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Abstract— This paper describes the use of derivative free
filters for mobile robot localization and navigation in an
orchard. The localization algorithm fuses odometry and gyro
measurements with line features representing the surrounding
fruit trees of the orchard. The line features are created on
basis of 2D laser scanner data by a least square algorithm.
The three derivative free filters are compared to an EKF based
localization method on a typical run covering four rows in
the orchard. The Matlab R© toolbox Kalmtool is used for easy
switching between different filter implementations without the
need for changing the base structure of the system.

Index Terms— State estimation, Sensor fusion, Robot navi-
gation, Autonomous mobile robots, Localization.

I. INTRODUCTION

Commercial orchards is a very promising area for au-

tonomous robots. A number of routine tasks could be han-

dled by autonomous robots, e.g. spraying with fungicides

and insecticides. Precision navigation of tractors using Real

Time Kinematics (RTK) GPS has been studied by many

researchers e.g. [1], [2] and [3]. Several commercial sys-

tems exist, among others Intellisteer by New Holland and

Greenstar by John Deere. Also visual guidance and crop

row following are well established [4], [5], [6] and [7] and

supported by a commercial product ’Eye drive’ by Agrocom.

The orchard environment is a relatively organized envi-

ronment, which is ideal for autonomous robots like the auto-

mated Hako tractor (fig. 1). Trees are systematically planted,

which makes laser navigation based on the surroundings

interesting, since the dense vegetation of the rows of trees

make a surface suitable for the laser scanner. Odometry, gyro

and features extracted from the laser scanner can be fused

to perform the localization. An existing solution using an

Extended Kalman filter (see [8]) for localization and naviga-

tion has been developed for the HAKO tractor. This solution

has the drawback that changes to the nonlinear equations

describing the system and its sensor models, imply that

new derivatives should be found which can be inconvenient.

Therefore a derivative free solution is of interest.

When designing and building complex systems good tools

are essential for success. Good tools supports the user on

the different levels of abstraction. Typically this ranges from

mathematical formulation and simulation of the algorithms

over numerical implementation to verification and validation
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of the actual device in real-time. The filter implementations

outlined in this paper is done using the tool, Kalmtool [9]

and [10].

Kalmtool is a collection of MATLAB implementations

for estimation and simulation in connection with nonlinear

dynamic systems. The development of the toolbox has been

driven by the application, which is navigation of mobile

robots. In this context location and mapping are corner

stones.

Fig. 1. The HAKO tractor.

Several toolboxes has been proposed for state estimation

over the years, each with a different approach and focus.

ReBEL (Recursive Bayesian Estimation Library) [11] is a

MATLAB toolkit of functions and scripts, designed to fa-

cilitate sequential Bayesian inference (estimation) in general

state space models. The Nonlinear Estimation Framework

(NEF) [12] is a collection of software routines that facilitates

filtering, prediction and smoothing of discrete time systems.

In [13] the Bayesian Decision-Making library (BDM) is

described. This is a C++ implementation of various Bayesian

filters with focus on particle filters.

The CAS Robot Navigation Toolbox [14] is a tool for

doing off-line off-board localization and SLAM for mobile

robots. The design of the CAS toolbox decouples robot

model, sensor models, features and algorithms used giv-

ing the user the possibility to modify the toolbox. The

OpenSLAM project [15] initiative, is a user driven website,

which gathers algorithms and toolboxes. The amount of

solutions shows that the field is maturing, and there is still

new methods being developed.
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The paper describes how three different derivative free

filters can be used for the task of making the HAKO tractor

drive autonomously through the orchard. The localization

solution uses the tree rows as measurements to correct the

pose estimated by the filters. The paper is divided into the

following parts. Firstly, the estimation algorithms are briefly

listed. Secondly, the application of mobile robot localization

in an agricultural setting is discussed and the finally the

three chosen filters are benchmarked with real life data

against each other and a localization implementation using

an Extended Kalman filter.

II. ESTIMATION ALGORITHMS

Consider a system in which the evolution of the state

sequence {xk ∈ R
n, k ∈ N} is given by

xk+1 = fk(xk, uk, vk) (1)

where fk is a possible nonlinear function of the state, xk,

the input (control) signal, uk and the process noise, vk. The

process noise is assumed to be a sequence {vk ∈ R
n k ∈ N}

of independent and identically distributed (i.i.d.) stochastic

vectors.

The objective is to estimate xk from measurements

yk = gk(xk, ek) ∈ R
m (2)

where also gk is a possible nonlinear function of the state

and the measurement noise, ek. The measurement noise is

assumed to be a sequence, {ek ∈ R
m k ∈ N}, of i.i.d.

stochastic vectors. More specific we seek an estimate of

xk based on all available measurements (and known inputs)

Y0:k = {(yi, ui), i = 0, ..., k}.

The solution to this problem is embedded in the con-

ditional degree of belief in the state, xk given the data,

Y0:k. The problem is then (recursively) to determine the

probability distribution function (pdf). p(xk|y0:k). If the

initial distribution, p(x0), is known then the solution can

in principle be determined through the recursions:

p(xk|Y0:k−1) =

∫

Ωx

p(xk|xk−1)p(xk−1|Y0:k−1)dxk−1 (3)

and

p(xk|Y0:k) =
p(yk|xk)

p(yk|Y0:k−1)
p(xk|Y0:k−1) (4)

These two recursions are related to the dynamic ((3)) and

the inference ((4)) step, respectively and can only in special

cases be solved analytically. In the linear Gaussian case the

pdf. can be parameterized in terms of mean and variance and

the recursions results in the well known Kalman filter. The

Kalman filter is given by the prediction or the time updates

x̂k+1|k = Ax̂k|k +Buk (5)

Pk+1|k = APk|kA
T +R1 (6)

and the inference recursion

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1) (7)

Pk|k = Pk|k−1 −KkCPk|k−1 (8)

The various filters differs in the way they handle the prop-

agation of the distributions through the two nonlinearities, f

and g, and how the inference is carried out. The next four

filters are all based on the Projection Theorem.

In this case, the prediction in (3) results in (5) and can also

be found as an application of calculus for linear operations

on Gaussian vectors. The inference recursion in (7) emerge

from (4) or as an application of the Projection Theorem.

The Extended Kalman filter is as its name indicate based

on an extension of the application of the Kalman filter to the

nonlinear case. The Extended Kalman filter (EKF) is based

on a standard Taylor expansion of the nonlinear functions

and can be regarded as a local approximation. In general the

approximation is best for small deviations from the point of

linearization.

The divided difference filter exists in a first order version

(DD1) and in a second order version (DD2) and is based on

Stirlings interpolation formula (see [17]).

The Unscented Kalman filter is based on the (uncented)

transformation of a stochastic variable, x, through a nonlinear

function, F (x) (see [18]). The standard UKF is based on the

approximation mentioned above and the Projection Theorem.

In the scaled version of UKF the weight is chosen in a

slightly different manner (see [19] or [20] for details).

The linear regression Kalman filter (LRKF) is as the name

indicated based on a linear regression (see [21]).

Particle filters comes in several versions and implemen-

tations (see e.g. [22] or [23]). In the most basic version

(Exp. PF) implemented in the platform the nonlinearities are

dealt with by propagating a swarm of particle through the

nonlinearities.

III. AUTONOMOUS ORCHARD NAVIGATION

Navigation through the orchard is done by estimating the

pose of the robot based on the commanded velocity and

steering angle. This prediction of the pose is corrected using

the difference between where a known feature is measured

to be and where it should be according to a map. This gives

an innovation that is used in the different filters.

The HAKO tractor - see fig. 1, used for the experiments,

is described in more detail below.

A. HAKO tractor

The robot used for the experiments in this paper is based

on the HAKO Hakotrac 3000 tractor. The tractor has been

converted to drive by wire and is hence capable of driving

autonomously and it has the following sensors attached in

the setup used for orchard navigation.

• RTK-GPS

A high precision RTK-GPS receiver logs the position

in UTM coordinates. This is used as the ground truth

in comparison with the localization algorithm.

• Odometry

A quadrature encoder is attached to the tractors drive

shaft. This measures the revolutions of the shaft and

thereby a measure of the length driven by the tractor

is found. In addition the angle of the front wheels are
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measured. By using these measurements the tractors

position can be found by odometry.

• Gyro

A fiber optic gyro measuring the rate of the tractors

heading is also attached.

• Laser scanner

The laser scanner attached is a SICK LMS-200 and it

has a 180◦ degree field of view, with a 0.5◦ resolution.

The scanner is placed at the front of tractor 0.5 m over

ground.

The data recorded from the tractor is recorded while the

tractor is doing online estimation. Since both control signals

and sensor readings are saved it is possible to do offline

data treatment also. This feature is used for debugging and

tuning the estimation algorithm. The data used in this paper

is recorded in this way.

B. Test environment

In order to relate measurements from the 2D laser scanner

to actual tree rows in the orchard, a-priori knowledge about

the tree rows position is needed. This information is saved in

a map from which the robot can look up tree row positions

when needed in the localization procedure. A simple map

which contains starting and ending points of rows is used.

The map is formed in the UTM coordinate system. From the

map information a straight line representation (Ax + By +
C = 0) of the orchard rows can be found easy. The fruit tree

rows are mapped as well as two boundary hedges, one in

the southern region and one to the east. The southern hedge

serves an important purpose since it is directed perpendicular

to the rest of the rows.

C. Localization

The localization algorithm is based on the state estimate

xk and odometry measurement uk given by

xk =





xk

yk
θk



 uk =

[

Lk

θSA,k

]

(9)

where xk, yk and θk is the robot pose in the global coordinate

system. The control signals Lk and θSA,k is the distance

driven in one sample and the tractors steering angle. The

state- and measurement transition is done by a pair of non-

linear stochastic difference equations like equation 1 and

equation 2 on page 2.

Fig. 2. The execution loop of the estimator.

Figure 2 shows the overall idea of the localization al-

gorithm. The different parts a described in greater detail

below. The algorithm starts when a laser scan is received

from the SICK scanner. Then the current pose of the robot

is estimated using the vehicle model. From this the line

features of the scan is found. If any of these can be matched

to corresponding features in the map the pose estimate is

updated using this information.

D. Vehicle model

The model used to derive the Ackermann odometry is

called tricycle drive. This is a way of simplifying the model

of a standard four wheel drive geometry as seen on fig. 3.

The two front wheels are collected to one which is turning

around the common turning point. Odometry is the method

of calculating the position of a vehicle from heading and

speed changes. On the HAKO tractor, the speed is measured

using an encoder on the gearbox. The heading is measured

by a gyro and can also be calculated from the steering angle,

which is measured by an absolute encoder, returning the

steering angle.

Fig. 3. Figure showing the change in heading and position of a Ackermann
steered vehicle.

On the robot the steering angle θSA is given. The change

in heading angle is derived from the Ackermann geometry.

The equation is:

∆θ =
Lk tan (θSA)

l
(10)

where Lk is the distance the robot has driven in one sample

and l is the distance between the front and rear axle of the

HAKO tractor.

The robots new position and angle can now be found as:

xk+1 = xk +





Lk cos
(

θk + ∆θ
2

)

Lk sin
(

θk + ∆θ
2

)

∆θ



+Gwk (11)

where G is a linearized function to relate the noise from the

control signal measurements to the states.

E. Process noise model

The process noise is the noise originating from the mea-

surement of the control signals - in this case - the odometry.
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The process noise is the covariance of the control signal uk

and is denoted Qk.

Qk =

[

σ2
L 0
0 σ2

θ,SA

]

(12)

For the error covariance to be dependent of the travelled

distance, the variances must be proportional to the travelled

distance.

The variance for the linear displacement is given by [24]:

σ2
L = ǫ2L|L| (13)

where ǫL is the standard deviation error from one meter of

travel.

The variance of the heading θ is found using equation

14 below. The equation is based on equation 10, which

determines the change in direction.

σ2
θ,SA =

(

tan (ǫA + ǫSA|θSA|)
l

)2

|L| (14)

ǫA is the angle error standard deviation caused by driving

one meter straight ahead and ǫSA is the contribution from

the steering angle while turning.

F. Feature extraction

In this section the feature extraction will be presented. The

SICK laser scanner returns 361 different range measurements

spread out in an 180◦ fan originated in the center of the

scanner. The principle is illustrated in fig. 4

yUTM

xUTM

y

x

Fig. 4. The HAKO tractor driving between rows in the orchard. The laser
scanner returns distances from the origo of the {x, y} coordinate system to
the tree rows. The maximal distance measured is 8.1 m.

By using knowledge about the tractors pose the range

scans are transformed into global UTM coordinates. These

laser measurements are pre-processed by calculating the

numeric distance to the predicted line, based on the tractor

position and the map. If the distance is below a pre-defined

threshold, the measurement is marked and used.

The distance dl between the laser scan range measurement

point-representation and predicted line is calculated using

equation 15.

dl =
AxUTM +ByUTM + C√

A2 +B2
(15)

where the equation involving A,B,C is the normal equation

of the a priori line and xUTM , yUTM is the range measure-

ment point-representation.

All the measurements which are inside the interval on

either side of the predicted line are now used, to find an

estimate of the measured line using linear regression. When

the line is found further checks are performed to see if the

line estimate is sufficiently accurate to be used by the filter.

G. Line features

A laser scan usually contains several line features, and all

of them are passed on for further processing. The description

below concerns directly the lines extracted with a priori

knowledge. To simplify the Kalman filter the features are

represented in polar coordinates.

Feature vector

The features used are the rows that makes up the orchard. If

the distance from the center of the robot to the row is denoted

by dm and the bearing of the row in UTM coordinates is

denoted θm the feature vector is given by:

f(zk) = f1
k , f

2
k , ... =

{[

d1m,k

θ1m,k

]

,

[

d2m,k

θ2m,k

]

, . . .

}

(16)

Fig. 5 shows the definition of the distance and angle mea-

sured.

Fig. 5. Measured line shown in robot and UTM coordinate system.

Since the rows found are represented as Am,ixUTM +
Bm,iyUTM + Cm,i = 0 initially the distance and angle of

each feature is found as:

[

dm
θm

]

=









AmxUTM +BmyUTM + Cm
√

A2
m +B2

m

arctan

(−Am

Bm

)

− θ









(17)

The θm is subtracted with the state estimate of the angle θ to

relate the line to the current state. Since the same is done to

the measurement vector, this does not result in a difference

in the update vector.
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IV. RESULTS

The results presented in this section are based on recorded

data from the HAKO tractor, during an autonomous drive in

the orchard. The log is spanning four rows (see figure 6),

which makes is possible to show the position update when

re-finding the rows at the northern and southern positions of

the run.

Three derivative-free filters has been tested for the local-

ization task. The RTK-GPS measurements are used as ground

truth for the position estimates, which all are kept in a global

reference frame for easy comparison. The tested filters are

• Second order divided difference filter (dd2).

• Linear regression filter (linreg).

• Unscented Kalman filter (ukf).

The three filters are benchmarked against a localization

implementation using EKF.
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Fig. 6. Plot of the full 4-row run through the orchard. The state is estimated
by the dd2 filter.

The localization algorithm using all four filters are able to

complete the run through the orchard in a satisfactory way.

They are able to keep the robot in track and close to the

ground truth. In figure 6 the full run of the orchard is shown

for the dd2 filter. The robot starts in the upper left corner

and ends in the upper right corner of the run. In the end it

is seen that the odometry estimate has drifted due to wheel

slippage and therefore ends about 5 meters from true robot

position. However the state estimate is only about 20 cm

from the correct end position.

Figure 7 shows the time development of the standard

deviations of the states, estimated by the three filters under

similar noise initializations. They show remarkable similar-

ity. The deviation on the estimate of y, σy , is raising except
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Fig. 7. Square root of covariances of the three estimated states for the
derivative free filters.
Legend: σx Blue σy Red σθ Green

in the lower corners around sample 0.9 × 104 and sample

2.8×104 where the robot is in the most southern part of the

orchard. At these two points a tree row perpendicular to the

others ensure that measurements in the y-direction (north to

south direction) is possible and hence the belief in the pose

estimate is increased.

Filter type Avr. CPU time Sum of GT. distance

ekf 71.14 s 147.07

dd2 74.78 s 154.01

linreg 74.60 s 151.70

ukf 75.96 s 163.10

TABLE I

AVERAGE COMPUTATIONAL TIME AND SUM OF DISTANCE DEVIATION

FROM GROUND TRUTH.

In table I the average computational time for the four filters

is listed. This is the time it takes each filter to iterate through

2500 samples corresponding to a 50 meters drive with two

rows visible by the laser scanner. The time is an average

over 50 experiments. The filters use almost the same amount

of time with the ukf being marginally slower. All three

derivative free filters are around 4 s slower in computing

the pose estimate than the EKF solution.

In the last column of table I the sum of the distance deviation

between the state estimate and the ground truth for the

complete orchard run is shown. The EKF performs better

again in this measure, however the difference between EKF

and the derivative free solutions is within an acceptable

boundary. The Unscented Kalman filter has again the highest

deviation among the derivative free solutions. In figure 8

the position estimate of the ukf is compared with the linear

regression filter. Both filters distort the turn compared to

the GPS. However, the linear regression filter estimates a
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Fig. 8. Comparison between Unscented Kalman filter and linear regression
filter at the northern turn of the orchard.

trajectory closer to the GPS.

V. CONCLUSION

A localization solution using three derivative free filters

has been implemented, enabling the HAKO tractor to drive

autonomously through the orchard using laser scanner fea-

tures to correct the pose estimate. These three filters has been

benchmarked against an Extended Kalman based solution.

All three filters perform equally both with regard to precision

and computational time and the derivative free filters matches

the existing solution using an Extended Kalman filter in

performance, but is more flexible towards changes in the

system and measurement model descriptions.

The switching between the different estimator solutions

without having to rewrite the model is made easy by the use

of the Kalmtool toolbox and the visualization features makes

the debugging less tedious.

The toolbox is available for download at:

http://server.elektro.dtu.dk/www/or/kalmtool/
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