the floor produced by the sun rays at midday when
trespassing an undulating free surface.
One fact to be highlighted is the altitude of the vehicle

with respect to the bottom. Motived by the different states of
water transparency, we have mounted the vehicle motion at
two different constant altitudes. In the time the experiments
were realized the water transparency was changing from very
transparent to cloudy during the weeks. The results shown in
the paper, pertain to the first and the last phase. These in turn
have forced us to set the experiments up in a shortsighted
and longsighted vision-based navigation.
In order to evaluate the sensor performance for control

purposes in a closest-real environment, we took advantage
of the teleoperation which provided the image motion with
the line visualized inside the frames.

B. Position and rate identification
Several experiments were led with the described setups.

We will illustrate one of them in Fig. 5. Here some cycles
are selected to show the features of the sensor algorithm
in normal and critical situations. From the left and to the
right of the figure, we can see photograms of the line in a
shortsighted and longsighted orientation of the camera.

Floor

Fig. 3 - Experimental line for path tracking. Top: line in
air. Bottom: line in water

Fig. 4 - Navigation in open-air tank with reference line

The on-line estimation of the line is drawn in the image
together with its confidence zone according to the algorithm
described before. The rate of frames processing was about
10 frames per second which gives small sampling times
for control purposes at large cruise velocities in subaquatic
vehicles. However, when combining the position and the
kinematic jointly, the measurement rate is reduced in half
the time.
We now describe in more details the Fig. 5, left, cor-

responding to the navigation with shortsighted horizon. In

a) the position estimation gave a false line position, and
consequently the velocity value was incorrect in this frame.
In b), the rapid movement of vehicle produces a lost of
the line in the respective frame, thus also here nor a rate
estimation neither the line location was possible. Once a line
is well detected, the velocity estimation can be realized error
free. This occurred in c) where a good image arrived and
a successful estimation was resulted. In d), the estimation
is also correct although image quality decreases. A vertical
displacement restriction had occurred in e) when the line
moved sidelong to the right border of the frame. This
executed the pattern-matching process on the borders. In f)-
g) two scenarios are shown related to when the templates
came back in the center of the image and the search zone
had begun to slide horizontally for pattern matching.

Fig. 5 - Selected frames for navigation with shortsighted
and longsighted horizons

Similar results are shown in Fig. 5, right, for the
navigation with longsighted horizon. In a) the scenario
when the position estimation did not give the right line
location is illustrated, but the velocity estimation could be
realized anyway. In b), the search zone was attracted by
the confidence zone which crossed vertically the frame
causing the moving window to search for pattern over
the horizontal middle line. In c), the limit case is shown
when the confidence zone was moving to the right up to
touch the lateral border. Up to here the line began to cut
the lateral right border and from this time on the pattern
matching was consequently be accomplished sidelong. This
allowed continuity in the rate estimation. This last process
ended when the control forced the confidence zone to enter
again in the frame interior in direction to the left, see d)-e).
Here the search zone came down and slid over the middle
horizontal again. In f) the pattern went out of image because
of the poor quality of the frame, so the estimated values
became spurious until the pattern could be detected in g).
The navigation with camera in the longsighted orientation
seems to provide a wide vision field and so the line may
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be much better detected than in the case of shortsighted
horizon. Also the control could allow itself to compensate
large path errors due to strong perturbations. However this
scenario can change drastically by blurred waters in where
the altitude has to be diminished and the camera horizon
has to be tuned to a rather shortsighted vision as occurred
in our experimental case studies.

Fig. 6 - Estimation of the advance velocity from the
vision-based sensor in a shortsighted-horizon setup

Fig. 7 - Estimation of the advance velocity from the
vision-based sensor in a longsighted horizon setup

In Figs. 6 and 7 we will illustrate the evolution of the
final conditioned estimated rate in their components and
in the two cases related to shortsighted horizon (Fig. 6)
and longsighted horizon (Fig. 7). Moreover, for the sake of
clarity, there were indicated with marks the cases a) up to g)
for which the frames were shown in Fig. 5. Also windows (in
orange) showing the periods when the pattern matching was
accomplished on the lateral borders were indicated in both
figures. Similar indication in windows (in blue) was carried
out for the cases when the line got lost or could not being
identified from reasons of poor quality of the image. These
windows were located manually after seeing the processing,
and they helped us to analyze the flag evolution given by the
supervision algorithm.

Clearly, it can be seen that the continuity of the rate
estimation is maintained in the transitions when the search
zone moves horizontally and then slides vertically sidelong
and vice versa. However, when the line could not be located,

the estimation showed signs of instability, turning oscillatory
and irregular. This had occurred only in the longsighted
orientation of the camera. In this case, the flag indicating
estimation quality performs adequately almost all the time.
Incorrect matching cases from the main algorithm can not
be discriminate with the proposed supervision.

VIII. CONCLUSIONS
This paper was concerned with the design of a vision-

based algorithm for on-line estimation of position and rate
during path tracking of patterned lines. The algorithm em-
ployes techniques of pattern recognition with different de-
grees of morphological operations and pattern matching upon
image correlation. The developed techniques had shown to be
able to ensure continuity of the estimation even in blurred
waters. When sporadic failures causing lack of continuity
occur, an ad hoc supervision algorithm generates alarms
which would be necessary in a control context. Additionally,
it was established that the proper tuning of the camera
horizon is significant for the success of the estimations.
Ad hoc experiments with a subaquatic vehicle in a test
tank had shown the feasibility of our approach under strong
conditions of light perturbations and cloudy water. A vehicle
teleoperation for tracking of a patterned line on the floor,
provided the flow of frames in a closest-real environment
for the evaluation of the sensor performance.
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