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Abstract— Activator-repressor systems have been shown to
be capable of oscillations and are therefore an important clock
motif in the field of Synthetic and Systems Biology. In this paper,
we propose a method to regulate oscillatory behavior in such
systems by the addition of DNA binding sites for the proteins
involved in the clock network. We show that the retroactivity
effect caused by this addition can effectively change the relative
timescales among the protein dynamics and impact the behavior
of the clock. We also employ root locus analysis to obtain a
graphical interpretation of the results.

I. INTRODUCTION

The design and analysis of oscillating modules is im-

portant in the fields of Systems and Synthetic Biology as

it enables the understanding of oscillator mechanisms that

regulate essential natural processes, such as the cell cycle

[1] or circadian clocks [2]. Oscillators are also a useful

module in Synthetic Biology as they allow for synchroniza-

tion of different modules leading to more complex design

[3]. Several synthetic oscillators have been proposed and

implemented [4]–[7]. In this paper, we analyze one such

module, the activator-repressor clock of [6]. This oscillator

is composed by two proteins, an activator protein A that

promotes the expression of itself and of a repressor protein

R. The repressor protein, in turn, represses the expression

of the activator protein providing a negative feedback loop.

This system is illustrated in Figure 1(a).

Conditions that guarantee stable oscillations for this clock

were studied in [8]. In particular, the difference of timescales

between repressor and activator dynamics is shown to be

a key parameter in this process. More specifically, it was

shown that, by increasing the timescale of the activator with

respect to that of the repressor, the system goes through a

supercritical Hopf bifurcation from which a periodic orbit

emerges. Altering these timescales usually involve chang-

ing the degradation and expression rates, which can be a

challenge. The expression rates are usually tuned by altering

promoter and ribosome binding sites [9], and degradation

rates can be tuned by employing degradation tags [10].

As an alternative, we propose to change the effective rela-

tive timescales by exploiting retroactivity [11]. Retroactivity

is the phenomenon by which a downstream system applies a

load to an upstream system upon interconnection and, thus,

changes its behavior. It was shown in [12] that the dynamics

of transcriptional components are slowed down when the

output protein is used to regulate the expression of another

protein due to the interaction of the protein with DNA

(a) Activator-Repressor Motif

(b) Activator-Repressor with Activator Binding Sites

(c) Activator-Repressor with Repressor Binding Sites

Fig. 1. Diagram (a) illustrates the activator-repressor motif. Diagram (b)
and (c) illustrate the systems after the addition of DNA binding sites with
affinity to the activator and the repressor respectively.

binding sites. This change in timescale due to retroactivity

can, in principle, be employed to tune the timescales of

an activator-repressor motif. This mechanism is of interest

since it only requires the addition of binding sites with an

affinity to either the activator protein or the repressor protein,

which can be achieved through transformation of plasmids

containing the specific DNA sequence. This experimental

procedure is much simpler in than the alternative techniques

considered above with protocols found in standard molecular

biology manuals such as [13].

In this paper, we analyze the retroactivity effect resulting

from adding binding sites to an activator-repressor clock.

We show that this mechanism can be employed to silence

an oscillating activator-repressor system as well as to obtain

stable oscillations from an originally non-oscillating system.

In particular, we consider the addition of DNA binding

sites with affinity to the activator (Figure 1(b)) or to the

repressor (Figure 1(c)) and show that the systems go through

a Hopf bifurcation having the amount of binding sites as the

bifurcation parameter.

This paper is organized as follows. In Section II, the

activator-repressor clock is introduced and conditions for

having oscillations are given. In Section III, the effect of the

addition of DNA binding sites with affinity to the activator or

to the repressor are studied. Section IV provides a graphical
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interpretation of the results shown in this paper using the

root locus method.

II. ACTIVATOR-REPRESSOR OSCILLATOR

Consider the two-component oscillator designed using the

activator-repressor system of [8], illustrated in Figure 1(a).

Activator protein A promotes the expression of repressor

protein R which in turn represses expression of protein A.

Protein A also promotes expression of itself. We consider

here a one-step model for protein expression from the DNA.

This is model can be obtained by employing singular per-

turbation to the two-step model including mRNA dynamics,

as shown in [8]. The model for activator-repressor motif is

given by

Ȧ = −δAA+ f1(A,R)

Ṙ = −δRR+ f2(A),
(1)

in which f1(A,R) and f2(A) are Hill functions associated

with expressions of A and R. These functions are given by

f1(A,R) =
K1A

n +KA

1 + γ1An + γ2Rn
and f2(A) =

K2A
n +KR

1 + γ3An
,

in which K1 and K2 are the maximal expression rates

when the activator protein is in excess, KA and KR are

the expressions in the absence of activator or repressor, γ1,

γ2 and γ3 are coefficients related to the affinity between

the proteins and the promoter regions, and n is the Hill

coefficient.

We seek structural properties for which this system

presents oscillations. To this end, assume that system (1)

has a single equilibrium point at (A∗, R∗). Conditions for

having a unique equilibrium point can be found in [8]. The

Jacobian of system (1) calculated at the equilibrium is given

by

J0 =









−δA +
∂f1(A

∗, R∗)

∂A

∂f1(A
∗, R∗)

∂R

∂f2(A
∗)

∂A
−δR









. (2)

Additionally, we assume det(J0) > 0 and trace(J0) > 0 so

that the equilibrium point is an unstable node or spiral. This

is guaranteed by the following conditions

(i) δA − ∂f1(A
∗, R∗)

∂A
>

1

δR

∂f1(A
∗, R∗)

∂R

∂f2(A
∗)

∂A
;

(ii) δA + δR <
∂f1(A

∗, R∗)

∂A
.

We seek to show that a system satisfying (i) and (ii)

presents a stable periodic orbit. In order to do so, it is

necessary to first show the following proposition.

Proposition 1: There exists a constant D ∈ R+ such that

the set K = {(A,R) ∈ R
2
+|A2 + R2 ≤ D2} is a positively

invariant set under the vector field defined by system (1) and

(A∗, R∗) ∈ K.

Proof: From the definition of the Hill functions it is

clear that f1(A,R) and f2(A) are positive bounded func-

tions. Let M1 = sup{f1(A,R)} and M2 = sup{f2(A)}.

We first notice that for A = 0, Ȧ > 0 according to (1).

(a) Conditions (i) and (ii) satisfied
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(b) Conditions (i) and (ii)’ satisfied
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Fig. 2. These figures illustrate the effect of conditions (ii) and (ii)’ in system
(1). The top plot presents a simulation of system (5) while the bottom plot
presents a simulation of system (10). The parameters used in this simulation
are n = 2, δA = 1, kon = 10, koff = 1000, γ1 = γ2 = γ3 = .1,
K1 = K2 = 300, KA0 = 0.04 and KB0 = 0.004. In the top plot
δR = .5 whereas in the bottom plot δR = 1.5.

Similarly, for R = 0, Ṙ > 0. The quadrant R2
+ is, therefore,

a positively invariant set. Define δ∗ = min{δA, δR} and

M = max{M1,M2}. Consider the positive definite function

v(A,R) = A2/2+R2/2. Using the chain rule, it is possible

to show that

dv(A,R)

dt
= −δAA2 − δRR

2 +Af1(A,R) +Rf2(R)

≤ −δ∗A2 − δ∗R2 +AM1 +RM2

= −δ∗
(

A− M

2δ∗

)2

− δ∗
(

R− M

2δ∗

)2

+
M2

2δ∗
.

From the above, it is clear that v̇(A,R) < 0 on the exterior of

a circle with center (M/2δ∗,M/2δ∗) and radius M/
√
2δ∗.

Therefore, for any

D > max{
√
2M/δ∗, A∗, R∗},

we can show that v̇(A,R) < 0 along the arc defined by

the boundary of K. Since v(A,R) is positive definite, K
is a positively invariant set. Also, the above choice for D
guarantees the equilibrium is in the interior of K.

With this Proposition, it is possible to show the following

lemma.

Lemma 1: Consider system (1) with a single equilibrium

point (A∗, R∗), and let K be the invariant set from Proposi-

tion 1. Assume further that the system satisfies condition

(i) and (ii). Then, for any initial condition (A0, R0) ∈
K − {(A∗, R∗)}, the ω-limit set is a periodic orbit.

Proof: Consider the Jacobian (2) of (1), evaluated at

(A∗, R∗). Condition (i) guarantees that det(J0) > 0 and

condition (ii) guarantees that trace(J0) > 0. This implies
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that the real part of the eigenvalues of J0 are positive and,

therefore, the equilibrium point is unstable and not a saddle.

Therefore, the trajectory starting at (A0, R0), has no fixed

points. It follows from the Poincar-Bendixson theorem that

the ω-limit set of (A0, R0) is a periodic orbit.

We also consider the case in which the equilibrium of (1)

is stable. It will also be useful to consider the condition under

which the trace of (2) is negative:

(ii)’ δA <
∂f1(A

∗, R∗)

∂A
< δA + δR.

The first inequality in the above condition is an additional

requirement that, while not essential for the stability of the

equilibrium, allows tuning the system through retroactivity.

The following lemma shows that this condition leads to

stability of the equilibrium.

Lemma 2: Consider system (1) with a single equilibrium

point. Assume further that the system satisfies condition (i)

and (ii)’. Then, the equilibrium (A∗, R∗) is asymptotically

stable.

Proof: Consider again the Jacobian (2). Condition (i)

guarantees that det(J0) > 0, while condition (ii)’ guarantees

that trace(J0) < 0. The real parts of the eigenvalues of the

Jacobian are, thus, negative, leading to the desired result.

Simulation results of system (1) shown in Figure 2 il-

lustrate the results from the Lemmas. In both simulations,

the parameters were chosen so that the system satisfies

conditions (i) as well as the uniqueness of the equilibrium

point. In Figure 2(a), the system satisfies condition (ii) and

therefore presents oscillatory behavior, whereas in Figure

2(b), condition (ii)’ is satisfied, resulting in a system that

converges to its stable equilibrium point.

III. ADDITION OF DNA BINDING SITES

In this section, we consider the addition of extra DNA

binding sites with affinity to the activator or repressor protein

as illustrated in Figures 1(b) and 1(c), respectively. Let q
represent the binding sites with affinity to the activator, and

p represent the binding sites with affinity to the repressor.

The interaction between protein and binding sites is modeled

by the following reactions

A+ q
kb1−−⇀↽−−
ku1

C1 (3)

R+ p
kb2−−⇀↽−−
ku2

C2, (4)

in which C1 represents the complex formed by A and q, C2

represents the complex formed by R and p, ku1, ku2, kb1,

kb2 are the dissociation and association constants between the

proteins and their respective binding sites. These constants

are considered to be much faster than the protein expression

and degradation processes [14], and singular perturbation is

employed for model reduction. We also assume the total

concentration of binding sites qT = q+C1 and pT = p+C2

to be constants.
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Fig. 3. These figures illustrate the stabilization of the equilibrium point
resulting from the addition of DNA binding sites with affinity to the activator
to an oscillating activator-repressor clock. The system presents a periodic
solution when isolated (qT = 0). With addition of DNA binding sites (qT =
150), the solution goes to the equilibrium. System (5) was simulated with
parameters n = 2, δA = 1, kon = 10, koff = 1000, γ1 = γ2 = γ3 = .1,
K1 = K2 = 300, KA0 = 0.04, KB0 = 0.004 and δR = .5.

A. Activator Binding Sites

In this situation, we consider the system shown in Figure

1(b). To system (1), we incorporate the dynamics related to

the chemical equation (3) obtaining the model

Ȧ = −δAA+ f1(A,R) + ku1C1 − kb1A(qT − C1)

Ṙ = −δRR+ f2(A)

Ċ1 = −ku1C1 + kb1A(qT − C1).

(5)

Note that the number and location of equilibria of system

(5) is the same as that of system (1).

This model is further simplified by employing a sin-

gular perturbation argument exploiting the difference of

timescales. To make the timescale separation between the

expression/degradation of proteins and the repressor/protein

interactions explicit, define the small parameter ǫ := δR/ku1.

Define also kd1 := ku1/kb1 to be the dissociation constant

for this interaction. Define the variable Y1 := A+C1. System

(5) can be rewritten in the standard singular perturbation

form [15] as

Ẏ1 = −δA(Y1 − C1) + f1(Y1 − C1, R)

Ṙ = −δRR+ f2(Y1 − C1)

ǫĊ1 = −δRC1 +
δR
kd1

(Y1 − C1)(qT − C1).

Let C1 = γ(Y1) be the unique solution of

g(C1, Y1) := −δRC1 +
δR
kd1

(Y1 − C1)(qT − C1) = 0 (6)
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under the restriction C1 < qT . One can show that

∂g(C, Y1)

∂C

∣

∣

∣

∣

C=γ(Y1)

< 0

and, thus, that the slow manifold C1 = γ(Y1) is attractive

[11]. The reduced system is thus given by

Ȧ = [−δAA+ f1(A,R)]

(

1− ∂γ(Y1)

∂Y1

)

Ṙ = −δRR+ f2(A).

Using the implicit function theorem in the manifold equation

(6), it is possible to show that

∂γ(Y1)

∂Y1
=

1

1 + kd1

qT

(

1 + A
kd1

)2 .

For compactness of notation, define the function

SA(A, qT ) := 1− ∂γ(Y1)

∂Y1
=

1

1 + kd1qT (kd1 +A)−2

to obtain the system

Ȧ = SA(A, qT ) [−δAA+ f1(A,R)]

Ṙ = −δRR+ f2(A),
(7)

a two-state system with parameter qT . Note that since

SA(A, qT ) 6= 0, the unique equilibrium of system (7) is the

same as of (1), namely (A∗, R∗). Furthermore, the Jacobian

of system (7) is given by

JA(qT ) =

[

S∗

A

(

−δa + ∂f1(A
∗,R∗)

∂A

)

S∗

A
∂f1(A

∗,R∗)
∂R

∂f2(A
∗)

∂A
−δR

]

,

(8)

in which we use the shorthand notation S∗

A := SA(A
∗, qT ).

Note that 0 < S∗

A ≤ 1 is a strictly monotonically decreasing

function of the parameter qT . Note also that

S∗

A|qT=0 = 1 and lim
qT→∞

S∗

A = 0. (9)

The following lemma shows that an oscillating activator-

repressor clock can be stabilized to the equilibrium by

addition of sufficient DNA binding sites with affinity to the

activator.

Lemma 3: Consider system (7) and let conditions (i) and

(ii) be satisfied. There exists q∗ > 0 such that the equilibrium

(A∗, R∗) is asymptotically stable if and only if qT > q∗.

Proof: We first show that det(JA(qT )) > 0 for all qT .

This follows from the fact that det(JA(qT )) = S∗

A det(J0) >
0, from condition (i). We now focus on

trace(JA(qT )) = S∗

A

(

−δa +
∂f1(A

∗, R∗)

∂A

)

− δR.

From (9) and condition (ii), when qT = 0 trace(JA(0)) > 0.

Additionally, as qT → ∞, trace(JA(qT )) → −δR < 0.

Since the trace is a monotonic smooth function of qT , one

can apply the intermediate value theorem to show that there

is an unique 0 < q∗ <∞ such that trace(JA(q
∗)) = 0. Since

det(JA(q
∗)) > 0, the eigenvalues of JA(q

∗) are imaginary.

From the monotonicity of the trace with respect to qT , it
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Fig. 4. These figures illustrate an activator-repressor that oscillates after
addition of DNA binding sites p to a non-oscillating activator-repressor.
The originally stable system when isolated (pT = 0) presents a periodic
solution with addition of DNA binding sites (pT = 150). System (10) was
simulated with parameters n = 2, δA = 1, kon = 10, koff = 1000,
γ1 = γ2 = γ3 = .1, K1 = K2 = 300, KA0 = 0.04, KB0 = 0.004 and
δR = 1.5.

follows that the real parts of the eigenvalues of JA(qT ) are

positive for all 0 ≤ qT < q∗ and negative for all qT > q∗. It

follows that the system goes through a Hopf bifurcation at

qT = q∗, and thus presents a periodic solution for 0 ≤ qT <
q∗ while it converges to the equilibrium for qT > q∗.

This result is illustrated in Figure 3. The parameters of

the system were chosen to satisfy conditions (i) and (ii) and

the uniqueness of the equilibrium. Notice how the addition

of binding sites removes the oscillation from the system.

B. Repressor Binding Sites

Now we consider the system shown in Figure 1(c). The

dynamics of the chemical equation (4) is incorporated in the

isolated model (1) resulting in the model

Ȧ = −δAA+ f1(A,R)

Ṙ = −δRR+ f2(A) + ku2C2 − kb2R(pT − C2)

Ċ2 = −ku2C2 + kb2R(pT − C2).

(10)

Note that, as before, the number and location of the equilibria

of system (10) is the same as that of system (1).

Similarly to what was done in Section III-A, we employ

a singular perturbation argument to reduce the order of the

system. Define the small parameter ǫ := δR/ku2 and let

kd2 := ku1/kb1 be the dissociation constant. Define also the

variable Y2 := R+ C2. System (10) can be rewritten in the

standard singular perturbation form as

Ȧ = −δAA+ f1(A, Y2 − C2)

Ẏ2 = −δR(Y2 − C2) + f2(A)

ǫĊ2 = −δRC2 +
δR
kd2

(Y2 − C2)(pT − C2).

(11)
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The slow manifold C2 = ψ(Y2), obtained when setting ǫ = 0
in system (11), is similar to the one obtained by solving

(6). This manifold can also be shown to be attractive. The

reduced system is thus given by

Ȧ = −δAA+ f1(A,R)

Ṙ = SR(R, pT )(−δRR+ f2(A)),
(12)

in which

SR(R, pT ) = 1− ∂ψ(Y2)

∂Y2
=

1

1 + kd2pT (kd2 +R)−2
.

Since SR(R, pT ) 6= 0, the equilibrium point (A∗, R∗) of

system (12) is the same as that of system (1). The Jacobian

of this system, calculated at the equilibrium, as a function

of pT is given by

JR(pT ) =

[

−δa + ∂f1(A
∗,R∗)

∂A

∂f1(A
∗,R∗)

∂R

S∗

R
∂f2(A

∗)
∂A

−S∗

RδR

]

, (13)

in which we use the shorthand notation S∗

R := SR(R
∗, pT ).

Note that 0 < S∗

R < 1 is a strictly monotonically decreasing

function of the parameter pT . Note also that

S∗

R|pT=0 = 1 and lim
pT→∞

S∗

R = 0. (14)

The following lemma shows that an activator-repressor

system with a stable equilibrium point can present periodic

orbits upon addition of sufficient DNA binding sites with

affinity to the repressor.

Lemma 4: Consider system (12) and let conditions (i) and

(ii)’ be satisfied. There exists p∗ > 0 such that the solution

of (12) is asymptotically stable if and only if pT < p∗ and

presents a periodic solution if pT > p∗.

Proof: We first show that det(JR(pT )) > 0 for all pT .

This follows from the fact that det(JR(pT )) = S∗

R det(J0) >
0, from condition (i). Now we focus on

trace(JR(qT )) = −δa +
∂f1(A

∗, R∗)

∂A
− S∗

RδR.

From (14) and condition (ii)′, when pT = 0 trace(JR(0)) <
0. Additionally, as

as pT → ∞, trace(JR(pT )) → −δa +
∂

∂A
f1(A

∗, R∗) > 0.

Since the trace is a monotonic smooth function of pT , one

can apply the intermediate value theorem to show that there

is an unique 0 < p∗ < ∞ such that trace(JR(p
∗)) = 0.

Since det(JR(p
∗)) > 0, the eigenvalues of JR(p

∗) are

imaginary. From the monotonicity of the trace with respect to

pT , it follows that the real part of the eigenvalues of JA(qT )
is negative for all 0 ≤ pT < p∗ and positive for all qT > q∗.

It follows that the system goes through a Hopf bifurcation at

pT = p∗, and thus presents a periodic solution for pT > p∗,

while it converges to the equilibrium for 0 ≤ pT < p∗.

This result is illustrated in Figure 4. The parameters of the

system were chosen to satisfy conditions (i) and (ii)’. Notice

how the addition of binding sites with affinity to the repressor

induces oscillations in a non-oscillating system .

Fig. 5. A simple feedback system with an open loop transfer function
L(s) and the feedback gain K.

IV. ROOT LOCUS INTERPRETATION

Consider the feedback system in Figure 5 with a feedback

gain K and open loop transfer function L(s) = N(s)/D(s).
The poles of the closed loop system are given by the roots

of the equation ∆(s) = D(s) + KN(s) = 0 and can be

graphically depicted as a function of K using the root locus

diagram. This idea can be employed to find the eigenvalues

of the Jacobians (8) and (13) as a function of S∗

A and SR
respectively.

Consider, for example, system (7). The eigenvalues of

its Jacobian (8) are given by the roots of the characteristic

equation

∆A(λ) = λ2 − (S∗

Aa+ d)λ+ S∗

A(ad− bc)

= λ2 − dλ+ S∗

A(−aλ+ ad− bc),

in which a = −δA + ∂f1(A
∗,R∗)

∂A
, b = ∂f1(A

∗,R∗)
∂R

, c =
∂f2(A

∗)
∂A

and d = −δR. The eigenvalues are therefore identi-

cal to the location of the poles of the closed loop system of

Figure 5 with gain K = S∗

A and open loop transfer function

given by

L(s) = −as− (ad− bc)

s2 − ds
. (15)

This transfer function has one zero at s = (ad− bc)/a > 0
(conditions (i) and (ii)) and poles at s = 0 and s = d < 0.

The root locus diagram is, therefore, of the form shown in

Figure 6(a). Since the “gain” S∗

A is such that 0 < S∗

A ≤ 1, the

actual loci of the eigenvalues of the Jacobian are restricted

to the red line. Arrow heads indicate the movement of the

eigenvalues as qT increases. The figure also highlights the

point qT = q∗ at which the system undergoes a Hopf

bifurcation, and it shows how the signal of the real parts

of the eigenvalues goes from positive to negative as qT
increases.

This idea can also be applied to system (12). In this

case, the eigenvalues of Jacobian (13) are the roots of the

characteristic equation

∆R(λ) = λ2 − aλ+ Seq(pT )(−dλ+ ad− bc),

in which a, b, c and d are the same as defined above. Here,

it is assumed that the feedback gain is KR = S∗

R and the

open loop transfer function given by

L(s) = −ds− (ad− bc)

s2 − as
. (16)
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Fig. 6. In plots (a) and (b), the dashed lines indicate the root locus diagram
of the closed loop systems obtained from the open loop transfer functions
(15) and (16) respectively. The red lines in plots (a) and (b) indicate the
possible values for the eigenvalues of Jacobians (8) and (13) respectively,
and the arrows indicate the movement of the eigenvalue as the quantity of
binding sites increases. Points q∗ and p∗ at which systems (5) and (10) go
through a Hopf bifurcation are also indicated.

This transfer function now has a zero at s = (ad−bc)/d < 0
(condition (i)) and poles at s = 0 and s = a > 0 (condition

(ii)’). The root locus diagram is, therefore, of the form shown

in Figure 6(b). Again, due to the bounds 0 < S∗

R ≤ 1, the

eigenvalues of the Jacobian are restricted to the red line.

The arrows indicate the movement of the eigenvalues as

pT increases. The point at pT = p∗ in which the system

undergoes a Hopf bifurcation is annotated.

Figure 6 also gives a graphical interpretation to conditions

(ii) and (ii)’. These conditions guarantee that, in both cases,

the zero and the non-null pole of the transfer functions have

opposite signs. This ensures that the root locus diagram

crosses the imaginary axis at s 6= 0, a necessary condition

for a Hopf bifurcation to occur.

V. CONCLUSION

In this paper, we presented a method to tune a two-

dimensional model of an activator-repressor oscillator by

addition of binding sites with affinity to either the activator

or repressor proteins. This method exploits the retroactivity

effect to alter the timescale difference between the two

protein dynamics, a key parameter in determining the os-

cillation of this system. As a result, we have shown that

the concentration of additional binding sites to the system

becomes a bifurcation parameter.

These results provide a tool for altering the behavior of

an activator-repressor motif by the addition of extra DNA

binding sites. This method for tuning the clock is experi-

mentally simple when compared to standard tuning methods

involving changes to promoter sites and protein degradation

tags, since it can be realized by simple transformation or

transfection of DNA containing the specific sequence. More

generally, we have shown how to employ retroactivity to

adjust the effective timescales of individual processes in

Synthetic Biology.These results also suggest that retroactivity

has potential to be a mechanism by which relative timescales

are adjusted in natural systems in order to obtain a specific

behavior.

We are currently expanding the results of this paper by

analyzing the effect of adding DNA binding sites with

affinity to the activator and the repressor simultaneously. We

are further studying the potential of tuning the frequency

of the activator-repressor clock by changing the amount and

affinity of the DNA sites. Finally, we are also considering the

effect of incorporating the mRNA dynamics in this system,

as this has potential for a richer dynamic behavior.
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