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Abstract— In this paper, the game-theoretic fault detection
filter is extended to the multiple-fault case. It approximates
detection filters based on spectral and geometric theories with
a set of disturbance attenuation problems, and extends these
detection filters to time-varying systems. The new detection
filter is derived for a nonzero disturbance attenuation bound
and evaluated in an example.

I. INTRODUCTION

The detection filter using analytical redundancy for fault

detection and isolation was first introduced by Beard [1] and

Jones [2], now called the Beard-Jones detection filter (BJDF).

The idea of the BJDF is to place the reachable subspace of

each fault into non-overlapping invariant subspaces called

detection spaces. A slight generalization of the BJDF, called

the restricted diagonal detection filter (RDDF), was derived

using geometric theory in [3]. Some faults may not need to

be detected, but simply blocked from the residual output. In

that case, the RDDF places these faults into the unobservable

subspace of the residual. Then, when a fault occurs, the

residual can be projected onto the orthogonal complement

of each detection space so that the fault can be identified.

Each detection space includes both the reachable subspace

of the associated fault and the directions associated with

the transmission zeros (or invariant zeros) of the transfer

function from the fault to the residual. Constraints on the

locations of the invariant zeros are imposed to guarantee

the desired properties of the detection filter. Geometric and

spectral analyses were given in [3] and [4], respectively.

Design algorithms were developed based on spectral theory

in [4], [5], [6] and geometric theory in [7].

The unknown input observer (UIO), originally used for

fault-tolerant estimation, was applied to the single-fault de-

tection filter problem in [8]. The UIO simplifies the detection

filter problem by requiring that all but one fault be placed in

an unobservable detection space, which can be annihilated

via model reduction. It was shown that constraints on the

fault directions and the location of invariant zeros are re-

laxed compared to the multiple-fault filters. Thus, a bank of

UIOs can be used to detect multiple faults, trading relaxed

constraints for possibly increased computational complexity.

Recently, banks of UIOs were applied to multi-vehicle actu-

ator fault detection in [9] and to fault detection of Markovian

jump linear systems in [10].

The main drawback of the spectral and geometric methods

is the rigidity of their structure and sensitivity to noise.
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To increase the flexibility of the detection filter problem, it

has been approximated by relaxing the requirement of strict

blocking of undesirable faults and noises. Recently, much

attention has been devoted to approximating UIOs for fault

detection using methods based on H∞ estimation, which

seeks to minimize the H∞ norm of the disturbances’ transfer

function. Enhanced sensitivity to the detected faults was

examined in [11], [12], [13] and extended to time-varying

systems [14] and multiple-fault detection filters [15], [16],

though the latter is limited to certain special classes of faults.

Another approximation method is based on disturbance

attenuation, and is the focus of this paper. This method

generally applies to more complex systems and disturbances

than the H∞-based methods. In [17], a time-varying approx-

imation of the UIO, called the game-theoretic fault detection

filter (GTFDF), was obtained by optimizing a disturbance

attenuation problem (DAP) with respect to the disturbance

inputs and estimate via a differential game. The structure of

the UIO is largely recovered in the limit as the disturbance

attenuation bound goes to zero. However, it was shown in

[18] that the invariant zero directions are not automatically

included in the detection spaces created by the optimization,

though they can be included artificially by modifying the

fault directions. The GTFDF was applied to decentralized

fault detection in [19] and a similar detection filter with

enhanced sensitivity to the detected fault was derived in [20].

A stochastic method called the optimal stochastic fault

detection filter (OSFDF) was examined in [18], [21] and

applied to the multiple-fault case in [22]. The OSFDF uses

a stochastic description of the estimation error covariance

to construct a cost function. The optimization chooses the

filter gain to minimize the transmissions of disturbances and

maximize transmission of the detected fault to the projected

output error. In the multiple-fault case, multiple error covari-

ances are constructed so that detected faults can be isolated

by their respective projected residuals. An example showed

that this method automatically included the faults’ invariant

zero directions in their proper detection spaces. Thus, in the

limit as the weight on the nuisance fault transmission goes

to infinity, the structure of the RDDF is recovered. However,

this approach assumes that all fault magnitudes are white

noise and very little could be stated about solution optimality.

In this paper, the game-theoretic multiple-fault detection

filter (GTMFDF) is derived. The GTMFDF extends the

GTFDF to the multiple-fault case by modeling the detection

filter problem as a set of DAPs to be optimized via a

single differential game. However, since the globally optimal

solution for the filter gain is difficult to obtain, sufficient

conditions for satisfying the DAPs are derived instead. It is
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shown that the result is similar to the multiple-fault OSFDF

with a more general description of the fault magnitudes and

simpler solution requirements. Thus, the flexibility, simplic-

ity, and robustness of the GTFDF problem for single-fault

detection is combined with the multiple-fault optimization

of the OSFDF, resulting in a robust multiple-fault detection

filter with relatively few assumptions on the system and fault

structure compared to the current literature.

This paper is organized as follows. To establish a sim-

ple basis for understanding the multiple-fault problem, the

RDDF structure is discussed and approximated by a set of

DAPs in Section II. Then, the implied differential game

problem is simplified into a feasibility problem to find a

filter gain that satisfies the DAPs. Sufficient conditions for

satisfying the DAPs are derived in Section III when the

disturbance attenuation bound is nonzero. It is shown that

these conditions require certain Riccati differential inequal-

ities to be satisfied with nonnegative solutions. Then, the

Riccati inequalities are used as the constraints of a secondary

optimization problem to determine the filter gain. Finally, a

numerical example is discussed in Section IV.

II. DIFFERENTIAL GAME PROBLEM FORMULATION

In this section, the detection filter problem is formulated

as a set of DAPs that can be optimized via a differential

game problem. First, an overview of the RDDF is given in

Section II-A to examine the invariant subspace structure of

the detection filter. Then, the RDDF is extended to the time-

varying case and approximated with a set of DAPs in Sec-

tion II-B. Finally, the DAPs are converted into a differential

game feasibility problem and the required assumptions are

discussed in Section II-C.

A. Restricted-Diagonal Detection Filter Background

Consider an observable, LTI system with q faults

ẋ(t) = Ax(t) + Bu(t) +

q
∑

i=1

Fiµi(t) (1a)

y(t) = Cx(t) + Du(t), (1b)

with state x(t) ∈ R
n, control input u(t) ∈ R

l, measurement

y(t) ∈ R
m, unknown, arbitrary fault magnitude µi(t) ∈ R,

and a priori known fault direction Fi. Assume that the

measurements are linearly independent, and so C is full rank

(m ≤ n). The detection filter is a linear observer of the form

˙̂x(t) = Ax̂(t) + Bu(t) + L (y(t) − Cx̂(t) − Du(t)) (2a)

r(t) = y(t) − Cx̂(t) − Du(t), (2b)

with state estimate x̂(t) ∈ R
n, filter gain L, and residual

r(t) ∈ R
m. Using (1) and (2), the estimation error e(t) ,

x(t) − x̂(t) is subject to the dynamic system

ė(t) = (A − LC)e(t) +

q
∑

i=1

Fiµi(t) (3a)

r(t) = Ce(t). (3b)

A detection filter is required to detect one or more target

faults. However, some faults, called nuisance faults [7], [6],

are disturbances that may not need to be detected explicitly,

simply blocked from the residuals. Without loss of generality,

assume that the first s ≤ q faults are target faults and the

remaining q − s faults are nuisance faults. Several residuals

can be generated, each sensitive to only one target fault, by

multiplying r(t) by a residual projector Ĥi. Therefore, the

projected residual associated with µi(t) is written as

ri(t) = ĤiCe(t). (4)

The RDDF problem is to choose L so that the detection

filter satisfies the following objectives [3], [7], [23], [6]:

• When the target fault µi occurs, the residual r(t) lies in

a fixed subspace that is linearly independent from the

subspace associated with the remaining faults.

• The projected residual ri(t) is nonzero if and only if

the target fault µi(t), i = 1, . . . , s occurs.

• The eigenvalues of the filter can be chosen arbitrarily.

• The steady-state residual response to a constant bias

fault is nonzero.

These objectives lead to a description of the state space

structure of the detection filter problem. The remainder of

this section is focused on deriving the state space geometry.

The invariant subspace structure of the RDDF is for-

mulated around the occurrence of the complementary fault

µ̂i , [ µ1 . . . µi−1 µi+1 . . . µq ] with direction

F̂i , [ F1 . . . Fi−1 Fi+1 . . . Fq ] .

When it occurs, the estimation error lies in Ŵi , W1+ . . .+
Wi−1 + Wi+1 + . . . + Wq and the residual lies along CŴi

where for j = 1, . . . , q

Wj , Im
[

Fj (A − LC)Fj . . . (A − LC)n−1Fj

]

.

Let δi be the smallest nonnegative integer such that

C(A −LC)δiFi 6= 0 for i = 1, . . . , s. Therefore, C(A −
LC)kFi = 0 for k = 0, . . . , δi − 1, which implies CAkFi =
0 and C(A − LC)δiFi = CAδiFi. Let the filter gain L be

chosen such that δi + 1 of the eigenvectors of A−LC span

W∗

i = Im
[

Fi AFi . . . AδiFi

]

, i = 1, . . . , s. (5)

Thus, W∗

i is the smallest reachable, observable subspace

associated with Fi [3], [4] that satisfies

(A − LC)W∗

i ⊆ W∗

i (6a)

Im Fi ⊆ W∗

i . (6b)

By (6), W∗

i is invariant under (A−LC), and is known as the

minimal (C, A)-invariant subspace of Fi. When the target

fault µi occurs, the residual will lie along CW∗

i . Further,

let other eigenvectors of A − LC span the minimal (C, A)-
invariant subspace Ŵ∗ of F̂ , [Fs+1 . . . Fq] (see [25] for

the algorithm to calculate this subspace) and define Ŵ∗

i =
W∗

1 + . . . + W∗

i−1 + W∗

i+1 + . . . + W∗

s + Ŵ∗ where Ŵ∗

and Ŵ∗

i satisfy (6) for F̂ and F̂i, respectively. When the

complementary fault µ̂i occurs, the residual will lie along
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CŴ∗

i . To satisfy the first objective, CW∗

i and CŴ∗

i must

be linearly independent for i = 1, . . . , s, i.e. the target faults

must be (C, A) output separable from their complementary

faults. Note that output separability implies that m ≥ q.

To satisfy the second objective, the RDDF must generate

a set of residuals that are each insensitive to all but a

given target fault [3]. To isolate a target fault direction Fi,

the detection filter is designed so that F̂i is placed in the

unobservable subspace of the projected residual ri(t) from

(4), where the residual projector Ĥi is defined as [23]

Ĥi = Im − CŴ∗

i

[

(CŴ∗

i )T CŴ∗

i

]

−1

(CŴ∗

i )T . (7)

Thus, when the faults are output separable, ĤiCW∗

i 6= 0 and

so the target fault is observable. Further, Ker Ĥi = CŴ∗

i and

so the complementary fault is unobservable, thus satisfying

the second objective. Since Ĥi is an orthogonal projector,

Ĥi = ĤT
i = Ĥ2

i .

To satisfy the third objective, it was shown in [3] that

the eigenvectors of A − LC must span both W∗

i and the

invariant zero directions of (C, A, Fi) for i = 1, . . . , q.

Otherwise, some of the eigenvalues will be located at the

associated invariant zeros. Denote the subspace of invariant

zero directions associated with (C, A, Fi) as Vi. To satisfy

the third objective, choose the filter gain such that some of

the eigenvectors span Ti = W∗

i ⊕ Vi, called the minimal

(C, A)-unobservability subspace of Fi [3] or the detection

space of Fi [2]. Thus, Ti contains all and only the directions

that satisfy (6) for Fi where CTi = CW∗

i [3]. Also, by using

basic linear systems theory, if there exists an invariant zero

at the origin, the steady state residual due to a constant input

from the associated fault is zero [24]. Therefore, in order to

satisfy the fourth objective, there can be no invariant zeros

at the origin that are associated with a target fault.

Invariant zeros of (C, A, [F1 . . . Fq]) that are not associ-

ated with (C, A, Fi), i = 1, . . . , q also become eigenvalues of

the detection filter. However, since these extra invariant zeros

are not associated with a single fault, the resulting eigenval-

ues cannot be moved without altering the state space (one

method is discussed in [4]). Denote the subspace of extra

invariant zero directions as Vext. If (C, A, [F1 . . . Fq]) con-

tains no more invariant zeros than (C, A, Fi), i = 1, . . . , q,

then every eigenvalue of the detection filter can be specified

arbitrarily and the faults are mutually detectable.

The remainder of the state space is called the complemen-

tary subspace C. Thus, the state space composition is

T1 ⊕ . . . ⊕ Tq ⊕ Vext ⊕ C = R
n.

To summarize, in order to generate an arbitrarily stable de-

tection filter, the faults must be observable, output separable,

mutually detectable, and have no invariant zeros at the origin.

Remark 1: To simplify the above analysis, this section

has considered only scalar faults. However, the GTMFDF

derivation applies to the vector fault case as well. For a

detailed derivation of the state space geometry in the vector

fault case, see [25].

B. Extension to the Time-Varying and Approximate Cases

Redefine the system in (1) to be time-varying where

ẋ(t) = A(t)x(t) + B(t)u(t) +

q
∑

i=1

Fi(t)µi(t) (8a)

y(t) = C(t)x(t) + v(t) (8b)

is defined from initial time t0 to final time t1 < ∞.

A measurement noise vector v(t) has also been included.

The time-varying extension of W∗

i (t) in (5) is obtained by

requiring that the detection filter dynamics place Fi(t) in

the observable subspace of (C(t), A(t) − L(t)C(t)) for the

entire time interval from t0 to t1. Therefore, define

W∗

i (t) , Im
[

B0
i (t) B1

i (t) . . . B
βi

i (t)
]

(9)

where the columns of W∗

i (t) are constructed by [17]

B0
i (t) = Fi(t)

B
j
i (t) = A(t)Bj−1

i (t) − Ḃ
j−1
i .

(10)

and βi is the smallest nonnegative integer such that

C(t)Bβi

i (t) 6= 0 ∀t ∈ [t0, t1].

To approximate a multiple-fault detection filter for linear

time-varying systems, a set of DAPs are formulated by

requiring that the target faults be observable to the projected

residual and relaxing the requirement on strict blocking

implied by the first two RDDF objectives. Instead, the

transmissions of the complementary fault, sensor noise, and

initial condition error, henceforth referred to collectively as

the disturbance parameters, are bounded above by a preset

level. So that the target faults are observable, Fi(t) must be

(C(t), A(t)) output separable from F̂i(t) ∀t ∈ [t0, t1] [17].

Further, the third RDDF objective is relaxed to requiring

only that the detection filter dynamics be stable. To ensure

that a stabilizing solution exists, (C(t), A(t)) is assumed to

be detectable ∀t ∈ [t0, t1]. The fourth RDDF objective only

applies to the infinite-time case.

For the ith DAP, the transmissions of the complementary

faults and disturbances are separated from the transmission

of the target fault into their own state xi(t) where

ẋi(t) = A(t)xi(t) + B(t)u(t) + F̂i(t)µ̂i(t) (11a)

yi(t) = C(t)xi(t) + vi(t). (11b)

Note that to simplify the derivation each measurement yi(t)
has been given its own noise vi(t). By substituting yi(t) for

y(t) in (2) and using (11), the dynamics of the state error

ei(t) , xi(t) − x̂(t) and the projected residual ri(t) are

ėi(t) = (A(t) − L(t)C(t))ei(t) + F̂i(t)µ̂i(t) (12a)

ri(t) = Ĥi(t)C(t)ei(t) + Ĥi(t)vi(t) (12b)

for i = 1, . . . , s. Since the projected residual contains a direct

feedthrough term from the sensor noise, the projected output

error Ĥi(t)C(t)ei(t) is used instead of ri(t) to represent the

transmission of the fault to the output. Thus, the ith DAP is
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written for i = 1, . . . , s as
∫ t1

t0
‖ĤiCei‖

2
Qi

dt
∫ t1

t0

[

‖µ̂i‖2
M

−1

i

+ ‖vi‖2
V̄ −1

]

dt + ‖ei(t0)‖2
P

−1

0

≤ γ, (13)

subject to the dynamic system (12) for any µ̂i(t), v(t), and

ei(t0) that satisfy
∫ t1

t0
‖µ̂i(t)‖

2dt < ∞ and
∫ t1

t0
‖vi(t)‖

2dt <

∞. γ > 0 is the arbitrary DAP bound and Qi ≥ 0,

Mi > 0, V̄ > 0, and P0 > 0 are arbitrary design weightings.

Typically, V̄ is chosen as the covariance of the measurement

noise. Further, when the design weightings Mi, V̄ , and P0

are chosen to be larger, the projected residual becomes less

sensitive to the complementary fault, sensor noise, and initial

condition error, respectively, which can also be achieved

simultaneously by choosing Qi to be larger.

C. Problem Formulation

By multiplying both sides of (13) by the denominator

of the left-hand side, subtracting the right-hand side from

the left, and setting the left-hand side equal to Ji, (13) is

converted into the nonconvex cost function

Ji =
1

2

∫ t1

t0

[

∥

∥

∥
Ĥi(t)C(t)ei(t)

∥

∥

∥

2

Qi

− ‖µ̂i(t)‖
2
γM

−1

i

−‖vi(t)‖
2
V −1

]

dt −
1

2
‖ei(t0)‖

2
Π0

(14)

for i = 1, . . . , s where Π0 , γP−1
0 and V , γ−1V̄ . The

detection filter problem is modeled as a differential game

optimization by summing (14) over i = 1, . . . , s, minimizing

the sum with respect to the filter gain, and maximizing the

sum with respect to the disturbance parameters. Therefore,

the differential game problem is

min
L(t)

max
v1(t),...,vs(t)

max
µ̂1(t),...,µ̂s(t)

max
e1(t0),...,es(t0)

s
∑

i=1

Ji (15)

subject to (12a) for i = 1, . . . , s. Note that µ̂1, . . . , µ̂s are

not independent since they share elements with each other.

Since the detection filter gain L(t) does not appear in

the game cost (14) and enters linearly into the constraint

(12a), (15) is singular with respect to L(t) [26]. This makes

the process of finding a globally optimal solution for L(t)
that will generate the desired fault detection properties very

complex. However, in order to satisfy the DAPs (13), it is

only required that (14), i = 1, . . . , s, be nonpositive for

any value of µ̂i(t), vi(t), and ei(t0) ∀t ∈ [t0, t1]. Thus,

we only require a solution to a feasibility problem in L(t)
such that (14) is nonpositive. To further simplify the problem

statement, assume that all of the disturbance parameters are

independent. Note that this assumption will only affect the

problem statement, not how we eventually solve for the filter

gain. Therefore, to determine a filter gain sufficient to satisfy

(13), we will solve the following simplified problem:

Problem 1: Find L(t) such that

max
vi(t)

max
µ̂i(t)

max
ei(t0)

Ji ≤ 0 ∀i = 1, . . . , s,

subject to (12a) and (14).

III. DETECTION FILTER PROBLEM SOLUTION

In this section, a sub-optimal solution for the GTMFDF

gain in Problem 1 is determined for the general case where

γ > 0. First, the conditions under which (14) is nonpositive

are determined in Section III-A. After appending the dy-

namics, it is shown that (14) can be rewritten such that the

disturbances parameters enter as nonpositive quadratic terms.

The problem requires that the filter gain be chosen such that

a certain set of nonpositive Riccati differential inequalities

have positive solutions. In Section III-B, it is shown that

this derivation generalizes and clarifies the GTFDF [17] and

OSFDF [22]. Solutions for L(t) given an arbitrary secondary

cost function are derived in Section III-C. Finally, results for

the infinite-time case are discussed in Section III-D.

A. Conditions for Nonpositivity of the Game Cost

We are now ready to consider the conditions under which

the game cost (14) is nonpositive. First, the estimation error

dynamics (12a) are appended to (14) using the LaGrange

multiplier eT
i Πi, which yields

Ji =
1

2

∫ t1

t0

[

∥

∥

∥
ĤiCei

∥

∥

∥

2

Qi

− ‖µ̂i‖
2
γM

−1

i
− ‖vi‖

2
V −1 + eT

i Πi×

(

(A − LC)ei + F̂iµ̂i − Lvi − ėi

)]

dt −
1

2
‖ei(t0)‖

2
Π0

.

Note that for compactness the variables’ time depen-

dence is no longer shown. By integrating
∫ t1

t0
eT

i Πiėidt

by parts, substituting (12a), adding and subtracting
∫ t1

t0
‖ei‖

2
Πi( 1

γ
F̂iMiF̂

T
i

+LV LT )Πi

dt, and collecting terms,

Ji =
1

2

∫ t1

t0

[

−

∥

∥

∥

∥

µ̂i−
1

γ
MiF̂iΠiei

∥

∥

∥

∥

2

γM
−1

i

−
∥

∥vi+V LT Πiei

∥

∥

2

V −1

+‖ei‖
2
Ψi(Πi,L,t)

]

dt−
1

2
‖ei(t0)‖

2
Π0−Πi(t0)−

1

2
‖ei(t1)‖

2
Πi(t1)

(16)

where

Ψi(Πi, L, t) = Π̇i + Πi(A − LC) + (A − LC)T Πi

+Πi

(

1

γ
F̂iMiF̂

T
i +LV LT

)

Πi+CT ĤiQiĤiC. (17)

Clearly, (16) is nonpositive if there exists some L such that

0 ≥ Ψi(Πi, L, t) (18)

0 ≤ Π0 − Πi(t0) (19)

0 ≤ Πi(t1), (20)

which implies that the faults are placed into approximate

detection spaces to be isolated by each projected residual.

Therefore, Problem 1 requires a solution to the coupled

Riccati inequalities (18) given (17) with boundary condi-

tions (19) and (20), though for implementation purposes we

restrict Πi to be positive definite. Since the degree of fault

blocking can be changed by adjusting γ, the structure of the

GTMFDF is less constrained than the detection filters based

on spectral [4], [7] and geometric [3], [8] theories.
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B. Comparison to Previous Robust Detection Filters

In this section, the GTMFDF is compared to the previous

Riccati-based robust fault detection methods. First, it is

shown that the above problem formulation generalizes the

solution to the single-fault problem by Chung and Speyer in

[17]. Further, though the constraint equations of the current

problem are similar to those of the mulitple-fault OSFDF by

Chen and Speyer in [22], the GTMFDF problem is shown

to be clearer and more general.

In [17], it was proven that the single-fault DAP (assumes

s = 1) is satisfied when the Riccati variable Γ is propagated

by the differential equation

0 = Γ̇+ΓiA+AT Γ+
1

γ
ΓF̂MF̂T Γ+CT

(

ĤQĤ − V −1
)

C

(21)

where Γ(t0) = Γ0 and the solution for the filter gain L is

L = Γ−1CT V −1. (22)

However, by adding and subtracting CT V −1C to (17),

Ψi=Π̇i+ΠiA+AT Πi+
(

ΠiL−CTV −1
)

V
(

ΠiL−CT V −1
)T

+
1

γ
ΠiF̂iMiF̂

T
i Πi + CT

(

ĤiQiĤi − V −1
)

C. (23)

Clearly, (23) is simply (21) with an added quadratic term

to account for the difference between L and Π−1
i CT V −1.

Thus, (21) and (22) are a special case of the solution to (18)

using (23).

The advantage of (21) and (22) is that the Riccati solution

can be computed independently of L, simplifying its calcu-

lation. However, by generalizing the constraint as in (23),

the filter gain can be chosen achieve secondary objectives.

For example, if we assume that

L = Π−1
i CT V −1 + L0

where L0 is an arbitrary m × n matrix, then (23) becomes

Ψi = Π̇i + ΠiA + AT Πi + Πi

[

1

γ
F̂iMiF̂

T
i + L0V LT

0

]

Πi

+ CT
(

ĤiQiĤi − V −1
)

C

and it may be possible to choose or optimize L0 to decrease

the eigenvalues of A − LC. Such optimization of the filter

gain is the subject of Section III-C.

Next, to compare the GTMFDF derivation to the multiple-

fault OSFDF derivation in [22], the Riccati differential

inequality (18) is rewritten in terms of Pi = Π−1
i . Assuming

that (17) equals zero, multiplying on the left and right by

Pi, and substituting Pi = Π−1
i over i = 1, . . . , s,

Ṗi =(A − LC)Pi + Pi (A − LC)
T

+
1

γ
F̂iMiF̂

T
i + LV LT

+ PiC
T ĤiQiĤiCPi (24)

where Pi(t0) = γP0. In [22], the filter gain of the multiple-

fault OSFDF is optimized subject to1

Ẇi =(A − LC)Wi + Wi (A − LC)
T

+
1

γ
F̂iMiF̂

T
i

+ LV LT − FiNiF
T
i (25)

for i = 1, . . . , s where Ni is a design weighting on the

transmission of the target fault to the residual.

Though the two constraint equations (24) and (25) share

some similarities, the GTMFDF improves upon the multiple-

fault OSFDF of [22] in three ways. First, since the GTMFDF

compares outputs to disturbances instead of target faults to

disturbances, the GTMFDF gives a clearer representation of

how the disturbance parameters are blocked. Second, the

OSFDF requires the solution to a specific cost function. On

the other hand, the GTMFDF only requires a solution to

a feasibility problem for the constraints (24) and Pi ≥ 0
for i = 1, . . . , s. If desired, a secondary cost function

can be used to achieve other objectives, such as enhancing

sensitivity to the target fault, thereby increasing the flexibility

of the detection filter problem. Finally, the multiple-fault

OSFDF derivation assumes that the disturbances are modeled

as white noise processes. The GTMFDF requires no such

assumption, proving that constraints like (24) and (25) are

applicable to more general systems.

Remark 2: It is possible to introduce target fault sensi-

tivity into the DAPs by adding
∫ t1

t0
‖µi(t)‖

2
N

−1

i

dt to the

numerator of (13), allowing µi(t) 6= 0, and minimizing with

respect to µi(t). In the single-fault case, this resembles the

H∞ controller synthesis problem where µi(t) is the control

[27]. However, since the user does not have control over

µi(t), H∞ results cannot be guaranteed and it is unclear how

target fault detection is affected. When Qi = 0, as in [20],

[22], a constraint identical to (25) can be obtained without

the assumption of white noise processes for all disturbances.

However, this introduces a positive quadratic term for the

target fault into the game cost (16). Thus, we will be unable

to claim that there exists some L such that (16) will be

nonnegative independent of all fault magnitudes.

C. Filter Gain Optimization

In this section, the filter gain L is optimized with respect

to a new cost function. Since any solution Πi ≥ 0 to (18)

automatically implies that (14) is nonpositive, the specific

cost function used at this stage is arbitrary. Thus, let the

optimal filter gain minimize the cost function J̄ , stated as

min
L

J̄ = min
L

s
∑

i=1

∫ t1

t0

tr Ωi dt (26)

where the integrand Ωi is an n × n real, symmetric, differ-

entiable function chosen by the user. For convenience at this

stage of the problem, substitute Pi = Π−1
i subject to (24).

Also for convenience, assume that Ωi is a function of Pi, L,

1In [22], the optimization is actually subject to two differential equations,
one Riccati and one Lyapunov, for each target fault. In (25), the two have
been summed into a single equation with a single variable.
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and t only. At the end of the section, suggestions on choosing

Ωi such that (26) has a non-trivial solution are discussed and

an example is presented.

To determine the first-order necessary conditions for opti-

mality of (26), use Λi to append (24) to J̄ to obtain

J̄ =

s
∑

i=1

∫ t1

t0

tr
{

Ωi (Pi, L, t)+Λi

[

(A − LC)Pi+Pi(A − LC)T

+
1

γ
F̂iMiF̂

T
i + LV LT + PiC

T ĤiQiĤiCPi − Ṗi

]}

dt.

Integrating
∑s

i=1

∫ t1

t0
tr(ΛiṖi) dt by parts and taking the

first-order variation with respect to L and Pi, the first-order

necessary conditions for optimality are

0 =

s
∑

i=1

[

2
(

V L∗T − CP ∗

i

)

Λi +
∂Ωi (P ∗

i , L∗, t)

∂L∗

]

(27)

−Λ̇i = Λi

(

A − L∗C + P ∗

i CT ĤiQiĤiC
)

+
(

A−L∗C+P ∗

i CT ĤiQiĤiC
)T

Λi+
∂Ωi (P ∗

i , L∗, t)

∂P ∗

i

(28)

0 = Λi(t1) (29)

for i = 1, . . . , s where L∗ is the optimal strategy for the

filter gain and P ∗

i is the Riccati variable using L∗. Therefore,

since Ωi is symmetric by assumption, Λi is the solution of

a Lyapunov differential equation. In order to obtain a non-

trivial solution for L∗, Ωi should be chosen such that ∂Ωi

∂Pi

is nonzero. Otherwise, from (28) and (29), (24) will not

constrain the filter gain solution since Λi will equal zero.

The optimal filter gain is therefore determined by solving a

two-point boundary value problem which includes a set of

Riccati equations (24) and Lyapunov equations (28) coupled

by (27) with boundary conditions Pi(t0) = P0 and (29).

Finally, as an example, the simplified cost function of the

multiple-fault OSFDF in [22] is minimized with respect to L.

It was proven in [17] that as γ → 0, Πi obtains a nullspace

that contains Ŵ∗

i , implying that the range space of Pi is

dominated by Ŵ∗

i . Thus, the optimization should attempt to

minimize the transmission of F̂i by placing Pi approximately

in the nullspace of ĤiC. So, choose Ωi as

tr Ωi = tr KiĤiCPiC
T Ĥi (30)

where K1, . . . , Ks, are design weightings on the complemen-

tary fault transmissions. Thus, the optimization problem (26)

attempts to choose L such that Pi has the aforementioned

geometric structure. When Kj , j ∈ {1, . . . , s}, is large,

the transmission from F̂j to the residual rj is smaller. By

differentiating Ωi with respect to L and Pi and substituting

into (27) and (28), the optimal filter gain is

L∗ =

(

s
∑

i=1

Λi

)

−1 [ s
∑

i=1

ΛiP
∗

i CT V −1

]

(31)

where Λi is subject to the matrix differential equation

−Λ̇i = Λi

(

A − L∗C + P ∗

i CT ĤiQiĤiC
)

+
(

A−L∗C+P ∗

i CT ĤiQiĤiC
)T

Λi+CT ĤiKiĤiC

(32)

with boundary condition (29). A numerical example using the

preceding cost function is given in Section IV. Alternative

cost functions can include terms to enhance sensitivity to the

target fault or minimize the eigenvalues of A − LC.

D. Steady-State Detection Filter

Finally, it is important to discuss the steady-state (infinite

time) results for the GTMFDF. In the previous sections, we

assumed that the design parameters Qi, Mi, V̄ , and Π0

are chosen so that there exists a real, symmetric, positive-

definite solution to (17) and (18). Several conditions for

the existence of such Riccati solutions for the steady-state

case can be found in [28]. However, many of them cannot

be used because (17) resembles Riccati equations used for

H∞ control. In this section, conditions on the existence of

nonnegative solutions to (17) and (18) are linked to the

stability of A−LC. Further, it is shown that Πi is full rank

when the eigenvectors of A − LC do not line up perfectly

with the nullspaces of ĤiC, i = 1, . . . , s.

Assume that Π̇i → 0 as t1 → ∞. In that case, Problem 1

requires a solution Πi > 0 to

0 ≥Πi(A − LC) + (A − LC)T Πi + CT ĤiQiĤiC

+ Πi

(

1

γ
F̂iMiF̂

T
i + LV LT

)

Πi (33)

for i = 1, . . . , s. The following theorem states some results

when A − LC is asymptotically stable. The main result is

that when there exists a nonnegative solution for Πi, the

solution is positive-definite when the complementary faults

are allowed to be nearly but not completely unobservable in

(ĤiC, A − LC), i = 1, . . . , s, which is generally the case

when γ > 0. Therefore, L should be chosen so that A−LC

is stable, the Hamiltonians Hi, i = 1, . . . , s have no purely

imaginary eigenvalues, and (ĤiC, A − LC) is observable.

Theorem 1: Assume that (33) satisfies equality and that

the associated Hamiltonian has no purely imaginary eigen-

values. If A−LC is asymptotically stable, then there exists

a real, symmetric, nonnegative solution Πi. Further, Ker

Πi = 0 if (ĤiC, A − LC) is observable.

Proof: The Hamilitonian of (33) is defined as [28]

Hi =

[

A − LC R̄i

−Q̄i −(A − LC)T

]

where

R̄i =
1

γ
F̂iMiF̂

T
i + LV LT

Q̄i = CT ĤiQiĤiC.

From Theorem 13.6 of [28], when Hi has no imaginary

eigenvalues and R̄i is a nonnegative symmetric matrix, there

exists a real, symmetric, stabilizing solution Πi if and only
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if (A−LC, R̄i) is stabilizable. Since A−LC is stable, such

a solution exists. Further, by rewriting (33) as

0 ≥Πi(A − LC) + (A − LC)T Πi

= −Πi

(

1

γ
F̂iMiF̂

T
i + LV LT

)

Πi − CT ĤiQiĤiC,

it is clear that A − LC satisfies a nonpositive Lyapunov

inequality. Since A − LC is stable, Πi ≥ 0.

Finally, we show that the nullspace of Πi is non-trivial

only if (ĤiC, A−LC) is unobservable by using part of the

proof of Theorem 13.7 in [28]. Assume that Ker Πi 6= 0.

Then there exists 0 6= x ∈ Ker Πi. Multiply (33) on the left

by xT and on the right by x to get

ĤiCx = 0. (34)

Now multiply (33) on the right by x to get

Πi(A − LC)x = 0.

Thus, Ker Πi is an (A−LC)-invariant subspace, and so there

exists a λ such that (A − LC)x = λx. By combining this

with (34), x is an unobservable mode of (ĤiC, A−LC).

IV. NUMERICAL EXAMPLE

In this section, a linear time-invariant numerical example

for the F16XL aircraft [7], [22] is used to demonstrate the

performance of the GTMFDF. The system has four states

(longitudinal velocity xu, normal velocity xw, pitch rate xq ,

and pitch angle xθ), one control input (elevon deflection

angle uδ), four measurements (longitudinal velocity yu,

normal velocity yw, pitch rate yq and pitch angle yθ), one

disturbance input (wind gust µwg), and sensor noise v. The

system matrices are

A =









−0.0674 0.0430 −0.8886 −0.5587
0.0205 −1.4666 16.5800 −0.0299
0.1377 −1.6788 −0.6819 0

0 0 1 0









Bδ =
[

−0.1672 −1.5179 −9.7842 0
]T

Bwg =
[

0.0430 −1.4666 −1.6788 0
]T

C = I.

Three faults in the pitch angle sensor yθ, elevon deflector

uδ, and wind gust uwg are considered, with fault directions

Fθ =

[

0 0 0 1.0000
−0.5587 −0.0299 0 0

]T

,

Fδ = Bδ, Fwg = Bwg.

It is desired to detect faults in the pitch angle sensor and

elevon deflector in the presence of a wind gust disturbance

and sensor noise. Thus, Fθ and Fδ are the target fault

directions and Fwg is the nuisance fault direction. It can

be verified that the faults are output separable, mutually

detectable, and have no invariant zeros at the origin. Thus,

two residual projectors are calculated using (7) to isolate the
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Fig. 1. Residual responses for target fault projected residuals

two target faults. The design weightings for the problem are

chosen as

γ = 10−4, V̄ = 10−6I,

Qi = Mi = Ki = I.

To determine a filter gain that satisfies the DAPs (13), the

MATLAB function ”fminunc” is used to obtain a numerical

solution to the optimization problem (26) for the integrand

(30) given the Riccati constraint (24). The resulting detection

filter dynamics are stable with eigenvalues at -4810, -11.15,

-0.5346, and -0.8598. Then, assuming that uδ is nominally

zero, the dynamic system (1) and detection filter (2) are

integrated simultaneously for a unit bias fault at t = 2s in yθ,

uδ, and uwg, sequentially. Fig. 1 shows response magnitudes

of the two projected residuals to the three faults. The first

projected residual is sensitive to the pitch angle sensor fault,

shown as a dashed line. Further, it is insensitive to the elevon

deflector and wind gust faults, shown as dotted and solid lines

near zero, respectively. The performance is similar for the

second projected, which is sensitive to the elevon deflector

fault but insensitive to the pitch angle sensor and wind gust

faults. Therefore, the GTMFDF sufficiently isolates the target

faults and blocks the nuisance fault.

V. CONCLUSIONS AND FUTURE WORK

To extend a previous robust fault detection filter to the

multiple-fault case, the detection filter problem has been

modeled as a set of disturbance attenuation problems. The

game-theoretic multiple-fault detection filter has been de-

rived and evaluated via a numerical example. When a so-

lution is available, the detection filter meets the disturbance

attenuation bound, implying that the faults are restricted to

approximate invariant subspaces in the general case so that

they can be isolated in the filter residual. The derivation

above assumes scalar faults since the equations are more

transparent. However, the results apply to both the scalar

and vector fault cases.
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In the future, the detection filter will be evaluated in the

limit as the disturbance attenuation bound goes to zero. To

implement the limiting case, the invariant subspace structure

of the limiting detection filter must be examined. This will

include an analysis of the invariant zeros in the time-invariant

case. Further, it was shown that the detection filter problem

obtains a non-trivial nullspace in the limit containing the

invariant subspaces of the nuisance faults. Thus, a reduced-

order model of the detection filter will be generated by trun-

cating these invariant subspaces. Given the analysis above,

the size of the reduced-order limiting GTMFDF is expected

to be the same as reduced-order detection filters based on

the spectral and geometric theories.
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