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Abstract— The release of gases from land or aerial-based
vehicles into an environment represents accidental or deliberate
action. This work considers the dispersion of a plume from a
moving source and proposes a model-based estimation scheme
that provides the proximity of the source location by means of a
guided mobile agent that carries a sensor. The method couples
grid refinement with estimation and includes a kinematic model
for the mobile agent. Using Lyapunov-based method, a stable
guidance scheme is provided for the spatial relocation of the
moving sensor. Computational results serve to demonstrate
the effectiveness of the method for 2D spatial domains and
realistic parameters for the source, mobile agent, and ambient
conditions.

Index Terms— Plume dispersion; moving source; mobile
sensors; PDEs; grid adaptation

I. INTRODUCTION

The dispersion of a plume from a stationary or moving

source into the atmosphere is representative of accidental

or deliberate release of gases from land- or aerial-based

vehicles. The detection of the source using a mobile sensor

is a problem that has been under consideration with a variety

of approaches [1], [2], [3], [4], [5], [6].

The dispersion of the released gas under certain physical

conditions can be modeled by an advection-diffusion PDE

with spatially and time varying ambient mean velocity and

eddy diffusivities. In this work, we present a model-based de-

tection scheme that has an advantage over other approaches

because it provides an estimate of the source location and

simultaneously reconstructs the state, i.e. the concentration

field. Our approach combines the sensor relocation with

process state estimation and grid adaptation in order to ad-

dress gas dispersion processes with spatiotemporally varying

parameters. This approach advances significantly previous

work [6], [7], [8] and provides a new abstract framework

that couples estimation and computational schemes.

The theoretical model includes a sensor affixed on a

mobile sensing agent (MSA) which is used to obtain mea-

surements of the process state. The diffusion state and

source location estimation are obtained with a finite volume

implementation on structured, non-uniform, adaptive grids.

The model of the process uses the measurement information

to estimate the process state and the proximity of the moving

source, and subsequently dictate the spatial relocation of the

moving sensor. The grid is adapted based on estimates of

The authors are with Worcester Polytechnic Institute, Dept
of Mechanical Engineering, Worcester, MA 01609, USA,
{mdemetri,gatsonis,jeff.court}@wpi.edu. The
authors gratefully acknowledge financial support from the AFOSR, grant
FA9550-09-1-0469.

the source location in order to improve accuracy and speed-

up the estimation process. This new grid adaptation approach

results in a switched dynamical system for the state estimator.

In this paper we present the theoretical model, the algo-

rithms, the numerical implementation, and numerical results

obtained with a set of gas release conditions in 2D. The

computational parameters used in the simulations are rep-

resentative of realistic conditions for the atmosphere, the

source, and the MSA.

II. PHYSICAL MODEL

The diffusion process of a gaseous substance released

in an incompressible atmosphere with mean wind veloc-

ity W (t, r) = (WX ,WY ) is described by the advection-

diffusion transport equation for the mean concentration

c(t, r) of the trace species over a spatial domain Ω ⊂ R
2
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where the eddy diffusivities are KXX(t, r),KY Y (t, r),
KZZ(t, r), S(t, r) is the source term, and r = (X,Y ) ∈ R

2

is the Cartesian coordinate vector. Associated with the above

equation are the appropriate boundary conditions which for

this case assume zero concentration at the boundaries, c|∂Ω =
0. We assume that the gas release occurs from a moving

aerial vehicle and the equation models a plume that has

time to reach the diffusive stage. We are also concerned

with time scales that are smaller than the diurnal variations

of the atmospheric parameters and there are no chemical

interactions, [9], [10], [11].

For a 2D realization considered in this paper with the spa-

tial domain given by the rectangle Ω = [0, LX ]× [0, LY ] ⊂
R

2, the source term is given by S(t,X, Y ) = b(X,Y )f(t)
where f(t) denotes the release rate and b(X,Y ) denotes

the spatial location of the source; the latter in terms of

system theoretic description is also referred to as the spatial

distribution of the source term. It is often assumed that the

manner in which the source enters the spatial domain is

that of a pointwise source; this then can be mathematically

represented by spatial Dirac delta function

b(X,Y ) = δ(X −Xc)δ(Y − Yc) (2)

where (Xc, Yc) is the centroid of the source location. A

moving source can then be described by a time varying
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centroid (Xc(t), Yc(t)). Using the above, one may rewrite

the above PDE as follows

∂c
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A. Sensor model

Information on the concentration is realized via a sensor

attached to a mobile agent which provides (noise-corrupted)

values of the concentration c(t,X, Y ) at a spatial point

(Xs, Ys) of the domain Ω. Therefore an adequate sensor

model takes the form

y(t) = c(t,Xs, Ys) =
∫ LX

0

∫ LY

0

δ(X −Xs)δ(Y − Ys)c(t,X, Y ) dX dY.
(4)

To incorporate the effects of a possibly moving sensing

device, the sensor centroid is explicitly taken to be time-

dependent and thus

y(t) =

∫ LX

0

∫ LY

0

δ(X−Xs(t))δ(Y−Ys(t))c(t,X, Y ) dX dY.

B. Mobile sensing agent kinematics and control

The guidance scheme proposed in the subsequent section

represents the velocities that the mobile sensing agent ought

to have. Certainly when one assumes a mass-less and inertia-

less sensor-plus-vehicle, then the above guidance velocities

are assumed. However, when the assumption of a point

sensor is removed, one may use the following 2D kinematics

of a fixed-wing aircraft that is equipped with a standard

low level autopilot as in [12]. The vehicle’s position and

orientation can be described with the Cartesian coordinates

(X,Y ) and the heading angle ψ(t),




Ẋ(t) = v(t) cos(ψ(t))

Ẏ (t) = v(t) sin(ψ(t))

ψ̇(t) = ωψ(t)

(5)

where ωψ(t) is the commanded turning rate of the aerial

vehicle and v(t) is the commanded velocity. While the above

kinematic equations are identical to those for terrain robots

[13], the MSA will have to satisfy additional constraints on

the commanded signals and which are given by

vmin ≤ v ≤ vmax, −ωψ,max ≤ ωψ ≤ ωψ,max.

At the current stage, it is assumed that the sensing aerial vehi-

cle has knowledge of its own state (X(t), Y (t), ψ(t)). From

the desired velocities (Ẋd, Ẏ d) produced by the estimation

scheme, the desired speed and heading can be calculated as

vd(t) =

√
Ẋd(t)2 + Ẏ d(t)2, ψd(t) = tan−1

(
Ẏ d(t)

Ẋd(t)

)

respectively. After enforcing the velocity limitations, the

first input to the kinematic equations (5) is known. The

commanded turning rate is calculated based on the desired

heading and the current heading of the MSA as

ωψ(t) =
ψd(t)− ψ(t)

∆t

Y

Y

ψω
ψ

Y
v

X
.

.

Fig. 1. Sketch of the MSA coordinate system in 2D.

where ∆t is the time between command signals being sent

to the MSA. After enforcing the limitations on the MSA’s

turning rate, the second input to the kinematic equations (5)

is known.

III. ABSTRACT FORMULATION

The advection-diffusion PDE (3) may be written as an

evolution equation in a Hilbert space. The state space in

this case is taken to be X = L2(Ω). Associated with the

state space, is the Sobolev space V = H1(Ω) with V dense

in X . The state is an element of the Hilbert space x(t) =
c(t, ·, ·) from [0, T ] in V and is the solution to the initial

value problem

ẋ(t) = Ax(t) + B(θc(t))f(t), x(0) = x0 ∈ X ,

y(t; θs(t)) = C(θs(t))x(t),
(6)

where A is the spatial operator associated with the advection

diffusion operator, B contains the spatial information of

the source, and C contains the spatial information of the

sensor. For well-posedness, it is required that B(θc(·))f(·) ∈
L2(0, T ;V∗), see [14], [15], [16], where V∗ = H−1(Ω)
denotes the dual of V , [17].

IV. STATE ESTIMATOR WITH A MOVING SENSING AGENT

Due to the specific structure of the spatial distribution of

both the source term and of the moving sensor, the proposed

estimator follows directly from the one proposed in [7] and

is given by

˙̂x(t) = (A− γC∗(θs(t))C(θs(t))) x̂(t)

+γC∗(θs(t))y(t; θs(t)) + B(θs(t))f(t),

x̂(0) = 0,

(7)

where γ is a user defined gain used to tune the estimator

and the term B(θs(t))f represents the estimate of the source

position and is defined as the location-parameterized input

operator evaluated at the current sensor location θs(t). The

above is completed with the time variation of the sensor

centroid θs(t) = (Xs(t), Ys(t)). In order to obtain the sensor

guidance, one considers the state estimation error e(t) =
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Fig. 2. Graphical interpretation of 2D gradient ascent variables.

x(t)− x̂(t). It should be noted that the spatially distributed

function e(t,X, Y ) = x(t,X, Y )− x̂(t,X, Y ) when viewed

as an element of the Hilbert space X is denoted by e(t). The

state error equation is given by

ė(t) = (A− γC∗(θs(t))C(θs(t))) e(t)

+ (B(θc(t)))− B(θs(t))) f(t),

e(0) = e0 ∈ X .

(8)

The well-posedness and stability of the above evolution

system can be examined under strict conditions and will

appear in a companion publication by the authors. In essence

it requires that at a minimum, the forcing term in (8) above,

comprised of the difference of the input operators evaluated

at the true source location θc(t) and the sensor location θs(t),
be square integrable.

A. Mobile sensing agent guidance

The requisite guidance policy that dictates the movement

of the mobile sensing agent within the spatial domain Ω is

based on Lyapunov stability analysis. We use the following

notation for the spatial gradients, as they are used in the

sensor guidance

eX(t,X, Y ) =
∂e(t,X, Y )

∂X
, eY (t,X, Y ) =

∂e(t,X, Y )

∂Y
.

Using the Lyapunov-based guidance from [7], the guidance

of the mobile sensing agent is given by

Ẋs(t) = −kX e(t,Xs(t), Ys(t)) · eX(t,Xs(t), Ys(t))

Ẏs(t) = −kY e(t,Xs(t), Ys(t)) · eY (t,Xs(t), Ys(t))
(9)

where kX , kY > 0 are user-defined guidance gains.

Remark 1 (Gradient-based policy): The above guidance

policy is essentially a gradient policy whose component

velocities are proportional to the state error at the current

sensor location (Xs(t), Ys(t)) and the spatial gradients eval-

uated at the current sensor location (Xs(t), Ys(t)). It requires

the sensor to move in the direction of the greatest spatial

gradients (eX , eY ) of the concentration error and of the

greatest value of the concentration error e(t,X, Y ). The

guidance policy requires the use of three scalar signals: the

concentration error and the two spatial gradients at the sensor

location (Xs(t), Ys(t)) to be realized.

B. State estimate convergence

The estimation scheme outlined is a gradient based ap-

proach that drives the sensing agent in the direction of a

higher state error. Due to the nature of the continuous source,

a local state error will always exist in the vicinity of the

source. When the source speed is slower than the maximum

sensor speed, the sensor will eventually follow the source

through the domain. With a source that is not continuous,

a local state error will not always exist near the source. In

this case, the estimation scheme will only estimate the state

and will not provide an accurate estimation of the source

location.

V. NUMERICAL IMPLEMENTATION AND SENSOR-BASED

GRID ADAPTATION

A. Finite dimensional approximation of plant based on finite

volume formulation

The spatial domain is discretized with a structured multi-

grid using rectangular cells [18]. The advection-diffusion

PDE is written in strong conservative form and solved with a

finite volume method (FVM). The PDE is normalized using

values for density, velocity, length, time and diffusivity. The

resulting PDE is then written in flux-form and integrated

over a control volume. The integrations are carried out over

the control-volume cells to form a system of semi-discrete

equations which is integrated using the four-step Runge-

Kutta scheme. The method follows the one implemented

by Gatsonis et al. [19] to the compressible, viscous MHD

(Navier-Stokes type) equations.

In summary, the finite dimensional approximation of the

proposed estimator-plus-sensor guidance scheme given by

(7), (9) is given by the finite dimensional system

˙̂x
n
(t) =

(
A− γCT (θs(t))C(θs(t))

)
x̂n(t)

+γCT (θs(t))y(t; θs(t)) +B(θs(t))f(t)

Ẋs(t) = −kX e
n(t,Xs(t), Ys(t)) · e

n
X(t,Xs(t), Ys(t))

Ẏs(t) = −kY e
n(t,Xs(t), Ys(t)) · e

n
Y (t,Xs(t), Ys(t))

(10)

where x̂n(t) denotes the finite dimensional representation

of the infinite dimensional state estimate x̂(t), en(t,X, Y )
denotes the finite dimensional representation of the state error

and the matrices A,C,B denote the finite dimensional ap-

proximation of the operators A, C,B, respectively. It should

be noted that the matrix A represents the infinite dimensional

operator A corresponding to a given grid; keeping the same

dimension n but changing the grid (stretch and compress)

changes the structure but not the dimension of the matrix A.

B. Finite dimensional approximation of estimator

The finite dimensional approximation of the estimator is

similar to that of the plant. The domain is discretized with

a structured multigrid finite volume formulation. The grids

used are coarser than those used for the descretization of the
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plant. The integration of the equations for the estimated state

and kinematics of the MSA is also carried out with the four

step Runge-Kutta scheme.

C. Sensing Aerial Vehicle deployment model

When wind direction information is available, then the

MSA begins patrolling the spatial domain downwind in a

circular path until the sensing device registers a value above

its sensitivity threshold. If wind information is not utilized,

one may consider random search in the spatial domain. Once

a measurement indicating the presence of nonzero concen-

tration is registered, then MSA changes from search-mode

to estimation-mode. For the latter all guidance information

then comes from the proposed estimation scheme via (9).

Once the estimation scheme is activated, desired velocity

information streams to the aircraft control scheme described

in (5) above.

D. Sensor measurements and guidance from numerical

model

The sensor assumes knowledge of state and gradient at

the current spatial location. For concentration, it is assumed

constant within a finite-volume cell and determined based on

the current sensor location

c(X,Y ) = ci,j

The gradient in the X and Y directions at the position of

the sensor is obtained with a second order differencing of

the adjacent cell values as

∂c(X,Y )

∂X
=

ci+1,j − ci−1,j

Xi+1,j −Xi−1,j
,
∂c(X,Y )

∂Y
=

ci,j+1 − ci,j−1

Yi+1,j − Yi−1,j
.

E. Sensor-based grid adaptation and switching

Modifications on the computational scheme allow for the

state estimation scheme to locally stretch and compress the

grid thus resulting in a switched dynamical system. This

grid adjustment produces different representations of the

finite dimensional approximation of the diffusion process

equation thereby resulting in a two-way coupling of the

computational scheme and the estimation scheme. In the

system theoretic context, this resulted in a hybrid dynamical

system where different constant matrices representing the

original operators of the diffusion equation modeling the

diffusion of concentration, are being used by the estimation

scheme. The switching of the estimator matrices was dictated

by the estimated position of the moving source. A pseudo

code summarizing this estimation-based grid adaptation is

presented in Algorithm 3 below. Figure 4 demonstrates this

grid adaptation based on current sensor location.

To arrive at the hybrid system, we consider the family

of matrices {Ai, i ∈ I} parameterized by the index set

I. For the specific case considered here, the set consists

of nine different matrices, all of the same dimension and

each representing a refined grid that is covers 25% of the

spatial domain, while the remaining 75% is coarse grid,

see Figure 4. We let σ : [0,∞) → I be a piecewise

constant function of time (the switching signal). Associated

with the above nine choices of the state matrices A are the

output vectors Ci(θ). Now, let (Sp)p∈I be a family of linear

continuous time systems, which for each fixed p ∈ I is given

by

˙̂x
n
(t) =

(
Ap − γC

T
p (θs(t))Cp(θs(t))

)
x̂n(t)

+γCTp (θs(t))y(t; θs(t)) +Bp(θs(t))f(t)
(11)

To this family (Sp)p∈I we associate the set

Σ =
{
σ
∣∣∣σ : [t0,∞)→ I piecewise constant

}

for all possible switches between the above nine systems.

The family of switched systems ((Sp)p∈I ,Σ) taken under

consideration are the hybrid dynamical systems consisting

of the family of continuous time systems (Sp)p∈I together

with all switching rules σ ∈ Σ, all initial states x̂n(0) = x̂n0 .

For each given switching function σ, denote the finite set

of switching time instants associated to σ by t0 < t1 <
t2 < . . ., where k(σ) ∈ N \ {0}. Here, k(σ) − 1 denotes

the number of discontinuities for the piecewise continuous

function σ, i.e. the number a refined grid is switched in.

In view of the above formulation, the switching time

instants depend on current sensor position; if the sensor is

in a region of finer grid, then switch to the (Ap, Cp) that

correspond to that grid, Figure 4.

F. Implementation pseudo code and flowchart

The simulations for this work are run in two separate parts

as shown in Figure 3. The first part is to generate a set of

plant data in the absence of experimental data and save the

results to a file. This is the most time consuming part of

the simulation and is all completed before the estimation

scheme begins. In practice and application, the first part of

the simulation would be replaced by MSA measurements

of the atmosphere. The second part of the simulation is the

actual estimation scheme. The estimator uses small pieces

of this stored data as measurement readings throughout the

estimation process. The pseudo code for this entire process

is outlined below.

Algorithm 1 Forward Problem

1: read simulation parameters

2: discretize high dimensional uniform grid

3: for t = dt to tfinal do

4: calculate (X,Y )c
5: RK4 integration of x
6: apply type 1 BC

7: end for

8: output state at each time to file

VI. COMPUTATIONAL RESULTS

Several simulations were run to demonstrate the perfor-

mance of this approach. Initially, the source is placed in

the domain at a location where it will benefit from the

known wind profile. The simulation begins with the source
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Algorithm 2 Estimation Scheme

Require: Output data from forward problem.

1: read simulation parameters

2: generate switched system grids

3: known (X,Y, ψ)s
4: for t = dt to tfinal do

5: read c(Xs, Ys, t),
∂c(Xs,Ys,t)

∂X
,
∂c(Xs,Ys,t)

∂Y

6: if c(X,Y, ψ) ≥ ymin then

7: if request command signal then

8: Ẋ(t)← kXe(t,Xs(t), Ys(t))eX(t,Xs(t), Ys(t))
9: Ẏ (t)← kY e(t,Xs(t), Ys(t))eY (t,Xs(t), Ys(t))

10: adjust (Ẋ(t), Ẏ (t) for constraints

11: end if

12: RK4 integration of x̂
13: apply type 1 BC

14: else

15: continue patrol

16: end if

17: calculate (X,Y )s new

18: switch grid

19: end for

FV Solution to the A/D Equation

Store Numerically Generated Measurement Data

Start Tracking Program

Read Stored Sensor Data

Calculate Estimated State and Source Location

Numerically 
Generated 
Sensor Data

Real-Time 
Tracking and 

Source 
Localization 

Code

Fig. 3. Simulation Flow Chart.

patrolling a small area and taking measurements. While

patroling, the system assumes no source is present. As

soon as the sensor detects a disturbance in the form of a

concentration above a minimum threshold, the estimation

scheme starts.

For all cases, the sensor speed is constrained to 10m/s ≤
v ≤ 30m/s. The patrol velocity was held constant at 15m/s.
The forward problem is simulated with a uniform cartesian

grid of 90 volumes in each direction and the switched

grid with 30 volumes in each direction for the reduced

dimensional estimator.

A. Stationary source

A stationary source is placed at the center of the 4km ×
4km domain. The source releases 1kg/s of material into the

domain that has a diffusivity of 20m2/s and a 5m/s wind

going from West to East and South to North. Utilizing the a

priori knowledge of the wind, the sensor begins by patrolling

the downwind area of the domain.

Figure 5 shows the trajectory of the MSA as it travels

through the domain. The sensor detects the source after

Algorithm 3 Sensor-based grid switching

1: estimate (X,Y, ψ)c
2: calculate nearest switched grid

3: if nearest grid = current grid then

4: do not switch grid

5: else

6: switch grid to nearest grid

7: switch spatial operator A
8: prolongate state information to general grid

9: restrict state information to nearest grid

10: end if

A

B

C

Fig. 4. Sensor-based grid adaptation and switching. Grid refinement is
adapted to the sensor current location; sensor commences in shaded area
in sub-figure A. Sensor moves to shaded area and grid adjusts around the
sensor as in sub-figure B. Sensor moves in a northeastern direction and grid
is locally refined around sensor, as in sub-figure C.

approximately 97s and begins estimating the state of the

domain and traveling towards the source. In total, 350s were

simulated.

B. Moving source: diagonal trajectory

A simple moving source is examined that travels through

the domain along the diagonal. The state parameters are the

same as in the stationary source case, with the simulation

time extended to 500s. This yields a source speed of approx-

imately 10m/s. The MSA detects the source approximately

240s into the simulation.

C. Moving source: arc trajectory

An arcing source trajectory is simulated where the source

enters the domain and releases material as it turns around
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Fig. 6. Comparison of actual and estimated state for a stationary source.

Fig. 5. Source and sensor trajectory for a stationary source.

to return from the direction it came from. The atmospheric

parameters are the same as for the diagonal case. For this

particular source trajectory and patrol path, the MSA detects

the source after 40s.

D. Moving source: overlapping trajectory

A simple overlapping trajectory is examined in which the

source’s path crosses over itself as shown in Figure 10. The

wind was reduced to 1.5m/s East to West and 1.0m/s South

to North so that this particular trajectory creates an area of

high concentration at lowermost part of the trajectory.

From the sensor’s trajectory, one can observe that the

sensor makes a couple of loops in this area of high con-

centration, then continues to follow the path of the source,

where the state error is highest.

Time (s)
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Fig. 7. Evolution of the L
2 norm of the state for a stationary source.

VII. CONCLUSIONS

A model-based scheme for the detection of the proximity

of the location of a moving chemical source in 2D spatial

domain was proposed. This detection was realized via the

aid of a guided mobile agent equipped with a sensor.

Using Lyapunov-based method, a stable guidance scheme is

provided for the spatial relocation of the moving sensor. The

mobile agent kinematics are also considered and accept as

their control input the desired relocation that is dictated by

the estimation scheme. Additionally, the proposed estimation

scheme with integrated sensor guidance and agent kinematics

is coupled to grid refinement. A priori selected combinations

of coarse and refined subgrids are switched according to

the current sensor location. Computational results served to
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Fig. 8. Source and sensor trajectory for a diagonal source trajectory.

Fig. 9. Source and sensor trajectory for an arcing source trajectory.

demonstrate the effectiveness of the method for 2D spatial

domains and realistic parameters for the source, mobile

agent, and ambient conditions.
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