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Abstract—Battery state of charge (SOC) is a critical 

parameter for the control of propulsion systems in plug-in 

hybrid electric vehicles (PHEV) and electric vehicles (EV). As 

SOC is not measureable during vehicle operation, an onboard 

adaptive algorithm is developed in this paper. The algorithm 

estimates six electrical parameters for Li-ion batteries and 

provides a reliable SOC based on one of the estimated battery 

parameters, i.e. open circuit voltage (OCV). Simulation and 

vehicle validation results show good robustness and adaptation 

of the algorithm with high computational efficiency and low 

implementation cost. 

I. INTRODUCTION 

ecently Li-ion batteries become promising as an energy 

storage component in plug-in hybrid electric vehicles 

(PHEV) and electric vehicles (EV). In order to better control 

the propulsion system in PHEV/EV, accurate knowledge of 

battery state of charge (SOC) is necessary. Battery SOC 

defines the remaining charge as a percentage of the stored 

charge in a fully charged battery [1-5]. However, battery SOC 

cannot be measured during vehicle operation. It can only be 

obtained through onboard estimation.  

A battery parameter that is directly related to battery SOC 

is the open circuit voltage (OCV), which is the steady 

terminal voltage of a battery in open circuit. The OCV 

increases as battery SOC increases. The relationship between 

OCV and SOC can be acquired through experiments. The 

knowledge of other battery parameters is important to 

diagnostics and power management as well. 

For some Li-ion batteries such as the iron phosphate Li-ion 

battery, a flat mapping curve from the OCV to battery SOC 

makes the SOC estimation even more difficult. Since the 

OCV is obscured by other dynamic voltage components 

under load, to get an accurate OCV estimate, the battery 

parameter estimation algorithm needs to subtract all the 

accountable voltage components from the terminal voltage. 

This requires a powerful algorithm to extract more battery 

parameters corresponding to more voltage components with 

high efficiency and accuracy. In consideration of the 

measurement error from in-vehicle sensors, it requires the 

algorithm be highly robust to initial conditions, environment 

variations, and measurement noise. 
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There are a few methods in the literature on battery SOC 

estimation [1-7]. The most common method is based on 

Coulomb counting due to its simplicity for implementation. 

However, this method has two issues that largely limit its 

application to PHEV/EV. First, the Coulomb counting 

method has to start from a correct initial SOC, which is not 

always known. Second, the error will accumulate over time 

because of the presence of sensing errors. The magnitude of 

the error is dependent on sensor accuracy, current magnitude, 

and trip length. Moreover the Coulomb counting method 

requires the knowledge of battery capacity and does not have 

the ability to recover from a wrong SOC value. Another well 

known method is voltage based SOC correction as in [1]. In 

general an equilibrium voltage is measured after the battery 

rests for a long time (typically several hours), and is 

considered as the OCV. The OCV is then used to find the 

correct SOC through a lookup table. However, such a 

several-hour rest is very rare in the PHEV and EV 

applications. Recently, new methods estimating OCV online 

and inferring SOC from the estimated OCV have been 

developed in [2-3]. Similar methods that treat the OCV as an 

internal variable and estimate SOC directly from a battery 

model have also been developed in [4-5]. These methods 

open the door to the design of onboard battery SOC 

estimation algorithms. Other methods based on reduced 

electrochemical models are also introduced as in [6-7]. 

This paper proposes a practical approach to extract all six 

internal parameters adaptively from a second-order Li-ion 

battery model, which is identified and validated with lab 

collected data. Battery OCV, as one of the six parameters, is 

used to further infer battery SOC. Other parameters, such as 

the ohmic resistance and the time constants of diffusion and 

double layer, can be used for onboard diagnostics and power 

prediction (which will not be covered in this paper due to the 

space limit). The approach applies a well-known recursive 

least square (RLS) estimation technique [12-13] to the battery 

parameter estimation problem for two purposes.  

The first purpose is to adaptively estimate more battery 

parameters in real time for SOC estimation and other 

potential applications with less predetermined look-up tables. 

Such a solution offers better adaptation to the environment 

and driving conditions. Meanwhile as an onboard application, 

the algorithm has to be designed for high computational 

efficiency as well as low implementation cost. The second 

purpose is to achieve high accuracy and robustness in battery 

parameter estimation, especially for the OCV. This is a 

necessary condition of providing an accurate and reliable 

SOC for battery control and electrical power management.  
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II. BATTERY MODEL IDENTIFICATION 

Equivalent circuit models [2-3, 5, 8-11] can be used to 

represent the electrical property of Li-ion batteries. The OCV 

can be modeled as a high-valued capacitor or a voltage 

source. The remainder of the equivalent circuit includes a 

battery’s ohmic resistance and one or several RC pairs, which 

characterize different battery dynamics such as the double 

layer effect and the diffusion effect. The order of the 

equivalent circuit model order should be determined by a 

tradeoff between the model complexity and precision.  

A. Model Order 

To determine the order of a battery model, we use the 

hybrid pulse power characterization (HPPC) test data. The 

HPPC profile that is designed to evaluate dynamic power 

capability consists of repetitions of a discharge pulse and a 

charge pulse at different temperatures, current rates, and SOC 

levels [15]. For each repetition, the HPPC test cycles batteries 

with a 10 second discharge pulse (with a current rate being 

10C/5C/3C) followed by a same rate 10 second charge pulse. 

The test is conducted on different types of Li-ion. Fig. 1 

shows the voltage response to a pair of 3C discharge and 

charge pulses at 5% SOC for a manganese-based Li-ion 

battery. Fig. 2 shows the voltage response to a pair of 5C 

discharge and charge pulses at 65% SOC for an iron 

phosphate Li-ion battery. 

The discrete time model of Li-ion batteries can be 

represented by a difference equation, which can be written 

into a general form as: 

 

𝑉 𝑘 = 𝜃𝑇𝜑(𝑘)                              (1) 

 

where 𝑉(𝑘) is the measured battery terminal voltage, 𝜑 𝑘  is 

a vector of measured data and known signals consisting of 

terminal voltage and current as well as known constants, 𝜃 is 

a vector of parameters to be estimated, and 𝑘 indicates the 

time step. In particular, for a first order battery model, 𝜃 is a 

vector of four parameters as 𝜃 = [𝜃1, 𝜃2, 𝜃3, 𝜃4]𝑇 , and the 

corresponding vector of signals and known constants is 

𝜑 𝑘 = [𝑉 𝑘 − 1 , 𝐼 𝑘 , 𝐼 𝑘 − 1 , 1]𝑇 , where 𝐼(𝑘)  is the 

measured battery terminal current. Similarly, for a second 

order battery model, 𝜃 becomes a vector of six parameters as 

𝜃 = [𝜃1, 𝜃2, 𝜃3 , 𝜃4, 𝜃5, 𝜃6]𝑇 . The vector of signals and known 

constants becomes 𝜑(𝑘) = [𝑉 𝑘 − 1 , 𝑉 𝑘 − 2 , 𝐼 𝑘 , 𝐼 𝑘 −
1, 𝐼𝑘−2,1]𝑇. 

Battery models with different orders have been established 

and simulated against the HPPC data. As shown in Fig. 1 and 

Fig. 2, a second-order linear model closely matches the 

battery dynamic behavior characterized by the HPPC test 

data, while a first-order model is proved not to able to capture 

the dynamic response of the voltage. The explicit expression 

of a second order battery model can be rewritten as  

 

𝑉 𝑘 = 𝜃1𝑉 𝑘 − 1 +𝜃2𝑉 𝑘 − 2 + 𝜃3𝐼 𝑘  
           +𝜃4𝐼 𝑘 − 1 + 𝜃5𝐼 𝑘 − 2 + 𝜃6.             (2) 

 

It is verified that the second-order model fits the HPPC data 

very well for all test conditions. The model parameters vary 

with temperature, SOC and battery ages as well. However, 

compared with the time constants of battery dynamics, the 

parameters are slow time-varying and can be treated as local 

constants that change slowly with time. Therefore the 

dependence of the parameters on temperature, SOC, and 

battery degradation is handled via a forgetting factor. 

B. Battery Parameter Identification 

The parameters 𝜃 in (2) need to be associated with battery 

electrical parameters such as OCV and the ohmic resistance. 

After a parameter estimation algorithm estimates 𝜃 based on 

(2), the battery electrical parameters can be inferred from 𝜃.  

 
Fig. 1.  Matching of model output and HPPC data for a manganese-based 

Li-ion battery at 20°C and 5% SOC. 

 
Fig. 2. Matching of model output and HPPC data for an iron phosphate Li-ion 

battery at 25°C and 65% SOC. 
 

It is known that two main chemical processes determine the 

dynamic response of Li-ion batteries, that is, the diffusion and 

double layer. Consequently the battery terminal voltage 

consists of four parts, which can be expressed as 

 

𝑉(𝑘) =  𝑉𝑜𝑐 + 𝐼(𝑘)𝑅𝑜𝑕𝑚 + 𝑉𝑑𝑙 (𝑘) +  𝑉𝑑𝑓 (𝑘)        (3) 

 

where 𝑉𝑜𝑐  is the OCV, 𝑅𝑜𝑕𝑚  is the ohmic resistance, and 𝑉𝑑𝑙  

and 𝑉𝑑𝑓  (voltages across the two RC pairs) are the double 
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layer voltage and the diffusion voltage, respectively. It is 

worth mentioning that each of two chemical processes is not 

necessarily to be characterized by one RC pair. In fact the 

chemical processes are more complicated than a linear 

representation and there are more than two chemical 

processes that affect the battery dynamic behavior. 

 

 
Fig. 3.  The two-RC-pair battery circuit model for a Li-ion battery. 

 

As shown in the previous section, the dynamic behavior of 

a Li-ion battery can be characterized as a second-order system 

approximately. In [4-5], equivalent circuits are used to model 

different types of batteries. This paper uses the same 

technique to model the Li-ion battery electrical property. To 

characterize a second-order system, a two-RC-pair equivalent 

circuit shown in Fig. 3 is widely used. 

 
Fig. 4. Battery hysteresis of an iron phosphate Li-ion battery. 

 

In Fig. 3, 𝑅𝑐𝑡  is the charge transfer resistance, 𝐶𝑑𝑙  is the 

double layer capacitance, 𝑅𝑑𝑓  is the diffusion resistance, and 

𝐶𝑑𝑓  is the diffusion capacitance. The 𝑅𝑐𝑡 -𝐶𝑑𝑙  pair is used to 

account for the dynamics of the double layer, and the 𝑅𝑑𝑓 -𝐶𝑑𝑓  

pair for the diffusion. For some batteries, the relationship 

between OCV and SOC is history and path dependent. This 

phenomenon is known as battery hysteresis, resulting in a 

nonlinear many-to-many mapping between OCV and SOC. It 

should be noted that battery hysteresis is a static phenomenon 

which distorts the one-to-one OCV-to-SOC static mapping. 

To compensate for the battery hysteresis, the OCV is further 

divided into two parts: 𝑉𝑜  and 𝑉𝑕 , where 𝑉𝑜  is the 

thermodynamic voltage which has a one-to-one relationship 

to SOC,  and 𝑉𝑕  represents the battery hysteresis voltage. The 

sum of 𝑉𝑜  and 𝑉𝑕  gives 𝑉𝑜𝑐 . Different hysteresis models can 

be used to model different types of battery hysteresis such as 

in [3, 14]. The hysteresis effect in manganese-based Li-ion 

batteries is negligible, while iron phosphate Li-ion batteries 

exhibit an obvious hysteresis, as shown in Fig. 4. However, 

for iron phosphate Li-ion batteries, the hysteresis converges 

to its boundaries quickly enough to be modeled as a two-state 

switch. A simple switch type hysteresis model can be used to 

account for such a hysteresis effect (to be elaborated later). 

With the zero-order hold (ZOH) discretization method, the 

dynamics of the double layer voltage 𝑉𝑑𝑙  and the diffusion 

voltage 𝑉𝑑𝑓  in the discrete time form can be described by 

 

𝑉𝑑𝑙  𝑘 = 𝑎1𝑉𝑑𝑙  𝑘 − 1 + 𝑏1𝐼 𝑘 − 1  
𝑉𝑑𝑓  𝑘 = 𝑎2𝑉𝑑𝑓  𝑘 − 1 + 𝑏2𝐼 𝑘 − 1               (4) 

 

where  

 

𝑎1 = exp −∆𝑡/(𝑅𝑐𝑡𝐶𝑑𝑙 )                       

𝑏1 = 𝑅𝑐𝑡 1 − exp −∆𝑡/(𝑅𝑐𝑡𝐶𝑑𝑙 )     

𝑎2 = exp −∆𝑡/(𝑅𝑑𝑓𝐶𝑑𝑓 )                    

𝑏2 = 𝑅𝑑𝑓  1 − exp −∆𝑡/(𝑅𝑑𝑓𝐶𝑑𝑓 )               (5) 

 

Based on (3) and (4), the two-RC-pair battery circuit 

model can be written into the state space form: 

 

 
𝑉𝑑𝑙  𝑘 

𝑉𝑑𝑓  𝑘 
 = 𝐴  

𝑉𝑑𝑙  𝑘 − 1 

𝑉𝑑𝑓  𝑘 − 1 
 + 𝐵𝐼 𝑘 − 1  

𝑉 𝑘 − 𝑉𝑜𝑐 = 𝐶  
𝑉𝑑𝑙  𝑘 

𝑉𝑑𝑓  𝑘 
 + 𝐷𝐼 𝑘                          (6) 

 

where 𝐴 = diag(𝑎1 ,  𝑎2) , 𝐵 =  𝑏1 𝑏2 
𝑇 , 𝐶 =  1 1 , and 

𝐷 = 𝑅𝑜𝑕𝑚 . The transfer function from the battery terminal 
current to the battery terminal voltage can be expressed as 

 

𝑉 𝑧 − 𝑉𝑜𝑐 = 𝐶 𝑧𝐼2×2 − 𝐴 −1𝐵𝐼(𝑧) + 𝐷𝐼(𝑧) 

=  
𝑏1 𝑧− 𝑎2 +𝑏2(𝑧− 𝑎1)

(𝑧− 𝑎1) 𝑧− 𝑎2 
+ 𝑅 𝐼 𝑧           (7) 

 
By taking the inverse 𝑧-transform, the discrete-time model 

can be organized into the following difference equation: 
 

𝑉 𝑘 =  𝑎1 + 𝑎2 𝑉 𝑘 − 1 − 𝑎1𝑎2𝑉 𝑘 − 2 + 𝑅𝑜𝑕𝑚 𝐼 𝑘  
+ 𝑏1 − 𝑏2 − 𝑅𝑜𝑕𝑚  𝑎1 + 𝑎2  𝐼 𝑘 − 1        
+ 𝑎1𝑎1𝑅𝑜𝑕𝑚 − 𝑏1𝑎2 − 𝑏2𝑎1 𝐼 𝑘 − 2       
+ 1 −  𝑎1 + 𝑎2 + 𝑎1𝑎2 𝑉𝑜𝑐                                  (8) 

 

where 𝑎𝑖  and 𝑏𝑖 , 𝑖 = 1,2, are functions of the resistance and 

capacitance of the two RC-pairs. Comparing the two-RC-pair 

equivalent circuit model (8) and the second order battery 

model (2), one can establish the relationship between the 

battery electrical parameters and 𝜃: 

 

𝜃1 = 𝑎1 + 𝑎2                             
𝜃2 = −𝑎1𝑎2                               
𝜃3 = 𝑅𝑜𝑕𝑚                                 

                           𝜃4 = 𝑏1 − 𝑏2 − 𝑅𝑜𝑕𝑚 (𝑎1 + 𝑎2)   
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                           𝜃5 = 𝑎1𝑎2𝑅𝑜𝑕𝑚 − 𝑏1𝑎2 − 𝑏2𝑎1  

𝜃6 = (1 − (𝑎1 + 𝑎2) + 𝑎1𝑎2)𝑉𝑜𝑐 .             (9) 

 

 The battery electrical parameters, i.e. 𝑉𝑜𝑐 , 𝑅𝑜𝑕𝑚 , 𝑅𝑐𝑡 , 𝐶𝑑𝑙 , 

𝑅𝑑𝑓  and 𝐶𝑑𝑓 , can be derived from (9) after acquiring 𝜃. In 

particular, 𝑉𝑜𝑐  can be calculated by 

 

𝑉𝑜𝑐 = 𝜃6/(1 − 𝜃1 − 𝜃2).                      (10) 

 

III. ADAPTIVE BATTERY PARAMETER ESTIMATION 

For the Li-ion battery model described by the difference 

equation (1), we apply the U-D factorization-based RLS 

estimation method [12-13] to the battery parameter 

estimation problem. The difference between the classical 

RLS and the U-D factorization-based RLS is that the positive 

definite covariance matrix 𝑃  is further factorized as 𝑃 =

𝑈𝐷𝑈𝑇 , where 𝑈  is an upper triangular matrix and 𝐷  is a 

diagonal matrix. The matrix 𝑃  is not updated directly, 

instead, it is updated through multiplication of the updated 

values of 𝑈 and 𝐷. The U-D factorization-based RLS method 

has been successfully used in many industrial applications 

due to its computational efficiency and stability. Assuring the 

positive-definiteness and symmetry of the covariance matrix, 

the method achieves high estimation accuracy and robustness.  

The assumption of the estimation process is that the battery 

can be modeled as a linear time-invariant system under a 

certain operation condition. An adaptive algorithm is 

developed based on the above assumption. Given a sequence 

of current and voltage data: 𝐼(𝑘) and 𝑉(𝑘), the algorithm 

estimates the parameters in  and then calculate the battery 

electrical parameters from . The adaptive six-parameter 

estimation algorithm consists of the following steps: 

Step 1: The algorithm starts with initialization. Read the 

first two pairs of data V(k) and I(k), k=1,2. Set the 

initial values for θ as the estimate from previous 

operation stored in nonvolatile memory (NVM). 

Initialize the covariance matrix 𝑃  by setting 

appropriate 𝑈 and 𝐷. Define a forgetting factor λ 

satisfying 0 < λ ≤ 1. 

Step 2:  Read a new pair of data V(k) and I(k). 

Step 3: Calculate 𝜑(𝑘) from the present data V(k) and I(k), 

the data from the previous readings, V(k-1), V(k-2), 

I(k-1) and I(k-2). 

Step 4:  Let 𝛼0 = 𝜆. Define two vectors 𝑓 and 𝑔 as 

 

𝑓 =  𝑓1, … , 𝑓𝑛  
𝑇 = 𝑈𝑇(𝑘 − 1)𝜑 𝑘  

𝑔 =  𝑔1 , … , 𝑔𝑛  
𝑇 = 𝐷 𝑘 − 1 𝑓            (11) 

 

Step 5: For 𝑗 = 1,2, … ,6, go through Step 5.1-5.2. 

Step 5.1: Compute the following: 

 

𝛼𝑗 = 𝛼𝑗−1 + 𝑓𝑗𝑔𝑗                 

𝐷(𝑘)𝑗𝑗 = (𝛼𝑗−1𝐷 𝑘 − 1 𝑗𝑗 )/(𝛼𝑗𝜆) 

𝑏𝑗 = 𝑔𝑗                                         

𝑐𝑗 = −𝑓𝑗 /𝛼𝑗−1                               (12) 

 

Step 5.2: For 𝑖 = 1,2, … , 𝑗 − 1, go to Step 5.2.1 (if 

𝑗 = 1, skip Step 5.2.1). 

Step 5.2.1: Compute the followings: 

 

𝑈(𝑘)𝑖𝑗 = 𝑈(𝑘 − 1)𝑖𝑗 + 𝑏𝑖𝑐𝑗  

𝑏𝑖 = 𝑏𝑖 + 𝑈(𝑘 − 1)𝑖𝑗 𝑏𝑗            (13) 

 

Step 6: Compute  

 

𝐿(𝑘) = [𝑏1, … , 𝑏𝑛]𝑇/𝛼𝑛               (14) 

 

Step 7: Compute the estimation error as 

 

𝛽 𝑘 = 𝑉 𝑘 − 𝜃𝑇 𝑘 − 1 𝜑(𝑘)       (15) 

 

Step 8: Update θ to minimize the estimation error 𝛽 by 

 

𝜃 𝑘 = 𝜃 𝑘 − 1 + 𝐿 𝑘 𝛽(𝑘)             (16) 

 

Step 9: Calculate the battery electrical parameters 𝑉𝑜𝑐 , 

𝑅𝑜𝑕𝑚 , 𝑅𝑐𝑡 , 𝐶𝑑𝑙 , 𝑅𝑑𝑓  and 𝐶𝑑𝑓 from θ based on (9). 

Step 10: Determine whether it is the end of operation. If 

yes, save θ to NVM for next operation and end the 

algorithm. Otherwise, save the current data V(k) 

and I(k) for next update and go back to Step 2 and 

continue the update. 

IV. SOC ESTIMATION 

When the battery electrical parameters are obtained from 

the battery parameter estimation algorithm, in particular, the 

OCV, a voltage-based SOCV can be inferred.  

In the presence of battery hysteresis, the relationship 

between OCV and SOC is not a one-to-one mappinp. Such a 

nonlinear relationship can be generalized as follows: 

 

SOCV = 𝑕(𝑉𝑜𝑐 , 𝑉𝑕).                            (17) 

 

As discussed in Section II, a switch type of hysteresis model 

can be used to model the battery hysteresis for iron phosphate 

Li-ion batteries. The model defines an additional hysteresis 

voltage 𝑉𝑕  in OCV. By taking out the hysteresis voltage from 

OCV, the remaining voltage 𝑉𝑜  can be monotonically mapped 

to SOC. The remaining 𝑉𝑜 , called the thermodynamic voltage, 

is defined as the difference between 𝑉𝑜𝑐  and 𝑉𝑕 : 

 

𝑉𝑜 𝑘 = 𝑉𝑜𝑐  𝑘 − 𝑉𝑕(𝑘).                             (18) 

 

For the switch type of hysteresis model, 𝑉𝑕  is governed by 

 

𝑉𝑕 𝑘 = 𝑉𝑕 𝑘 − 1 + 𝜃7𝐼 𝑘 − 1 [𝑉𝑕𝑚𝑎𝑥  

−sign 𝐼 𝑘 − 1 𝑉𝑕 𝑘 − 1  ]               (19) 

 

where 𝜃7 is a parameter to determine convergence rate, and 

𝑉𝑕𝑚𝑎𝑥  defines the boundaries of battery hysteresis. The 
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values of 𝜃7 and 𝑉𝑕𝑚𝑎𝑥  can be obtained through experiments 

and vary with OCV (i.e. SOC). The hysteresis model in (19) 

describes a type of hysteresis with fast convergence to 

hysteresis boundaries from any point inside the boundary 

loop. With such a switch type of hysteresis model, the voltage 

-based SOCV is robust to the initial hysteresis voltage, that is, 

it is not necessary to require accurate knowledge of the initial 

hysteresis voltage because the hysteresis voltage governed by 

the model quickly converges to boundaries wherever it starts.  

The SOC estimation algorithm combines the voltage-based 

SOCV and a current-based SOCI through Coulomb counting. 

The final SOC estimate is a weighted combination of SOCV 

and SOCI as 

 

SOC 𝑘 = 𝑤SOCI 𝑘 + (1 − 𝑤)SOCV (𝑘)         (20) 

 

where 0< 𝑤 <1 is the weighting factor. The combined SOC(k) 

will be used as a new starting point for the next update at the 

time instant 𝑘 +1. The benefit is to reduce the dependency on 

the initial SOC and increase algorithm robustness. 

The weighting factor 𝑤  is tuned based on the signal 

excitation level. For instance, the value of 𝑤 decreases by 5% 

when the excitation level is lower than a threshold at the 

present time instant 𝑘. On the other hand, the value of (1- 𝑤) 

decreases by 5%, when the excitation level is higher than 

another threshold at the present time instant 𝑘. The signal 

excitation level can be evaluated through monitoring the six 

elements in the diagonal matrix D or the determinant of D. It 

should be noted that real Li-ion batteries are not an ideal linear 

time invariant system. The model given by (2) is a simplified 

one for the estimation purpose, matching the Li-ion battery 

dynamics under a specific operation condition. Model 

uncertainties as well as the shifting of operation conditions, in 

combination with the use of the forgetting factor λ, will cause 

the increase of the values in one or several of the six elements 

in D, which should be decreasing in an ideal case of linear 

time invariant systems. 

Following the battery parameter estimation algorithm in 

Section III, the SOC estimation algorithm is as follows: 

Step 1: Starting with initialization, the algorithm sets the 

initial value of SOC(0) by reading the estimation 

result of previous operation from ROM. 

Step 2: Obtain 𝑉𝑜𝑐  from the battery parameter estimation 

algorithm and determine the validity of the 

estimated 𝑉𝑜𝑐 . If 𝑉𝑜𝑐  is not valid, set the weighting 

factor 𝑤 =0 and go to Step 7. 

Step 3: Update 𝑉𝑕  using (18). 

Step 4: Calculate 𝑉𝑜  using (17). 

Step 5: Infer SOCV(𝑘) from 𝑉𝑜  at the present time step. 

Step 6: Tune the weighting factor 𝑤 for SOCV and SOCI 

based on the signal excitation level. 

Step 7: Read data 𝐼(𝑘) and calculate the SOCI(𝑘) via 

 

SOCI 𝑘 = SOCI 𝑘 − 1 + 𝐼(𝑘)∆𝑡       (21) 

 

 where SOCI(𝑘 − 1) is from the previous time step, 

and 𝐼(𝑘)∆𝑡 is the contribution from the Coulomb 

counting. 

Step 8: Calculate the combined SOC(𝑘) using (20) 

Step 9: Determine whether it is the end of operation. If yes, 

save SOC(𝑘) to NVM for next operation and end 

the algorithm. Otherwise, go back to Step 2 and 

continue the estimation. 

V. RESULTS 

The developed algorithm is evaluated through laboratory 

collected data and vehicle data. The evaluation results of 

manganese-based Li-ion batteries are shown in Fig. 5 and Fig. 

6. Fig. 5 shows the trajectories of an offline calculated SOC 

and the SOC estimate from the algorithm for a charge 

depletion drive. The calculated SOC is manually derived from 

the OCV measured before and after the drive, and the 

measured current during the drive. The battery rests for hours 

in order to measure OCV. The measured OCV is used to find 

the reference SOC. The calculated SOC is compared with the 

SOC estimate. It can be seen from Fig. 5 that the overall 

estimation error is within 3% in this case. 

 
Fig. 5.  Algorithm evaluation on a charge depletion drive for a 30AH 

manganese-based Li-ion battery pack. 

 
Fig. 6.  Algorithm evaluation on a charge depletion-charge sustaining-charge 

increase drive for a 45AH manganese-based Li-ion battery pack. 
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Fig. 6 shows the trajectories of a calculated SOC and the 

SOC estimate from the algorithm for a charge depletion- 

charge sustaining-charge increase drive. Note that the battery 

capacity is different from the case shown in Fig. 5. As shown 

in Fig. 6, the overall estimation error is within 3% as well. 

Fig. 7 shows the evaluation result for an iron phosphate 

Li-ion battery pack, containing trajectories of the three SOC 

estimates from the algorithm and the calculated SOC for 

reference. From Fig. 7, it can be seen that SOCI is unable to 

recover from a wrong initial point, while SOCV is robust to 

initial values. It is also noted that after SOCV is blended with 

SOCI, the combined SOC shows improved stability. 

To evaluate algorithm robustness to sensor noise, a white 

noise of amplitude 20mV, an even distribution noise of 

amplitude 5mV, and a sinusoidal noise of amplitude 5mV are 

added to the measured terminal voltage. Moreover, a white 

noise of amplitude 1.8A, an even distribution noise of 

amplitude 0.25A, and a sinusoidal noise of amplitude 0.25A 

are added to the measured terminal current. Consider that for 

iron phosphate Li-ion batteries, SOC changes 10% for about 

20mV change in OCV. Hence the injected noise is significant. 

However, it can be seen from Fig. 8 that the injected noise has 

no significant impact on the SOC estimate. Both trajectories 

converge to the actual SOC (measured and back calculated 

offline) within acceptable errors. 

VI. CONCLUSION 

In the paper, an adaptive battery parameter estimation 

algorithm is developed for onboard SOC estimation. The 

developed algorithm has been verified through simulation 

and in-vehicle testing. The results show effectiveness in SOC 

estimation and robustness to initial conditions, battery 

variations, and operation environment. The battery 

parameters estimated by the developed algorithm can also be 

used for other applications such as onboard diagnostics and 

power prediction.  

 
Fig. 7.  Algorithm evaluation on a charge depletion-charge sustaining drive 

for an iron phosphate Li-ion battery pack. 

 
Fig. 8.  Algorithm evaluation in the presence of voltage and current noise. 
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