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Abstract—This paper presents onboard capacity estimation 

algorithms for Li-ion batteries deployed in plug-in hybrid 

electric vehicles (PHEV) and electric vehicles (EV). Capacity 

estimation algorithms are developed based on an equivalent 

circuit model. The onboard estimation of battery capacity is 

treated separately for the driving mode and plug-in charge 

mode. Evaluation results on laboratory collected data and 

vehicle data show the effectiveness of the developed algorithms. 

I. INTRODUCTION 

lug-in hybrid electric vehicles (PHEV) and electric 

vehicles (EV) are of great interest in today’s automotive 

industry due to the urgent need for improved fuel economy 

and reduced emission. An efficient and reliable battery system 

is the key to the commercial success of PHEV and EV. Li-ion 

batteries provide higher power and energy densities than other 

existing batteries such as Ni-Mh and Ni-Cd systems [1-5], and 

become promising in the PHEV/EV applications. 

To achieve an optimized performance and a long operating 

life of a battery, the knowledge of battery state of health 

(SOH) is necessary in addition to the knowledge of battery 

state of charge (SOC). While control strategies are designed 

based on battery SOC for short term targets, they need to be 

adjusted based on battery SOH for long term objectives. 

There are two main aspects defining a battery’s SOH, that is, 

power capability and energy capability. For PHEV and EV 

applications, the energy capability, which determines the 

achievable electric range (the range achieved on electrical 

power solely) for a vehicle, is defined by the battery capacity. 

The battery capacity reflects how much energy in terms of 

Ampere-Hours can be stored into a fully charged battery, and 

thus is widely used as an indicator of battery SOH. As a 

battery ages, its capacity decreases, resulting in less energy. 

Given a specific driving profile, the loss of battery capacity 

leads to a reduced electric range for PHEV/EV. Numerous 

studies have shown the gradual fade of capacity over time for 

Li-ion batteries under extended cycling. However it is still an 

open topic to accurately estimate battery capacity in vehicles.  

Li-ion battery dynamic behavior is a result of a complex 

electrochemical process, which has proven difficult to 

establish a practical battery model for vehicle implementation 
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even after model simplification. Insufficient knowledge about 

Li-ion battery aging processes also challenges the design of 

accurate and robust battery capacity estimation algorithms. 

Traditionally the battery capacity can only be measured 

offline by depleting a fully charged battery with a certain 

current rate at a specific temperature. Obviously this method 

is impractical for in-vehicle applications. Furthermore since a 

full charge and discharge cycle can cause irreparable damage 

to the battery, the method is highly undesirable.  

There exist a number of approaches for battery capacity 

estimation in the literature. Most of the existing approaches 

[1-3] are either inaccurate or impractical for in-vehicle 

applications. Other methods [4-5] are based on the so-called 

battery life models, which are predetermined usage models, 

and have limited adaptability in the real life environment. 

Another type of battery model is based on the electrochemical 

and thermodynamics principles [6], where the finite element 

analysis method is applied to solve a set of PDEs that are 

established to describe the Li-ion battery dynamics. The 

model is very useful to help understand the battery dynamic 

behavior. However, it is difficult to use the model for battery 

capacity estimation directly.  

The electrical property of Li-ion batteries can be modeled 

as electrical circuits [7-9]. Typically, the open-circuit voltage 

is modeled as a capacitor or a voltage source. A resistor 

models the battery’s internal resistance. Additional circuit 

components, such as RC pairs, can be used to model the 

battery’s different dynamics. These types of models can be as 

complex or as simple as needed. The values of these electrical 

components such as resistors and capacitors are subject to 

temperature, SOC, and SOH. Capacity fade can be reflected 

through the change of some of the component values. 

This paper discusses several practical solutions to onboard 

battery capacity estimation based on an equivalent circuit 

model. Algorithms are developed separately for two different 

operation modes: the driving mode and plug-in charge mode. 

The algorithms are evaluated through laboratory collected 

aging data and vehicle data, showing good estimation results.  

II. BATTERY CIRCUIT MODEL 

As equivalent circuits are widely used to model different 

types of batteries as in [7-9], this paper uses this technique to 

characterize the electrical property of Li-ion batteries. In this 

paper, a second-order equivalent circuit model is adopted to 

describe the dynamics of Li-ion batteries. The order of the 

model is determined through a standard hybrid pulse power 

characterization (HPPC) test. Readers can refer to [12] for the 

details of model identification.  

The diagram of the second-order equivalent circuit model 
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with two RC pairs is shown in Fig. 1. The two-RC-pair 

equivalent circuit model captures two main chemical 

processes: the diffusion and double layer. In Fig. 1, 𝑅𝑐𝑡  is the 

charge transfer resistance, 𝐶𝑑𝑙  is the double layer capacitance, 

𝑅𝑑𝑓  is the diffusion resistance, and 𝐶𝑑𝑓  is the diffusion 

capacitance. The 𝑅𝑐𝑡 -𝐶𝑑𝑙  pair is used to account for the 

dynamics of the double layer, and the 𝑅𝑑𝑓 -𝐶𝑑𝑓  pair for the 

diffusion. In Fig. 1, 𝑉𝑜𝑐  is the open circuit voltage (OCV), and 

𝑅𝑜𝑕𝑚  is the ohmic resistance. The 𝑉𝑜𝑐  is divided into two 

parts: 𝑉𝑜  and 𝑉𝑕 , where 𝑉𝑜  is the thermodynamic voltage 

which has a one-to-one relationship to SOC, and 𝑉𝑕  

represents the battery hysteresis voltage. The equivalent 

circuit model can represent both manganese-based Li-ion 

batteries and iron phosphate Li-ion batteries [12], while the 

hysteresis effect of manganese-based Li-ion batteries is 

negligible. In this paper, the discussion will be focused on 

manganese-based Li-ion batteries. Therefore, it is noted that  

𝑉𝑜𝑐 = 𝑉𝑜  as 𝑉𝑕 = 0 for manganese-based Li-ion batteries. 

 
Fig. 1.  The two-RC-pair battery circuit model for a Li-ion battery. 

 

Battery capacity is defined as the stored charge in a fully 

charged battery, and SOC defines the remaining charge as a 

percentage of the capacity. With less capacity, the battery 

tends to store less charge in terms of Ampere-Hours (AH) at 

the same SOC level. It is also known that SOC is a monotonic 

function of OCV, i.e. a higher OCV indicating a higher SOC 

level. In other words, given the same OCV, an old battery 

with less capacity has less remaining charge than a new 

battery with more capacity. This observation is consistent 

with the well-known fact that the terminal voltage of a battery 

with less capacity tends to increase faster with the same 

amount of charge. It is further implied that capacity correlates 

with the change of OCV against current integration, i.e., 

∆𝑉𝑜𝑐 ∆𝑆 , where ∆𝑆 =  𝐼(𝑡)𝑑𝑡
𝑡=𝑡𝑓
𝑡=𝑡0

 represents the current 

integration or charge accumulation over a certain time period 

[𝑡0, 𝑡𝑓]. This fact will be used as the basis for the development 

of capacity estimation algorithms in this paper. 

It is also noticed that battery capacity is temperature 

dependent, as shown in Fig. 2. The estimated capacity reflects 

the actual capacity under the present temperature. In order to 

be used as a temperature-independent SOH index, the 

capacity estimated in real time needs to be normalized to a 

pre-defined temperature (e.g. 25ºC). The normalization can 

be done through a lookup table that maps the actual capacity 

to the normalized capacity in terms of temperatures. Such a 

lookup table can be established via experiments. 

 
Fig. 2.  Measured capacity at different temperatures for a Li-ion battery. 

 

As illustrated by Fig. 1, the battery terminal voltage 

consists of four parts, which can be expressed as 

 

𝑉(𝑘) =  𝑉𝑜𝑐 (𝑘) + 𝐼(𝑘)𝑅𝑜𝑕𝑚 + 𝑉𝑑𝑙 (𝑘) + 𝑉𝑑𝑓 (𝑘)        (1) 

 

where 𝑉𝑜𝑐  is the OCV, 𝑅𝑜𝑕𝑚  is the ohmic resistance, and 𝑉𝑑𝑙  

and 𝑉𝑑𝑓  (voltages across the two RC pairs) are the double 

layer voltage and the diffusion voltage, respectively. It should 

be noted that the change of 𝑉𝑜𝑐 , i.e. ∆𝑉𝑜𝑐 , is essential to 

capacity estimation. Therefore, in (1)  𝑉𝑜𝑐  is not modeled as a 

constant parameter anymore, but a time varying signal. 

As the battery capacity correlates with the change of OCV 

against current integration, we introduce a new parameter 

𝑕 = ∆𝑉𝑜𝑐 ∆𝑆 , which represents the change rate of OCV 

under a certain amount of current integration. From the 

discussion above, it is concluded that 𝑕  is related to the 

battery capacity and can be used to infer the battery capacity. 

III. ESTIMATION IN THE DRIVING MODE 

In the driving mode, the current varies as the power 

requirement from the electric propulsion changes. The current 

can be modeled as the input of the battery dynamic system. 

The voltage follows the current and is the output of the 

system. The frequent power transfer to/from batteries offers 

rich signal excitation to estimate the model parameters. Based 

on the two-RC-pair equivalent circuit model, two algorithms 

are developed to estimate capacity for the driving mode. 

A. One Stage Estimation 

Following the discussion in [12], we have equations in the 

state space form to model the two-RC-pair equivalent circuit 

model in the discrete time domain, given by 

 

 
𝑉𝑑𝑙  𝑘 

𝑉𝑑𝑓  𝑘 
 = 𝐴  

𝑉𝑑𝑙  𝑘 − 1 

𝑉𝑑𝑓  𝑘 − 1 
 + 𝐵𝐼 𝑘 − 1  

𝑉 𝑘 − 𝑉𝑜𝑐 (𝑘) = 𝐶  
𝑉𝑑𝑙  𝑘 

𝑉𝑑𝑓  𝑘 
 + 𝐷𝐼(𝑘)                          (2) 
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where 𝐴 = diag(𝑎1 ,  𝑎2), 𝐵 =  𝑏1 𝑏2 
𝑇, 𝐶 =  1 1 , and 

𝐷 = 𝑅, and 

 

𝑎1 = exp −∆𝑡/(𝑅𝑐𝑡𝐶𝑑𝑙 )                             

𝑏1 = 𝑅𝑐𝑡 1 − exp −∆𝑡/(𝑅𝑐𝑡𝐶𝑑𝑙 )   

𝑎2 = exp −∆𝑡/(𝑅𝑑𝑓𝐶𝑑𝑓 )                  

𝑏2 = 𝑅𝑑𝑓  1 − exp −∆𝑡/(𝑅𝑑𝑓𝐶𝑑𝑓 )              (3) 

 

and ∆𝑡 is the sampling time. The difference between (2) and 

the equations described in [12] is that in (2) 𝑉𝑜𝑐  is not a 

constant, but a signal. This is because in order to capture the 

change of OCV for capacity estimation, the OCV cannot be 

modeled as a constant anymore. 

The transfer function from the battery terminal current to 

the battery terminal voltage can be expressed as 

 

𝑉 𝑧 − 𝑉𝑜𝑐 (𝑧) = 𝐶 𝑧𝐼2×2 − 𝐴 −1𝐵𝐼(𝑧) + 𝐷𝐼(𝑧) 

=  
𝑏1 𝑧− 𝑎2 +𝑏2(𝑧− 𝑎1)

(𝑧− 𝑎1) 𝑧− 𝑎2 
+ 𝑅 𝐼 𝑧         (4) 

 
By taking the inverse 𝑧-transform, the discrete-time model 

can be organized into the following difference equation: 
 

𝑉 𝑘 =  𝑎1 + 𝑎2 𝑉 𝑘 − 1 − 𝑎1𝑎2𝑉 𝑘 − 2 + 𝑅𝐼 𝑘  
+ 𝑏1 − 𝑏2 −  𝑎1 + 𝑎2 𝑅 𝐼 𝑘 − 1                   
+ 𝑎1𝑎1𝑅 − 𝑏1𝑎2 − 𝑏2𝑎1 𝐼 𝑘 − 2 + 𝑉𝑜𝑐 (𝑘) 

       − 𝑎1 + 𝑎2 𝑉𝑜𝑐 (𝑘 − 1) +𝑎1𝑎2𝑉𝑜𝑐 (𝑘 − 2).             (5) 

 

According to the definition of capacity and SOC, we have 

the following equation:  

 

𝑄 = ∆𝑆 ∆SOC                                   (6) 

 

where 𝑄  denotes the battery capacity, ∆𝑆  is the current 

integration or charge accumulation, and ∆SOC  denotes the 

change in SOC cause by ∆𝑆 . With the new parameter 

𝑕 = ∆𝑉𝑜𝑐 ∆𝑆  introduced in Section II, we rewrite (6) into 

 

𝑄 = ∆𝑆 ∆SOC = ∆𝑉𝑜𝑐 (∆SOC ∗ 𝑕).              (7) 
 

 
Fig. 3.  SOC versus OCV curves at different temperatures. 

 

It can be seen from (7) that the capacity 𝑄 is inversely 

proportional to 𝑕 and can be calculated from 𝑕, if ∆𝑉𝑜𝑐 ∆SOC  

is known. In theory ∆𝑉𝑜𝑐 ∆SOC  defines the slope of the OCV 

versus SOC curve, which can be obtained from experiments, 

as shown in Fig. 3. A lookup table covering the values of  

∆𝑉𝑜𝑐 ∆SOC  at various SOC and temperatures can thus be 

established. Now the problem of capacity estimation becomes 

to estimate the parameter 𝑕. Once 𝑕 is known, the capacity 

can be calculated using (7) and the lookup table.  

As 𝑕 correlates with the change of OCV, the difference 

equation (5) is written in the form of the voltage increment: 

∆𝑉 𝑘 = 𝑉 𝑘 − 𝑉 𝑘 − 1 . From (5), it follows that  

 

∆𝑉 𝑘 =  𝑎1 + 𝑎2 ∆𝑉 𝑘 − 1 −𝑎1𝑎2∆𝑉 𝑘 − 2 + 𝑅𝛥𝐼 𝑘  
+ 𝑏1 + 𝑏2 − (𝑎1 + 𝑎2)𝑅 ∆𝐼 𝑘 − 1         
+ 𝑎1𝑎2𝑅 − 𝑎2𝑏1 − 𝑎1𝑏2 ∆𝐼 𝑘 − 2 + Δ𝑉𝑜𝑐  𝑘         
− 𝑎1 + 𝑎2 Δ𝑉𝑜𝑐  𝑘 − 1 +𝑎1𝑎2Δ𝑉𝑜𝑐  𝑘 − 2        (8) 

 

where 𝛥𝑉𝑜𝑐  𝑘 = 𝑉𝑜𝑐  𝑘 − 𝑉𝑜𝑐  𝑘 − 1 . Note that 

 

𝑕 = ∆𝑉𝑜𝑐 (𝑘) ∆𝑆 𝑘 = ∆𝑉𝑜𝑐 (𝑘) (𝐼(𝑘 − 1)  ∆𝑡)      (9) 

 

Substituting (9) into (8), we rewrite (8) as 

 

∆𝑉 𝑘 =  1 −  𝑎1 + 𝑎2 + 𝑎1𝑎2 𝑕𝐼 𝑘 − 1 ∆𝑡                          
+ 𝑎1 + 𝑎2 ∆𝑉 𝑘 − 1 −𝑎1𝑎2∆𝑉 𝑘 − 2 + 𝑅𝛥𝐼 𝑘               

  +[𝑏1 + 𝑏2 − (𝑎1 + 𝑎2)R +  𝑎1 + 𝑎2−𝑎1𝑎2 𝑕∆𝑡]∆𝐼 𝑘 − 1  
+ 𝑎1𝑎2𝑅 − 𝑎2𝑏1 − 𝑎1𝑏2−𝑎1𝑎2𝑕∆𝑡 ∆𝐼 𝑘 − 2               (10) 

 

which can be written into the following compact form: 

 

∆𝑉 𝑘 = 𝜃𝑇𝜙(𝑘).                             (11) 

 

In (10), 𝜙 𝑘  is a vector of known signals defined as 

 

𝜙 𝑘 = [𝐼 𝑘 − 1 ∆𝑡, ∆𝑉 𝑘 − 1 , ∆𝑉 𝑘 − 2  
∆𝐼 𝑘 , ∆𝐼 𝑘 − 1 , ∆𝐼 𝑘 − 2 ]𝑇 ,              (12) 

 

where ∆𝐼 𝑘  =  𝐼 𝑘 − 𝐼 𝑘 − 1 , and 𝜃 = [𝜃1, 𝜃2, … , 𝜃6]𝑇  is 

a vector of unknown parameters. From (10), the elements of 𝜃 

can be derived as follows: 

 

𝜃1 =  1 −  𝑎1 + 𝑎2 + 𝑎1𝑎2 𝑕                                      
𝜃2 = 𝑎1 + 𝑎2                                                                       
𝜃3 = −𝑎1𝑎2                                                                        
𝜃4 = 𝑅                                                                                 
𝜃5 = 𝑏1 + 𝑏2 − 𝑎1R − 𝑎2R +  𝑎1 + 𝑎2−𝑎1𝑎2 𝑕∆𝑡  
𝜃6 = 𝑎1𝑎2𝑅 − 𝑎2𝑏1 − 𝑎1𝑏2−𝑎1𝑎2𝑕∆𝑡.                      (13) 

 

The parameters in 𝜃 change with SOC and temperature, but 

can be assumed constant in a small region of SOC and 

temperature. From (13), it follows that 𝑕 can be inferred as 

 

𝑕 = 𝜃1 (1 − 𝜃2 − 𝜃3)                         (14) 
 

 The task now becomes to estimate 𝜃 from the measured 

terminal voltage and terminal current. The estimated 𝜃 is then 
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used to calculate 𝑕 and in turn correlate with battery capacity. 

Many recursive estimation algorithms can be applied to 

estimate 𝜃. In this paper, the U-D factorization-based RLS 

estimation method [10-11] is used to estimate the battery 

parameters in (11). In the U-D factorization-based method, 

the positive definite covariance matrix 𝑃  is factorized as 

𝑃 = 𝑈𝐷𝑈𝑇 , where 𝑈 is an upper triangular matrix and 𝐷 is a 

diagonal matrix. The matrix 𝑃  is not updated directly, 

instead, it is updated through multiplication of the updated 

values of 𝑈 and 𝐷. The U-D factorization-based RLS method 

has been successfully used in many industrial applications 

due to its computational efficiency and stability. Assuring the 

positive-definiteness and symmetry of the covariance matrix, 

the method can achieve high estimation accuracy and 

robustness. To compensate for shifting of 𝜃 due to the change 

of the operation condition, a forgetting factor is introduced. 

Given a sequence of current 𝐼(𝑘) and voltage 𝑉(𝑘), the 

one stage estimation algorithm includes the following steps: 

Step 1: The algorithm starts with initialization. Read V(k) 

and I(k), k=1,2. Set initials for θ as the estimate of 

last operation from nonvolatile memory (NVM). 

Set appropriate 𝑈 and 𝐷 for the initial covariance 

matrix. Set a forgetting factor 0 < λ ≤ 1. 

Step 2:  Read a new pair of data V(k) and I(k). 

Step 3: Update 𝜙(𝑘) using the present data V(k) and I(k), 

and the previous V(k-1), V(k-2), I(k-1) and I(k-2). 

Step 4:  Let 𝛼0 = 𝜆. Define two vectors 𝑓 and 𝑔 as 

 

𝑓 =  𝑓1 , … , 𝑓𝑛  
𝑇 = 𝑈𝑇(𝑘 − 1)𝜙( 𝑘  

𝑔 =  𝑔1 , … , 𝑔𝑛  
𝑇 = 𝐷(𝑘 − 1)𝑓.            (15) 

 

Step 5: For 𝑗 = 1,2, … ,6, go through Step 5.1-5.2. 

 Step 5.1: Compute the following: 

 

𝛼𝑗 = 𝛼𝑗−1 + 𝑓𝑗𝑔𝑗                  

𝐷(𝑘)𝑗𝑗 = (𝛼𝑗−1𝐷 𝑘 − 1 𝑗𝑗 )/(𝛼𝑗𝜆) 

𝑏𝑗 = 𝑔𝑗                                  

𝑐𝑗 = −𝑓𝑗 /𝛼𝑗−1.                              (16) 

 

 Step 5.2: For 𝑖 = 1,2, … , 𝑗 − 1, go to Step 5.2.1 (if 

𝑗 = 1, skip Step 5.2.1). 

Step 5.2.1: Compute the following: 

 

𝑈(𝑘)𝑖𝑗 = 𝑈(𝑘 − 1)𝑖𝑗 + 𝑏𝑖𝑐𝑗  

𝑏𝑖 = 𝑏𝑖 + 𝑈(𝑘 − 1)𝑖𝑗 𝑏𝑗 .          (17) 

 

Step 6: Compute 𝐿(𝑘) = [𝑏1 , … , 𝑏𝑛]𝑇/𝛼𝑛 . 

Step 7: Compute the estimation error as 

 

𝛽 𝑘 = ∆𝑉 𝑘 − 𝜃𝑇 𝑘 − 1 𝜙((𝑘).         (18) 

 

Step 8: Update θ to minimize the estimation error 𝛽 by 

 

𝜃 𝑘 = 𝜃 𝑘 − 1 + 𝐿 𝑘 𝛽(𝑘).             (19) 

 

Step 9: Calculate the parameter 𝑕 from (14). 

Step 10: Infer the capacity 𝑄 from the table of ∆𝑉𝑜𝑐 ∆SOC . 

Step 11: Determine the validity of the capacity estimate. If 

it is valid, normalize 𝑄 in terms of temperature. 

Step 12: If it is the end of operation, save θ to NVM for 

next operation. Otherwise, save V(k) and I(k) for 

next update. Go to Step 2 and continue the update. 

B. Two Stage Estimation 

A two stage capacity estimation algorithm is developed for 

the driving mode too. In the first stage, the OCV is estimated 

from terminal voltage and current. Readers can refer to [12] 

for the details of onboard estimation of OCV. From the 

definition of capacity given by (6), the capacity can be 

calculated from ∆𝑆 and ∆SOC. As suggested in the literature, 

the OCV monotonically increases with SOC. Therefore in the 

second stage, we use the OCV estimated from the first stage 

to get SOC information through an SOC-versus-OCV lookup 

table. Then the battery capacity is calculated as below: 

 

𝑄(𝑘) =
 𝐼(𝑖)𝛥𝑡𝑘−1
𝑖=1

SOC  𝑘 −SOC (1)
                        (20) 

 

It is noted that the SOC used in (21) for estimating capacity 

has to be a voltage-based SOCV, which is inferred from OCV 

estimated in the first stage. The current-integration-based 

SOCI is not suitable for capacity estimation, because it 

requires the knowledge of capacity a priori to calculate SOCI. 

It is worth mentioning that the combined SOC as a weighted 

average of SOCv and SOCI in [12] is also not suitable for 

capacity estimation, because the inclusion of SOCI forms a 

positive feedback loop and the capacity estimate is unable to 

recover from an incorrect initial capacity. However, the 

fluctuation in the OCV estimate may cause additional noise in 

the capacity estimate. Appropriate validity check and filtering 

schemes have to be designed accordingly to maintain the 

stability and robustness of the algorithm. 

The two stage estimation consists of the following steps: 

Step 1: Estimate OCV in real time from V(k) and I(k). 

Step 2: Monitor the OCV validity signal for it becoming 

true for the first time. Save the SOCV as SOC(1) 

and start counting charge. 

Step 3: Keep accumulating Charge as new current data 

come in. If the OCV validity signal is true, use the 

SOCV at that moment as SOC(k), and calculate the 

capacity 𝑄 using (21). Set an output enabling flag 

true if there are enough updates. Continue Step 3 

until the end of operation. 

Step 4: If the output enabling flag is true, normalize 𝑄 in 

terms of temperature. 

 

The two algorithms for the driving mode are based on the 

same definition given in (6) and the same assumption that the 

relationship between OCV and SOC remains unchanged 

when a battery ages. The difference lies in that the one stage 

estimation algorithm accumulates ∆𝑆 only for one sampling 

time interval, while the two stage estimation algorithm 
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accumulates ∆𝑆 all the time since the OCV validity signal 

becomes true for the first time. Obviously the one stage 

estimation is more robust to the charge accumulation error 

caused by sensor imperfection. However, the tradeoff is that a 

local estimate of 𝑕  based on a small ∆𝑆  may have large 

fluctuation. Therefore, the two stage estimation is more stable 

in the sense that the capacity estimate stays in a smaller band 

during one entire driving cycle. In our design, the capacity 

estimates from both algorithms are combined via an adaptive 

weighting scheme for increased stability and robustness.  

IV. ESTIMATION IN THE PLUG-IN CHARGE MODE 

In the plug-in charge mode, the current is always in one 

direction and remains almost constant. Therefore the current 

can be considered as a DC current. Online recursive parameter 

estimation methods cannot be applied because there is no 

enough signal excitation for parameter convergence. Recall 

the two-RC-pair equivalent circuit model in (1). The dynamic 

voltages 𝑉𝑑𝑙 (𝑘) and 𝑉𝑑𝑓 (𝑘) modeled by the RC pairs saturate 

after an initial time period in the plug-in charge mode. As the 

equivalent circuit model reaches steady state, the capacitors in 

the RC pairs can be considered an open circuit. Consequently 

the model described by (1) can be reduced into 

 

𝑉𝑜𝑐 (𝑘) = 𝑉 𝑘 − 𝐼 𝑘 𝑅                           (21) 

 

where 𝑅 denotes the sum of 𝑅𝑜𝑕𝑚  and the resistors in the RC 

pairs. The values of all the resistors can be estimated by a 

battery parameter estimation algorithm in the driving mode 

where there is enough signal excitation, such as the one 

presented in [12]. These values are stored in NVM, and will 

be read to calculate 𝑅 during the charge mode. It is noted that 

all the resistance values are temperature dependent and need 

to be normalized to a certain temperature before being stored 

into NVM. After reading the normalized resistance values 

from NVM, the capacity estimation algorithm also needs to 

reverse the normalization based on the present temperature to 

have a temperature dependent 𝑅. Since 𝑅 cannot be updated 

during plug-in charge, an assumption is needed, that is, 𝑅 will 

remain constant during plug-in charge. This assumption is 

satisfied within a certain range of SOC based on the 

experiments conducted on manganese-based Li-ion batteries. 

Such a range needs to be defined and calibrated for different 

batteries and plug-in charge strategies. 

The capacity estimation algorithm in the plug-in charge 

mode consists of the following steps: 

Step 1: In the plug-in charge mode, wait for a prescribed 

time period until double layer voltage and diffusion 

voltage saturate. Calculate normalized 𝑅 from the 

normalized resistance in NVM. Conduct inverse 

normalization to get 𝑅  at the present temperature. 

Step 2: Read V(k) and I(k). Calculate OCV based on (21). 

Find the corresponding SOC through a lookup 

table. If SOC is within a predefined range, go to 

Step 3. Otherwise repeat Step 2. 

 
(a) Trajectory of capacity estimate from one stage estimation 

 
(b) Trajectory of capacity estimate from two stage estimation 

 

 
(c) Combined capacity estimate in the driving mode with its validity signal 

Fig. 4.  Algorithm evaluation for the driving mode with vehicle data. 

 

Step 3: Start counting charge until OCV (i.e. SOC) reaches 

a specified threshold. Note that the threshold 

depends on the present temperature. 

Step 4: Calculate battery capacity based on (20). Normalize 

the capacity to a defined temperature. 

The algorithm is sensitive to current sensor accuracy. 

However, from many evaluation results, the algorithm shows 
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the ability to capture capacity fade very well and good 

robustness to the variation in 𝑅, as well as strong stability. 

 

The estimated capacity is always blended with the past 

information stored in NVM. Different weights should be set 

for different algorithms for blending. The underlying 

principle is that the more frequently an algorithm gets a 

capacity update, the more its output should be weighted. 

V.  RESULTS 

The algorithms are evaluated with laboratory collected data 

and vehicle data. Fig. 4 shows the capacity estimation result 

from real vehicle driving data, for both algorithms for the 

driving mode. The measured capacity is 13.3AH, which is 

used as a reference value. Fig. 4(a) shows the convergence of 

the capacity estimate to the true capacity value for the one 

stage estimation. Fig. 4(b) shows the result from the two stage 

estimation. The algorithm starts to output a capacity estimate 

after 3,950 seconds when output enabling flag becomes true. 

The convergence speed is determined by the excitation level 

of SOC, which is dependent on the driving profile. Frequent 

updates of battery capacity are unnecessary as capacity 

changes slowly over the time. Fig. 4(c) shows a weighted 

combination of the two algorithms. The validity signal for the 

combined capacity estimate is also shown in Fig. 4(c). 

 
Fig.5.  Algorithm evaluation for the plug-in charge mode with vehicle data. 

 

Fig. 5 shows the evaluation result of the algorithm for the 

plug-in charge mode. The measured capacity of the pack is 

45AH. The algorithm starts to output a capacity estimate after 

13,000 seconds when OCV reaches a pre-defined threshold. 

Meanwhile the validity signal is set true as shown in Fig. 5. 

Fig. 6 shows the evaluation results on accelerated aging 

data sets. In the accelerated aging test, the battery is cycled at 

high temperatures. Periodically the test is paused for checking 

capacity and collecting data excited by driving profiles. The 

data are fed to the algorithms and the estimated capacity is 

compared with the measured capacity for evaluation. Fig. 6 

shows that the estimated capacity closely tracks the capacity 

fade as the battery ages. 

 

 
Fig. 6.  Evaluation results with accelerated aging data. 

 

VI. CONCLUSION 

In the paper, the capacity estimation for Li-ion batteries in 

PHEV/EV applications is studied. The focus is on the 

development of onboard algorithms for in-vehicle 

applications. Three algorithms are developed for the driving 

mode and the plug-in charge mode, respectively. The 

developed algorithms have been evaluated through laboratory 

collected data and vehicle data. The evaluation results 

demonstrate the close tracking of the measured capacity in 

terms of different ages of batteries. 
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