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Abstract— The paper contributes to the analysis of freeway
traffic flow dynamics by set theoretic methods.

First, the macroscopic, non-linear and second-order model of
freeway traffic flow dynamics is transformed to an equivalent
and quasi Linear Parameter Varying (LPV) representation by
steady-state centering and state variable factorization. Second,
a polytopic LPV model form is obtained from the quasi model
reformulation. The latter polytopic LPV form is then used as a
basis for the computation and analysis of disturbance invariant
sets. This framework is able to characterize constrained sets
of states which can be reached by pure ramp metering control
input signals. Furthermore, these sets become invariant to other
measured and unmeasured disturbance inputs.

The application of disturbance invariant set theory provides
an analytical tool for constrained freeway ramp metering
describing the set of states being invariant under the system
dynamics, measured disturbance and other physical constraints
regardless to the value unmeasured disturbance signal.

The proposed idea is fully based on the analysis of the
(transformed) non-linear macroscopic system and aims at filling
the gap between the traffic modeling and quantitative freeway
ramp metering.

Index Terms— Set theory, ramp metering, polytopic systems,
linear parameter varying representations

I. INTRODUCTION

The aim of almost all traffic control algorithm is to ensure
the best reachable network throughput without the extension
of the available infrastructure. Among others, freeway ramp
metering is considered as the most common freeway traffic
control measure. It has been in the focus of transportation
engineers since 1980, and many solutions have been devel-
oped, published and implemented [1].

Ramp metering algorithms can be divided into two main
groups; static or fix algorithms and dynamic or traffic re-
sponsive methods. Static algorithms can be designed on the
basis of batch mode traffic measurements. The largest draw-
back of such algorithms is their incapability to address to
actual traffic conditions. This drawback can be overcome by
introducing actual traffic measurements dependent methods.

The question of designing traffic responsive ramp meter-
ing is always challenging, since one has to clearly know
the effect of ramp metering in the given traffic condition.
This knowledge necessitates a proper dynamical model of
the underlaying process. Second-order macroscopic freeway
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models are possible candidates to serve as a basis of such
a design, due to their ability to accurately reproduce traffic
phenomena.

These models describe the dynamical evolution of traffic
variables with non-linear differentia equations, implying the
need of non-linear control synthesis techniques. Moreover,
the control problem is subjected to hard physical constraints.
Due to the lack of systematic non-linear constrained control
design, existing ramp metering solutions are either use lin-
earization techniques [2], or other (approximate) numerical
methods [3].

Although these algorithms are known in the literature,
no systematic analytic method of the closed-loop problem
have been presented yet, mostly because of its computational
complexity and lack of algorithmic solutions. The aim of
the paper is to provide a tractable, model-based analysis
framework for freeway ramp metering. Therefore, the origi-
nal and nonlinear second-order macroscopic model has been
chosen and transformed into a polytopic form. The resulting
structure preserves the accuracy of the original model, but in
a compact form. This representation makes the application of
advanced analysis and control methods available for freeway
traffic systems. In the paper set-theoretic tools are used for
studying the local ramp metering.

The paper is organized as follows. After the Introduction
section, the basic traffic notations are introduced and the
ramp metering problem is stated (Section II). The model
transformation and the description of the polytopic model
is given in Section III. A set-theoretic analysis method for
the obtained polytopic structure is discussed in Section IV.
Numerical example is given in Section V to illustrate the
proposed method.

II. PROBLEM STATEMENT

A possible method to model the dynamics of freeway
traffic systems is to consider the macroscopic approach,
based on the fundamental analogy between streaming fluids
and interacting vehicular motion. In these concepts, the key
idea is to neglect individual vehicle motions and only use
aggregated and traffic related variables such as traffic density
(ρ, [veh/km]), space-mean speed (v, [km/h]) and traffic flow
(q, [veh/h]). Through the paper a second-order macroscopic
model is used to represent the dynamics of freeway traffic
flows [4]. The model equations for an arbitrary stretch of
freeway with an on-ramp connection (Figure 1.) can be
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Fig. 1. Illustration of a freeway segment

formulated in discrete time and space as follows:

ρi(k+1) = ρi(k)+
T

∆in
[qi−1(k)−qi(k)+ ri(k)] , (1)

vi(k+1) = vi(k)+
T
τ
[V (ρi(k))− vi(k)]+

+
T
∆i

vi(k) [vi−1(k)− vi(k)]

− ν

τ

T
∆i

ρi+1(k)−ρi(k)
ρi(k)+κ

− δT
∆in

ri(k)vi(k)
ρi(k)+κ

, (2)

V (ρi(k)) = v f exp
[
−1

a

(
ρi(k)
ρcr

)a]
, (3)

qi(k) = ρi(k) · vi(k) ·n. (4)

The subscript i indicates a small spatial stretch of n-lane
freeway with length ∆i. In the sequel, we refer to such a
spatial freeway stretch as a segment. Traffic variables are
discretized in time using time step T . Segment’s dynamics
are described with the help of two traffic variables; ρi and vi.
On-ramp volume ri, [veh/h] is considered as input variable
to assign freely based on the actual traffic conditions and
control objective [3]. This control input is subjected to hard
physical constraints; rmin ≤ ri ≤ rmax. Traffic variables and
conditions influencing the segment’s variables are partially
modeled as forward and partially as backward effects. The
upstream segment (i−1) is connected through its boundary
variables such as traffic flow qi−1 and space-mean speed vi−1
to the segment (i), while downstream segment (i+1) has a
backward effect through its density ρi+1 variable. In freeway
traffic systems, it is common to measure upstream variables
with loop detectors, while downstream variable is usually
not measured [6]. Model parameters τ,ν ,κ,δ ,a,v f ,ρcr can
be determined by various methods e.g. [6], [7].

Equation (3) is known as a fundamental relationship,
reflecting how the space-mean speed decreases in function of
the increasing traffic density. The parameters of eq. (3) can
be determined by non-linear fitting to detector measurements
(see Section V), [6], [7]. By using the relationship in eq.
(3) together with the formula of eq. (4), the fundamental
diagram is yielded characterizing the average throughput of
the segment as a function of the traffic density. Based on
the fundamental diagram and traffic measurements, it is in-
dicated that freeway segment has a maximal capacity, which
coincides with the density and speed values called critical
(ρcr, vcr). Once the traffic flow reaches the regime behind
ρcr, it becomes congested throughput start to decrease. One
of the major aim of traffic control is to avoid such capacity
fall-off. Also, it is obvious that traffic control measures are

constrained and limited and consequently not every traffic
conditions can be handled adequately. The ultimate goal of
the paper is to characterize quantitative model-related regions
where freeway traffic control, more precisely ramp metering,
is still efficient and maximal capacity can be achieved.

III. POLYTOPIC MODEL

Non-linear differentia equations in eqs. (1)-(4) are able to
reproduce macroscopic traffic phenomena. The disadvantage
of the representation from the point of analysis methods is its
complexity and non-linear nature. To handle nonlinearity and
decrease computational load and algorithmic complexity an
equivalent form has been elaborated for modeling [5], iden-
tification [7] and for (control related set theoretic) analysis
in the sequel.

The model transformation suitable for such an analysis
can be derived in two main steps, as proposed in the
paper. First, reformulation of the non-linear dynamics into
a general Linear Parameter Varying (LPV) form (III-A) and
transformation of the obtained LPV model into a polytopic
structure using Tensor Product (TP) method (III-B).

A. LPV formulation of the non-linear dynamics

Reformulation of the non-linear dynamics into affine, dis-
crete time Linear Parameter Varying form can be derived by
[5]. Hereunder follows the slightly modified major derivation
steps.

1) Determination of steady state conditions. The discrete-
time steady state condition (x(k+1) = x(k) = x∗) is ap-
plied for the dynamical equations (1)-(2). The resulting
two non-linear algebraic equations are described by
six unknown variables: q∗i−1,v

∗
i−1,ρ

∗
i ,v
∗
i ,ρ
∗
i+1 and r∗i ,

therefore four can be fixed optionally such as

r∗i =
rmin + rmax

2
, ρ
∗
i = ρcr, v∗i =V (ρ∗i ) , ρ

∗
i+1 = ρcr,

and solve equations for the remaining q∗i−1 and v∗i−1
terms. Note, we use the same steady-state values for
ρi(k) and ρi+1(k), i.e. a spatially smooth steady-state
situation is chosen.

2) Centering. Introduce the shifted variables as the differ-
ence from steady-state values (e.g. ρ̃i = ρi−ρ∗i ) and
rewrite equations (1)-(2) in terms of centered variables
and steady-state values.

3) Factorization. Factorize out centered state- and input
variables from the obtained nonlinear equations which
yield then in an affine form. Bilinear terms could be
factorized obviously out, while state variables from
non-linear terms are factorized by using the following
general formula:

f (x) = A(x)x, A(x) =
∫ 1

0

∂ f (λx)
∂λx

dλ .

Note, this transformation is valid for functions satis-
fying f (0) = 0, which is artificially guaranteed by the
centering conditions (1).
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Following the main steps of the LPV model transformation,
the forthcoming discrete time LPV system (Σ(p)) represen-
tation can be written:[

ρ̃i(k+1)
ṽi(k+1)

]
= A(ρ̃i(k), ṽi(k))

[
ρ̃i(k)
ṽi(k)

]
+

+ B(ρ̃i(k), ṽi(k)) r̃i(k)+

+ E1 (ρ̃i(k), ṽi(k))
[

q̃i−1(k)
ṽi−1(k)

]
+

+ E2 (ρ̃i(k), ṽi(k)) [ρ̃i+1(k)− ρ̃i(k)] . (5)

In contrast to [5], where an affine scheduling parametriza-
tion is proposed, the generic quasi-LPV model is used in
the sequel. According to the definition of shock waves,
(ρ̃i+1(k) − ρ̃i(k)) term is referred as disturbance input1.
These shock waves are mathematically represented by dis-
continues density profiles, with propagation speed depends
on the previously defined disturbance term. Note, we do not
assume to measure this disturbance term.

B. TP transformation

Tensor-Product transformation is a numerical method to
automatically transform quasi LPV models into a polytopic
form by using Higher Order Singular Value Decomposition
(HOSVD) technique. For a more exhaustive description of
the topic see [8], [9]. The result of the transformation is a
finite element polytopic model in the following generic form:

Σ(p) T Pt−→ S�N
n=1 wT

n (pn(k)), (6)

where S contains N Linear Time Invariant systems (i.e.
the vertecies of the polytope), wn contains a bounded and
continuous weighting function (wn,i(pn)) and � is used
as a symbol of multiple product. Moreover, convexity of
the description can be ensured by adding the following
conditions on the weighting functions to the representation:

∀n, i, pn(k) : wn,i(pn(k)) ∈ [0, 1] ,

∀n, pn(k) :
In

∑
i=1

wn,i(pn(k)) = 1.

The transformation result in the following description of
the freeway dynamics:

x(k+1) = A(w(k))x(k)+B(w(k))u(k)+

+ E1 (w(k))d1(k)+E2 (w(k))d2(k), (7)

where the following shorthand notations were introduced:
• x(k) =

[
ρ̃i(k) ṽi(k)

]T , u(k) = r̃i(k),
• d1(k) =

[
q̃i−1(k) ṽi−1(k)

]T , d2(k) = ρ̃i+1(k) −
ρ̃i(k),

• A(w(k)) = ∑
N
i=1 Aiwi(k), B(w(k)) = ∑

N
i=1 Biwi(k),

• E1 (w(k)) = ∑
N
i=1 E1,iwi(k), E2 (w(k)) =

∑
N
i=1 E2,iwi(k),

with:

0≤ wi(k)≤ 1,
N

∑
i=1

wi(k) = 1.

1Unlike in [5] where only ρ̃i+1(k) was considered as disturbance and
ρ̃i(k) as a state.

After transforming the quasi LPV system to a polytopic LPV
representation, algorithm are given to compute set invariance
in the sequel.

IV. SET-THEORETIC ALGORITHM

The algorithm for the analysis of the ramp metering
problem is proposed in the sequel. In the sequel, ramp meter
input is refered to as control input. Upstream segment’s input
are denoted as measured inputs, while downstream segment’s
input is refered as unmeaseured input. Firstly, define the
following sets with hyperplane representation ([10]):

• State set: X = P(Hx,hx) = {x : Hxx≤ hx},
• Input set: U = P(Hu,hu) = {u : Huu≤ hu},
• Measured disturbance set: D1 = P(Hd1 ,hd1) ={

d1 : Hd1d1 ≤ hd1

}
,

• Unmeasured disturbance set: D2 = P(Hd2 ,hd2) ={
d2 : Hd2d2 ≤ hd2

}
.

It is assumed that all of these sets are assigned polyhedral
sets including the origin as an interior point. Moreover D1
and D2 are assumed to be polyhedral C-set ([10]). Note that
these sets can be constructed: the admissible region of the
variables are available from detector measurements or from
physical considerations. These sets can be shifted according
to the steady-state values, which implies the inclusion of the
origin.

Secondly, the notion of disturbance invariant set is given,
which will play a key role in the algorithm ([10]):

Definition 1: The set S ⊆X is said to be disturbance
invariant with respect to the unmeasured signal d2 if ∀x(k)∈
S and ∀d1 ∈D1, ∃u∈U such that x(k+1)∈S , ∀d2 ∈D2
and ∀w ∈W .
The interpretation of the above mentioned definition for the
ramp metering is as follows: determine the maximal set
of measured variables (x, d1) for which a constrained on-
ramp input u exists keeping the system inside the set in the
presence of a shock wave disturbance denoted by ∀d2 ∈D2.

The outer approximation of the maximal disturbance in-
variant set is carried out by the following algorithm:

1) Set t = 0, H(t)
x = Hx, h(t)x = hx and set X (t) =

P(H(t)
x ,h(t)x ). Fix a tolerance number ε > 0 and a

maximum number of steps tmax.
2) Compute the erosion ([4]) of the set X (t) =

P(H(t)
x ,h(t)x ) with respect to the unmeasured distur-

bance E2(w)D2:

P(H(t)
x ,h

(t)
x ) =

{
x : H(t)

x (x+E2(w)d2)≤ h(t)x ,

∀d2 ∈D2, ∀w ∈W} ,

where the j-th row of h
(t)
x can be calculated as:

h
(t)
x, j = h(t)x, j−max

w
max

d2∈D2
H(t)

x, jE2(w)d2.

where index j denotes the jth row of a matrix or the
jth element of a vector, depending on the variable it
belongs to.
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3) Expand the set P(H(t)
x ,h

(t)
x ) in the extended state-

control-measured disturbance space as follows:

M (t) = {(x,u,d1) : u ∈D , d1 ∈D1,

A(w)x+B(w)u+E1(w)d1 ∈P(H(t)
x ,h

(t)
x ),

∀w ∈W} .

This set can be computed by the following inequalities
for (x,u,d1):

H(t)
x
[

A(w) B(w) E1(w)
] x

u
d1

≤ h
(t)
x (8)

Huu≤ hu,

Hd1d1 ≤ hd1 .

4) Compute the projection of the set M (t) onto the state-
measured disturbance subspace:

R(t) =
{
(x,d1) : ∃u, s.t.(x,u,d1) ∈M (t)

}
,

with the following half-plane representation:

Hx,d

[
x
d1

]
≤ hx,d

5) Calculate the following set:

F (t) =
{

x : ∀d1 ∈D1,∃u, s.t.x(k+1) ∈R(t)
}
,

Since D1 is convex, this set (F (t))can be computed by
evaluating the half-plane representation of R(t) on the
vertices.

6) Set:
X (t+1) = F (t)

⋂
X .

7) If
X (t) ⊆ (1+ ε)X (t+1)

then stop successfully.
8) If X (t+1) = /0 then stop unsuccessfully.
9) If t > tmax then stop indeterminately.

10) Set k = k+1 and go to step 2.
The algorithm is initialized from the complete set of

admissible states. First, the effect of unmeasured distur-
bances is taken into consideration through erosion. Since the
disturbance can not steer the trajectory out of the eroded
set, it is enough for invariance to find such (x,u,d1) triplets,
which keep the nominal (d2-free) system inside P . This is
performed in the expansion step by imposing condition (8).
Finally in Step 5. the additional information of measured
disturbances is incorporated by selecting states with the
complete D1 in the extended (x,d1) space.

V. NUMERICAL EXAMPLE

The section provides a numerical example based on traffic
measurements to illustrate the proposed algorithm.

A ∆i = 500 m long stretch of freeway A12 in the
Netherlands has been chosen as a test case, where a two
lane on-ramp is connected to three main lanes. Physical
constraints of the on-ramp are rmin = 600 veh

h , rmax = 2000 veh
h .
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Fig. 2. The fitted fundamental diagram

TABLE I
MODEL PARAMETERS

a 2.2911 ν 35 km2

h
v f 113.2774 km

h κ 13 veh
km

ρcr 26.1170 veh
km δ 1.4

τ 20 sec

Measurements of the installed detector have been processed
and smoothed to filter measurement noises. Parameters of
the fundamental relationship (3) were determined through
a non-linear least squares fitting on the measured data set.
The fitted diagram can be seen on Figure 2. The values of
the remaining parameters were taken from the literature as
typical values. Model parameters are summarized in Table I.

Once the model parameters were determined, the steady-
state values has been calculated, based on the computation
setup presented in Section III-A. The obtained values are
summarized in Table II.

Next, a generic exact LPV model was constructed through
the introduction of the centered variables. The parameter
dependent structure was then transformed into the proposed
polytopic form by using TP-tool and a 80×110 grid in the
state-space, in traffic density and in space mean speed. The
algorithm resulted in three density-dependent and two space-
mean speed-dependent weights (Figure 3), which coincide
a number of 3× 2 = 6 vertecies each represented as LTI
system. The HOSVD based polytopic form and the original
quasi LPV model have been numerically checked over 2000
random points. The maximum error was found in the range of
10e−12 and the root mean square error is in the range 10e−
13, caused by the numerical computation issue. Therefore
we can conclude that the two models(generic and polytopic

TABLE II
MODEL PARAMETERS

ρ∗i 26.1170 km
h q∗i−1 4436 veh

h ρ∗i+1 26.1170 km
h

v∗i 73.2131 km
h v∗i−1 88.7221 km

h r∗i 1300 veh
h
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Fig. 3. State-dependent weights of the TP model

Fig. 4. The iteration steps and the maximal disturbance invariant set of
the proposed method

LPV) are numerically equivalent.
Finally, the presented set-theoretic algorithm was applied

to the case study. The hyperplane representation of the
state space X was determined by constructing a convex
hull based on existing detector measurements. The set of
control input U is given by the centered physical constraints,
i.e.: −700 ≤ r̃i ≤ 700. For the measured and unmeasured
disturbances the following traffic scenario was considered.
In downstream direction a moderately congested traffic is
chosen by the appropriate calibration of the set of unmea-
sured signal. From upstream direction, the entering flow is
characterized to be moderately under the section’s maximal
capacity. This scenario has the importance from traffic engi-
neering point of view (backward propagation of traffic jams).

The tolerance and the maximal iteration number were
set to ε = 0.05, tmax = 100. The set theoretic algorithm
sufficiently converged after 11 iterations. The result are
depicted in Figure 4.

Figure 4. shows the computed maximal disturbance in-
variant set i.e. the set of states which can be kept invariant
by constrained ramp metering. These states could be con-
sidered as the maximal region of applicability of the ramp
metering. The algorithm states that one could only solve

the constrained control problem inside the computed final
set. The exact effect of the control, i.e. how the closed-loop
state trajectory evolves inside this region, can only be shown
by minimizing the appropriate control objective (such as the
total time spent measure).

Moreover the same traffic scenario was repeated with
tighten control constraints. This limited control energy can
be considered as a nearly constant uncontrolled on-ramp
demand. In this case the algorithm was stopped unsuccess-
fully, which means that the upstream congestion propagates
backward and could lead to traffic breakdown. This result
clearly illustrates the importance of freeway ramp metering.

VI. CONCLUSION AND FURTHER RESEARCH

The paper proposed a set-theoretic analysis of local ramp
metering problem in freeways traffic flow context.

Firstly, a well-known second-order and non-linear model
of freeway flow segment is transformed into a generic quasi-
LPV form. Based on parameter-dependent structure, a novel
polytopic description is developed by using HOSVD based
Tensor-Product transformation, afterwards.

Secondly, set-theoretic algorithm was developed to inves-
tigate the effect of constrained ramp-metering on freeways
dynamics. The algorithm computes the outer approximation
of the maximal disturbance invariant set, based on the
developed polytopic LPV form.

Numerical example is given to illustrate the viability of
the proposed technique, where model parameter have been
obtained through real detector measurements. The example
showed how ramp-metering can prevent the backward prop-
agation of traffic jams.

The current description do not consider on-ramp queue
dynamics. Taking this effect in the future will introduce a
state and disturbance dependent constraint on the control
input, and hence will result in a more realistic solution.
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