
Abstract— Positive systems play an important role in 
many fields including biology, chemistry, and 
economics, among others.  This paper discusses the 
stability and control of discrete-time positive Takagi-
Sugeno-Kang (TSK) fuzzy systems.  It provides a 
sufficient condition for their exponential stability, as 
well as a sufficient condition for their instability.  It 
also presents a new approach to their controller 
design. We present two examples to demonstrate our 
results.  In the first example we develop a positive 
TSK fuzzy Volterra predator-prey model and 
investigate its stability. The second example 
demonstrates our controller design methodology.  
 
Keywords: Positive systems, stability, TSK systems. 

I. INTRODUCTION 

A positive system is one whose state vectors remain 
nonnegative along its trajectories for any nonnegative 
initial conditions [1]. Since many physical systems have 
state variable that cannot assume negative values, positive 
systems arise in many practical applications such as 
economics, biology, chemistry, etc.  For example, 
concentrations of reagents in a chemical reaction are 
clearly governed by positive dynamics. The stability of 
positive systems was investigated in [2],[3],[4]. 
Controllers have been proposed for positive systems (see 
for example [5]). For more on positive systems and their 
properties the reader is referred to the excellent text by 
Farina and Rinaldi [6]. 

In many applications of positive system, only 
qualitative knowledge of the system behavior is available.  
This knowledge is in the form of a set of rules known to 
experts in the field but with no exact mathematical 
expression.  Such knowledge can be written in the form of 
a set of IF-THEN fuzzy rules that can be used to compute 
the output of the system with words. However, positive 
fuzzy systems have only been discussed in one 
publication [7]. The authors present interesting stability 
and stabilization results based on the use of piecewise 
quadratic Lyapunov functions.   

While not clearly defined in [7], the Lypaunov 
function used by the authors indicates the assumption of 
an equilibrium at the origin.  This constitutes a trivial 
solution for most applications of positive systems. For 
example, if the state variables of the system represent the 
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concentrations of reagents in a chemical reaction, an 
equilibrium at the origin corresponds to zero 
concentration and is of no interest. In addition, it is not 
possible to simply translate the coordinates of the fuzzy 
system to obtain an equivalent system with a nonzero 
equilibrium because of the complex switching associated 
with the fuzzy system.  This limits the applicability of the 
results of [7] to the atypical situation of a positive system 
that must be maintained at the origin. 

This paper provides simple stability tests for discrete 
TSK positive dynamic systems. These stability results are 
similar to those obtained by the authors for TSK systems 
in [8] and [9]. The stability results include sufficient 
conditions for the exponential stability and sufficient 
conditions for the instability of positive TSK systems. 
The paper also presents a new control system design 
methodology for positive TSK systems. Both the stability 
and stabilization results of the paper can be tested using 
linear matrix inequalities (LMI). 

The paper uses the following notation.  If F is a matrix 
with positive entries only we write F > 0, while FG >0 is 
written as F > G .  Similar notation is used for matrices 
with nonnegative entries with the sign () and for 
negative entries with the sign (<). 

The paper is organized as follows.  In Section II, we 
review discrete positive linear systems. In Section III, we 
introduce discrete positive fuzzy TSK systems. Section IV 
presents stability conditions for positive TSK systems and 
Section V presents a method for their control design. 
Section VI includes a stability analysis example and a 
controller design example.  Conclusions are given in 
Section VII. 

II. POSITIVE LINEAR SYSTEMS 

In this section, we briefly review discrete positive 
linear systems.   We begin with the definition of a positive 
system. 

Definition 1: Positive Linear Systems 
A linear system is positive if and only if for every 
nonnegative initial state and for every nonnegative input 
its state and output are nonnegative. 

Definition 1 requires that all trajectories of a positive 
system starting from nonnegative states remain in the 
nonnegative quadrant and yield nonnegative outputs.  
Note that positivity depends on the basis set of the state 
space so that an appropriate basis set must be used for the 
system to satisfy Definition 1. 
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Here, we only consider single-input-single-output 
systems.  The state space representation of these systems 
is given by ݔ(݇ + 1) = (݇)ݔܣ + (݇)ݕ (݇)ݑܾ =   (݇)ݔ்ܿ

( 1 ) 

where ݔ(݇) is an ݊ by 1 state vector, ݑ(݇) is a scalar 
input, and ݕ(݇) is a scalar output.  The triple (ܣ, ܾ,  of (்ࢉ
appropriate dimensions which characterizes the positive 
system is constrained so that the system trajectories will 
remain in the nonnegative quadrant. The following 
theorem gives necessary and sufficient conditions for a 
discrete linear system to be positive. 

Theorem 1 [6]: A discrete linear system (࡭, ,࡮  is (ࢀࢉ
positive if and only if ࡭ ≥ ૙,࡮ ≥ ૙, ࢀࢉ ≥ ૙ࢀ. 

Using Theorem 1, it suffices to check for any negative 
element in its triple (ܣ, ܾ, ்ܿ) to verify the positivity of a 
linear system.  

III. FUZZY POSITIVE SYSTEMS 

This section introduces fuzzy positive systems. We 
start with a description of the fuzzy systems used in this 
paper. Then we extend the concept of a positive system to 
TSK fuzzy systems. 

Definition 2: Discrete Dynamic TSK Systems 
A discrete TSK fuzzy system is a TSK fuzzy system 

with a rule base of the form ܴ௜: ݇)௜࢞	ܰܧܪܶ	࢏࡭	ݏ݅(݇)࢞	ܨܫ + 1) = (݇)࢞௜ܨ + (݇)࢞ ,(݇)࢛௜ܩ = ሾݔଵ(݇)…ݔ௡(݇)ሿ் ࢛(݇) = ሾݑଵ(݇)…ݑ௠(݇)ሿ் 	࢏࡭ = ଵ௜ܣൣ ௡௜ܣ	… ൧் 
are normal, consistent, and complete fuzzy sets, ܨ௜ ∈ ℝ௡×௡, ௜ܩ ∈ ℝ௡, ݅ = 1, . . ,  ܯ

( 2 ) 
where ݊ is the order of the consequent system and ܯ is 
the number of rules. The consequent system may also 
include an output defined as ݕ(݇) =  (݇)்࢞ࢉ

( 3 ) 
 
The state of the TSK fuzzy system is updated by ࢞(݇ + 1) = ∑ ݇)௜࢞ + 1)∏ ஺ೕ೔ߤ ௡௝ୀଵெ௜ୀଵ(௝ݔ) ∑ ∏ ஺ೕ೔ߤ ௡௝ୀଵெ௜ୀଵ(௝ݔ)  

( 4 ) 
To extend the concept of the positive systems to fuzzy 

systems, we first define the equilibrium state of a discrete-
time dynamic system. 

Definition 3: Equilibrium state 
x* is an equilibrium state of a discrete-time dynamic 

system  if ࢞(݇) = ࢑)࢞ ௘ implies࢞ (࢓+ = ,ࢋ࢞ ࢓∀ > ૙  

  ( 5 ) 
 
Clearly, a fuzzy linear system is not a linear system even 
if its consequents are because of the dependence of the 
membership functions on the state in (4). Thus the fuzzy 
system often has multiple equilibrium points which may 
or may not include the origin.  For most positive systems, 
the origin is a trivial state and the system must be 
maintained at a nonzero equilibrium point. The following 
is a sufficient condition for such an equilibrium point to 
exist. 
 

Lemma 1: Equilibrium of Discrete TSK Fuzzy Systems 
If the system of Definition 2 with rules of the form ܴ௜: ݇)௜࢞	ܰܧܪܶ	௜࡭	ݏ݅(݇)࢞	ܨܫ + 1) = ݅ 	,(݇)࢞௜ܨ = 1,…  ܯ,

 ( 6 ) 
satisfies the condition ܨ௟࢞௘ = ,௘࢞ ௘࢞ =  ௟ࢋ

 ( 7 ) 
for some rule ܴ௟ with unity membership for the fuzzy sets ࡭௟	at  ࢋ௟, then ࢞௘is an equilibrium point of the system.  
 
Proof: The proof follows directly from the expression for 
the output of a fuzzy TSK system with only one rule 
firing.  

■ 
 
Since the fuzzy antecedent sets of the rule base are 
consistent, the membership functions for rules other than 
the one governing the equilibrium must be zero at the 
equilibrium, i.e. ࢏࢐࡭ࣆ൫࢐࢞൯ = ૙, ࢏ ≠ ,࢒ ࢐ = ૚,… ,  .ࢋ࢞ at ,࢔

Using the basic definition of a dynamic TSK system, we 
now define a fuzzy positive system. 
 
Definition 4: Positive Fuzzy TSK Systems 
A positive TSK system is a system of Definition 2 where 
for every nonnegative initial state and for every 
nonnegative input its state and output are nonnegative. 

 
Definition 4 is a simple extension of Definition 1 

where the linear system replaced with a TSK system. But 
differences of linear systems and TSK systems cause 
modification in extension of Theorem 1 to TSK systems. 

Positivity of a TSK system is highly dependent on the 
rules for which the support of all membership functions in 
its antecedent include positive values. We refer to such 
rules as positive rules in the sequel. 

Theorem 2: A TSK system with linear consequents 
is positive if  ܨ௝ ≥ 0, ௝ࡳ ≥ ૙, ்ࢉ ≥ 0், ݆ = ݅ଵ, … , ݅ே  

( 8 ) 
where ࡺ is the number of positive rules. 
 
Proof: For the initial condition in the positive subspace 
only ܰ rules will be fired. The value of the state vector for 
next time step is a linear positive combination of 
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consequent of these ܰ rules (see ( 4 )). From Theorem 1 
and ( 8 ), ࡲ௝൫ݔ(݇), ൯(݇)ݑ ≥ 0 and therefore ࢞(݇ + 1) ≥0. Then, using ( 3 ), the output is also positive. 

■ 
Theorem 2 provides sufficient conditions for a TSK 

system to be positive. The conditions are not necessary 
and there are positive TSK systems that do not satisfy 
them. These conditions are necessary for systems with 
consistent rule-base. 

IV. STABILITY ANALYSIS 

To examine the stability of a positive system, it is 
sufficient to consider its behavior in the nonnegative 
orthant. We assume that the fuzzy system has a complete 
and consistent rule base on the nonnegative orthant with  
nonnegative support for all antecedent fuzzy sets.  We 
derive sufficient conditions for the convergence to the 
equilibrium for system trajectories with nonnegative 
initial conditions.  

The assumption of linear consequents clearly implies 
that the origin is an equilibrium for our TSK systems. In 
addition to the origin, positive systems can have other 
equilibrium points that are more relevant to practical 
applications. The trivial equilibrium at the origin is 
typically of no interest. We assume that the system has at 
least one equilibrium point ࢞௘ ≠ ૙. 

For our stability analysis, we assume that the rules in 
our TSK systems have antecedent membership functions 
with bounded support, i.e. ߤ஺ೕ೔ ൫ݔ௝൯ = ቐ݊݋ݎ݁ݖ݊݋, ௝ݔ ∈ ቂ ௝݁௜, ௝݁௜ቃ0,																						ݔ௝ ∉ ቂ ௝݁௜, ௝݁௜ቃ  , ݅ = 1,… ,ܯ, ݆ = 1,… , ݊ 

( 9 ) 
An example of antecedent membership functions with 
bounded support are the triangular membership functions 
shown in Figure 1. 

ji
jA  

jx  

1ji
jA  

  

Figure 1- Triangular membership functions. 
 

Theorem 3: For a positive TSK system with nonnegative 
initial condition and zero input, an equilibrium point ࢋ࢞ is 
exponentially stable if ∃࢈ ∈ ℝ࢔, ࢈ > ૙ such that ்࢈หܨ௜	ࢋ௜ − ௘ห࢞ ≤ ௜ࢋห்࢈ߙ − ௜ࢋ ,௘ห࢞ ∈ ቄࢋ௜, ௜ቅࢋ , ௜ࢋ = ൣ݁ଵ௜ … ݁௡௜ ൧், ௜ࢋ = ൣ݁ଵ௜ … ݁௡௜ ൧், ߙ ∈ ሾ0,1ሿ, ݅ = 1,…  ܯ,

( 10 ) 

Proof: To prove stability, we show that a weighted metric 
of the distance from the state to an equilibrium decreases 
exponentially under condition ( 10 ). The weighted metric 
at time k+1 can be written using ( 4 ) as ࢞|்࢈(݇ + 1) − |௘࢞ = ்࢈ ቤ∑ ∑௜ெ௜ୀଵݓ(݇)࢞௜ܨ ௜ெ௜ୀଵݓ − ௜ݓ ,௘ቤ࢞ =ෑߤ஺ೕ೔ ௡(௝ݔ)

௝ୀଵ  

( 11 ) 
Since the consequent matrices are positive,  ฬ∑ ி೔࢞(௞)௪೔ಾ೔సభ∑ ௪೔ಾ೔సభ −  ௘ฬ has its maximum value at the࢞

boundaries ࢋ௜ ∈ ቄࢋ௜, ݇)࢞|்࢈  using ( 10 ) we have	௜ቅࢋ + 1) − |௘࢞ ≤ ௜ࢋห்࢈ߙ −  ௘ห࢞
 ( 12 ) 

It is obvious that ࢋ௜ ≤ (݇)࢞ ≤ ݇)࢞|்࢈ ௜ and thereforeࢋ + 1) − |௘࢞ ≤ (݇)࢞|்࢈ߙ −  |௘࢞
 ( 13 ) 

This shows that a weighted norm of the state vector is 
exponentially decreasing and the system is stable. 

■ 
Theorem 3 provides sufficient stability conditions for 

positive TSK systems. Since the conditions are only 
sufficient, we provide the following sufficient instability 
result theorem for use if the stability test fails. 

 
Theorem 4: For a positive TSK system with nonnegative 
initial condition and zero input, the origin is unstable if ∃࢈ ∈ ℝ࢔, ࢈ > ૙ such that ܨ்࢈௜࢏ࢋ > ௜ࢋ ,௜ࢋ்࢈ = ൣ݁ଵ௜ … ݁௡௜ ൧், ௜ࢋ = ൣ݁ଵ௜ … ݁௡௜ ൧், ݅ = 1,… , ݊௥ 

( 14 ) 
Proof: The proof is similar to the proof of Theorem 3.  
We show that the weighted norm of the state vector is 
monotonically increasing, instead of exponentially 
decreasing, using ( 14 ). 

■ 

V. CONTROL DESIGN 

We use the stability results of Section IV to obtain 
feedback controllers for positive TSK systems with the 
feedback configuration of Figure 2. The controller is a 
positive TSK controller. To design a general TSK 
controller that maps the plant states to the plant inputs, we 
must determine all its membership functions and rules. 
This may require the evaluation of a large number of 
control parameters and present a significant burden for the 
designer. We consider a TSK controller with a similar 
rule base to the TSK plant and with different consequents. 
This simplifies the controller design because the only 
tuning parameters we evaluate are the parameters in the 
consequent of the TSK controller. The latter are 
considerably fewer than the number of parameters of a 
general TSK fuzzy controller. 
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The plant in Figure 2 is a positive TSK system. The 
controller is TSK with membership functions the same as 
the plant. The rule base of the controller is ܴ௜: (݇)ݑ	ܰܧܪܶ	௜࡮	ݏ݅(݇)࢞	ܨܫ = ௜ܭ (݇)࢞௜ܭ ∈ ℝଵ×௡, ݅ = 1, . . , ݊௥ 

( 15 ) 
 

Plant

Controller

x(k+1)

x(k)

u(k)

 
Figure 2 – Block diagram of fuzzy control system. 

 
where ܭ௜ are positive matrices. 

Note that as it discussed, we choose ࡮௜ the same as 
the membership functions in the antecedents of the plant 
 The state update of this controller can be calculated .(௜࡭)
using ( 4 ). Replacing the control signal ݑ(݇) in the 
antecedents of the positive TSK plant gives an 
autonomous closed-loop TSK system with nonlinear 
consequents ࢞௝(݇ + 1) = (݇)࢞௝ܨ + .௝ࡳ ∑ ሾܭ௜࢞(݇)ሿݓ௜ெ௜ୀଵ∑ ௜ெ௜ୀଵݓ  

( 16 ) 
where ݓ௜ is the firing strength of controller ( 15 ).  

To understand why this consequent is nonlinear, note 
that ݓ௜ is a function of ࢞(݇). Since the consequent is 
monotone, the stability conditions of Section IV are 
applicable to this system provided that the consequents 
are nonnegative. To obtain proper situation, we choose 
controller parameters ܭ௜ with all nonnegative. 
Theorem 5: Consider the positive TSK system of Figure 
2 with fuzzy controller of ( 15 ). The closed-loop system 
is exponentially stable with convergence rate ࢻ if ∃࢈ ∈ ℝ࢔, ࢈ > ૙, and the controller parameters ࢏ࡷ ∈ℝ૚×࢏ࡷ,࢔ ≥ ૙, ࢏ = ૚,… ௜ࢋ	௜ܨห்࢈ such that ࡹ, + ௜ࢋ௜ା௟ܭ − ௘ห࢞ ≤ ௜ࢋห்࢈ߙ − ௜ࢋ௘ห, ሾ࢞ ݈ሿ ∈ ൛ሾࢋ௜ 1ሿ, ௜ࢋൣ −1൧ൟ, ௜ࢋ = ൣ݁ଵ௜ … ݁௡௜ ൧், ࢋ௜ = ൣ݁ଵ௜ … ݁௡௜ ൧், ߙ ∈ ሾ0,1ሿ, ݅ = 1,…  ܯ,

 ( 17 ) 
Proof: Applying Theorem 3 to the closed loop system 
with consequents of ( 16 ) yields  ( 17 ). 

■  

VI. EXAMPLES 

Example 1: Stability Analysis 
 In this example, we consider the well-known Lotka-

Volterra competition model that governs the population of 
a single predator and a single prey [10]. The model is 
given by the second order system ݔሶଵ = ଵ(3ݔ − ଵݔ2 −  (ଶݔ

ሶଶݔ = ଶ(3ݔ − ଵݔ −  (ଶݔ2
( 18 ) 

where ݔଵ is the prey population and ݔଶ is the predator 
population. 

The system has two equilibrium points, at ݔଵ = ଶݔ =1 population unit, and ݔଵ = ଶݔ = 0. The second 
equilibrium point corresponds to the extinction of the 
predator and prey while the first represents a balance 
between the two populations. Using Theorem 4, we can 
easily show that the second equilibrium is unstable since 
the instability condition ( 14 ) holds for any ࢈ > ૙. 

The stability of the first equilibrium state [1,1]= ݔT is 
more important in population studies and is investigated 
next. We first model the predator-prey dynamics as a 
discrete-time positive TSK fuzzy system. Since we are 
interested in the local stability of the origin, we assume ݔଵ߳ሾ0.01,1.99ሿ and ݔଶ߳ሾ0.01,1.99ሿ. The discrete-time 
fuzzy TSK system can be described by the following 
rules: ܴଵ: ݇)૚࢞	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ1.0002 0.02990.0299 1.0002ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴଶ: ݇)૛࢞	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.9999 05.833 0.9611ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴଷ: ݇)૜࢞	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.9611 5.8330 0.9999ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴସ: ݇)ସ࢞	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ 0.961 0.00970.0097 0.961 ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ 

 
The membership functions are shown in Figure 3. 

Based on Theorem 2 we conclude that the system is 
positive. 

 

 
Figure 3 – Membership functions of the Lotka-Volterra 

fuzzy model. 
 

The stability conditions of Theorem 3 are met with ࢈ = ሾ9,6ሿ். We conclude that [1,1]= ݔT is an 
exponentially stable equilibrium of the system.  Figure 4 
shows the simulation results for this system for several 
initial conditions. All the trajectories in the simulation 
converge to the equilibrium. 
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Figure 4 – Simulation results of the Lotka-Volterra fuzzy 

model. 

Example 2: Control design  
Design a fuzzy controller to asymptotically stabilize 

the discrete fuzzy system with the rules of the form ܴଵ: ݇)૚࢞	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.44 0.330.33 0.77ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.270.93ቃ :ଶܴ (݇)ݑ ݇)૛࢞	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.42 0.610.60 0.34ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.410.62ቃ :ଷܴ (݇)ݑ ݇)૜࢞	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.76 0.950.95 0.21ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.320.11ቃ :ସܴ (݇)ݑ ݇)ସ࢞	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.92 00.96 0.82ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.610.92ቃ :ହܴ (݇)ݑ ݇)ହ࢞	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ1 00 1ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ00ቃ :଺ܴ (݇)ݑ ݇)଺࢞	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ 0.9 0.750.70 0.41ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.360.29ቃ :଻ܴ (݇)ݑ ݇)଻࢞	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ + 1) = ቂ0.17 0.100.09 0.51ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.450.88ቃ :଼ܴ (݇)ݑ ݇)଼࢞	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.42 0.460.71 0.68ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.770.43ቃ :ଽܴ (݇)ݑ ݇)ଽ࢞	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ + 1)= ቂ0.62 0.800.95 0.44ቃ ൤ݔଵ(݇)ݔଶ(݇)൨ + ቂ0.210.51ቃ  (݇)ݑ
 

1
`

2

1
1A

1
2A 1
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1x

 
Figure 5 – Membership functions of the first input. 

 

 
Figure 6 – Membership functions of the second input. 

 
where the antecedent membership functions are shown in 
Figure 5 for the first input and in Figure 6 for the second 
input. 

We first observe that the system satisfies the 
conditions of Theorem 2 and is therefore a positive fuzzy 
TSK system. By Lemma 1, the system has an equilibrium 
at ࢞௘ = ሾ1 2ሿ். We design a controller to stabilize the 
system in the vicinity of its equilibrium using the 
conditions of Theorem 5. The controller has the following 
rules ܴଵ: =(݇)ݑ	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.8 0.3ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴଶ: =(݇)ݑ	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.3 1ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴଷ: =(݇)ݑ	ܰܧܪܶ	ଵଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.2 1ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴସ: =(݇)ݑ	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ1 0.7ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴହ: =(݇)ݑ	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0 0ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴ଺: =(݇)ݑ	ܰܧܪܶ	ଶଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.3 1ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ 
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ܴ଻: =(݇)ݑ	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଵଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ1 0.8ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ଼ܴ: =(݇)ݑ	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଶଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.8 1ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ ܴଽ: =(݇)ݑ	ܰܧܪܶ	ଷଶܣ	ݏ݅	ଶݔ	݀݊ܽ	ଷଵܣ	ݏ݅	ଵݔ	ܨܫ ሾ0.3 1ሿ ൤ݔଵ(݇)ݔଶ(݇)൨ 
 
For the initial condition ݔ଴ = ሾ0.1,0.1ሿ் and zero 

input, the trajectories of the open-loop system and of the 
system with fuzzy control are shown in Figure 7. Figure 7 
shows that trajectory of the open-loop system diverges 
while the trajectory of the system with fuzzy control 
converges to the equilibrium point. 

 

 
Figure 7 – Simulation result of the system of Example 2. 

VII. CONCLUSION 

Positive systems are used to model many physical 
systems in biology, economics, etc. This paper discusses 
positive TSK fuzzy systems and their stability. It provides 
sufficient conditions for exponential stability for this class 
of TSK systems and a new control design methodology. 
The paper presents a positive TSK model of a Volterra 
predator-prey system.  The stability of the model is 
investigated using our sufficient conditions.  A second 
example demonstrates through how our design 
methodology can drive a positive system to its 
equilibrium point with a prescribed rate of convergence 
selected by the designer. 
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