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Abstract— The main objective of this paper is to study the
feasibility of the receding horizon (RH) strategy to generate
the collision-free on-line optimal trajectory for articulated
manipulators under dynamic environments. Firstly, we employ
the elliptical set to represent the no-collision zone around each
link, and explicitly formulate collision avoidance constraints
using state-space inequalities. Secondly, to address the major
drawback of intensive computation load, we adopt so called
the external active-set strategy that is recently developed by
Chung and Polak [1]. Simulation results with two-link robot
are presented to demonstrate how to implement the proposed
method. Main features and related issues for the feasibility of
the RH strategy are discussed in detail.

I. INTRODUCTION

Optimization-based approach has long been pursued in the

operation of articulated manipulators as a means to realize

the best possible control law or trajectory for a desired task.

Nevertheless, the current practice is still far from the optimal

approach and are often limited to the simple form of tracking

control using the approximated SISO (Single-Input-Single-

output) linear model. The major difficulty in the optimal

motion planning of manipulators lies in the complexity of

the nonlinear equation describing the multibody dynamics.

In addition, its practical application often requires the im-

position of the constrains such as the torque limit and the

collision avoidance.

The initial attempt in the optimal control of manipulators

[2] sought for the solution to the Hamilton-Jacobi equation

associated with the unconstrained quadratic optimal control

problem. Similar results [3], [4] also appeared in the ℋ∞

optimal control problem, which was mainly concerned about

the analytic solution without constraints. One of the repre-

sentative studies in the robot motion planning through the

unconstrained nonlinear optimization is reported by Bobrow

et al. [5], which considered the off-line optimal trajectory

generation strategy that minimizes various physical criteria

such as the energy, control effort, etc. If the constraints to be

imposed are dynamically changing through the operation, the

optimization problem requires running the solver on-line at

each time step, the method of which is known as the receding

horizon (RH) strategy or the model predictive control (MPC).

Specifically to the articulated manipulation, the need for

the on-line optimization may arise from some cases where

the manipulator is operated in the dynamically changing
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(unknown) environment, e.g. the collision avoidance for

moving obstacles and the human-robot cooperation.

Compared to the historical popularity of RH strategy in

the process control [6] and some of its recent successes in

vehicular robots [7], the practical application of RH strategy

for articulated manipulators is still rare. Among recent ap-

proaches are the MPC for the linearized manipulator model

[8], [9], the neural network approximation of the manipulator

dynamics [10], and the stability guaranteed unconstrained

RH control for a direct drive robot [11] using a carefully

chosen terminal cost function. It should be noted that, in the

majority of the cases, the constraints on the state variables or

the input torques are not explicitly considered. As mentioned

earlier, one of major advantages of RH-based trajectory gen-

eration is that it can handle the hard constraints in state and

control variables. Another distinctive feature is that it does

not suffer from the local minima arising from the potential

field approach [7]. Furthermore, since the RH-based solution

always searches for the dynamically and kinematically feasi-

ble solution without regard to manipulator configurations, it

can be free from the singularity considerations, the trouble of

which is encountered in most of traditional motion planning

strategies based on task space control. In spite of such

attractive features, the intensive computation of the on-line

optimization has been a critical issue thus preventing it from

being used in practical applications. Apparently, the general

nonlinear optimization has not yet been fully implemented in

the application of RH-based motion planning for articulated

manipulation.

This paper presents the feasibility study on the general

nonlinear finite horizon optimal control problem (FHOCP)

applied to the articulated manipulation considering the dy-

namic obstacle avoidance and actuator limits as hard con-

straints. Firstly, we employ the elliptical set to represent the

no-collision zone around each link, and explicitly formulate

collision avoidance constraints using state-space inequali-

ties. Secondly, to address the major drawback of intensive

computation load, we adopt so called the external active-set

strategy that is recently developed by Chung and Polak [1].

Optimal control problems with state space constraints are

usually solved by discretizing the dynamics, which results

in the conversion of the continuous-time optimal control

problem into a discrete-time optimal control problem with

many inequality constraints. The central idea of the external

active-set strategy is based on the observation that most of

those discrete-time inequality constraints are inactive, and

may be excluded from the computation if a proper algorithm

can generate optimal solutions without including them in the
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computation. It has been reported that the external active-set

can dramatically reduce the computation time, in some cases,

to a factor of over 100 [1].

This paper is organized as follows. In Section II, we

present the formulation of the FHOCP problem and RH-

based trajectory generation algorithm. Section III presents

the application of the proposed formulation to a two-link

manipulator as an example for the feasibility study. In

particular, Section III-B illustrates how the external active-set

strategy reduces the computational load. Numerical results

are provided in Section IV, and our concluding remarks and

future works are given in Section V.

II. FORMULATION

Consider an n link serial manipulator with a joint variable

space Q ∈ ℝ
n. Let W ∈ SE(3)1 denote its Cartesian

workspace and a smooth map K : Q → W denote the for-

ward kinematics of the manipulator. Assume that its inverse,

K−1 : W → Q, exists and also smooth. We call q ∈ Q as

a joint vector, and a generalized force vector � ∈ ℝ
n as a

joint torque vector. The dynamics of a manipulator can be

written in the form of

�(t) =M(q)q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)), (1)

where q(t), q̇(t), and q̈(t) are the joint position vector,

the joint velocity vector, and the joint acceleration vector

respectively. M(q) ∈ ℝ
n×n is the non-singular mass matrix,

C(q, q̇)q̇ ∈ ℝ
n is a vector representing Coriolis and centrifu-

gal forces, and g(q) ∈ ℝ
n is a vector representing gravita-

tional forces [12]. Note that the above dynamics can always

be converted into a nonlinear state-space representation

ẋ(t) = f(x(t), u(t)) (2)

with

x(t) ≜

[

q(t)
q̇(t)

]

, u(t) ≜ �(t),

f(x(t), u(t)) ≜

⎡

⎢

⎢

⎣

q̇(t)

M−1(q(t))
(

u(t)− C(q(t), q̇(t))q̇(t)

− g(q(t))
)

⎤

⎥

⎥

⎦

.

(3)

Suppose that we have a continuous desired end effector

trajectory represented by Gd(t) with Gd : t → W for

t ∈ [0, T ] and No(t) obstacle points in W represented

by dj(t) =
(

dxj (t), d
y
j (t), d

z
j (t)

)

∈ ℝ
3, j ∈ No(t) ≜

{1, 2, . . . , No(t)}. No(t) is assumed to be dependent on time,

i.e. the number of obstacle points vary with time. Let us

define another time-varying set

ℬl(t) ≜
{

p ∣p ∈ ℝ
3, Bl(p, q(t)) ≤ 0

}

, (4)

which represents the closed convex region in ℝ
3 such that

the ltℎ link of the manipulator is fully contained in it.

1Special Euclidean group, ℝ3 × SO(3)

The finite-horizon optimal control problem (FHOCP) for

the collision free trajectory generation for t ∈ [ti, ti + ℎ] is

defined as follows.

min
u(t)∈U

J(u(t)), t ∈ [ti, ti + ℎ] (5)

where U is a set of Lebesgue square integrable functions with

maximum and minimum bounds defined in t ∈ [ti, ti + ℎ].
ℎ is the prediction interval of the receding horizon scheme.

The FHOCP in (5) is subject to the manipulator dynamics

in (2), the collision avoidance constraints

Bl(dj(t), x(t)) ≥ 0, ∀t ∈ [ti, ti + ℎ], ∀j ∈ No(t) (6)

where l = 1, 2, . . . , n. Then, the performance index in (5)

may be chosen as

J(u(t)) ≜
1

2

∫ ti+ℎ

ti

{

we∥E(t)∥2 + wu∥u(t)∥
2
}

dt

+
1

2
wf∥E(ti+1)∥

2,

(7)

where E(t) represents the tracking error in the Cartesian

coordinates (or in the joint variable space), and we, wu, and

wf are non-negative weighting factors for the corresponding

variables.

Let ℎc ≜ ti+1 − ti be the sampling interval of our

receding horizon scheme. The receding horizon collision-

free trajectory generation scheme based on the FHOCP in

(5) is described by the following algorithm.

Receding Horizon Collision-Free Trajectory Planning

Data: x0 of the system (2), Gd(t) for t ∈ [0, T ], t0 = 0
Solve the FHOCP (5) for t ∈ [0, t1] with No(0) and

compute the optimal trajectory x∗(t) and G∗
d(t) for t ∈

[0, t1]
Set i = 0.

loop

if t = ti then

Apply G∗
d(t) for t ∈ [ti, ti+1].

if ti+1 ≥ T then

Terminate

end if

Update No(ti)
Solve the FHOCP (5) with initial state x∗(ti+1) and

No(ti)
Compute x∗(t) and G∗

d(t) for t ∈ [ti+1, ti+2]
i = i+ 1

end if

end loop

Figure 1 shows the graphical representation of the above

algorithm.

There are several important steps in implementing the

above algorithm in practice and we employ the two-link

manipulator to elaborate them in the next section.
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Apply computed trajectory

Sampling
current state

Prediction interval

Solve FHOCP for [ti+1; ti+1 + h]

hc

ti ti+1 ti+1 + h

Fig. 1. Graphical illustration of the RH trajectory generation algorithm

III. TWO-LINK MANIPULATOR EXAMPLE

A. Application to a Two-link Manipulator

Consider a planar two-link manipulator, i.e. n = 2, as

shown in Fig. 2. In this case, the manipulator dynamics in

(1) becomes (Dependencies on t is omitted in the remaining

for simplicity.)

M(q)q̈ + C(q, q̇)q̇ = �

M(q) =

[

�+ 2� cos q2 � + � cos q2
� + � cos q2 �

]

,

C(q, q̇) = � sin q2

[

−q̇2 −(q̇1 + q̇2)
q̇1 0

]

,

(8)

where

�= J1 +m1r
2
1 + J2 +m2(ℓ

2
1 + r22)

� =m2ℓ1r2, � = J2 +m2r
2
2

with ml, Jl, and ℓl denoting the mass, the mass moment

of inertia, and the length of the l-th link, respectively. rl
is the distance to the center of mass of each link, where

Jl is evaluated. The exemplary values for the mechanical

parameters to be used in the remaining are listed in Table I.

Link 1 parameter unit Link 2 parameter unit

ℓ1 = 0.32 m ℓ2 = 0.21 m
r1 = 0.16 m r2 = 0.046 m
m1 = 9.244 kg m2 = 3.529 kg

J1 = 0.2097 kg ⋅ m2 J2 = 0.0206 kg ⋅ m2

TABLE I

MECHANICAL PARAMETERS

q1

q2

r1

`1

`2
r2

x

y

Fig. 2. Configuration of a two-link robot arm

Gd(t)

(dxj ; d
y
j )

B1(¢)

B2(¢)

rc1

rc2

Fig. 3. The ellipses for collision avoidance (Bl(p, q(t)) = 0), the desired
trajectory Gd(t) and the obstacle point dj

Now, we define Bl(p, q(t)) = 0 as the smallest ellipse

containing the l−th link, whose center is fixed on somewhere

in the l−th link as shown in Fig. 3. More specifically,

Bl(dj , q(t)) =
[(dxj − cxk) cos�l + (dyj − cyk) sin�l]

2

a2l

+
[(dyj − cyl ) cos�l − (dxj − cxl ) sin�l]

2

b2l
− 1,

(9)

where �l =
∑l

i=1 qi, l = 1, 2, and

c1 = re1

[

cos q1
sin q1

]

, c2 = ℓ1

[

cos q1
sin q1

]

+ re2

[

cos(q1 + q2)
sin(q1 + q2)

]

.

(10)

rel denotes the distance from the center of the l−th joint to

the center of the ellipse Bl(⋅), as shown in Fig. 3. Equation

(9) is obtained by rotating the minimal ellipse at the origin by

�l and translating it on the l−th link. Figure 4 shows B1(⋅)
and B2(⋅) for our two-link manipulator example. Parameters

of ellipses are obtained by the method in [13] and are listed

in Table II.

x (mm)
¡200 ¡100 0 100 200¡100

100

¡50

0

50

y
(m

m
)

(a) B1(⋅)

x (mm)
¡200 ¡100 0 100 200¡100

100

¡50

0

50

y
(m

m
)

(b) B2(⋅)

Fig. 4. Minimum area ellipses for the links. ‘x’ denotes the center of the
ellipse.
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Link 1 Link 2

a2
1
= 6.5957E − 02 a2

2
= 3.0155E − 02

b2
1
= 8.8631E − 03 b2

2
= 4.1179E − 03

re
1
= 1.6000E − 01 re

2
= 8.3545E − 01

TABLE II

PARAMETER VALUES OF THE MINIMUM AREA ELLIPSES

For the tracking error term E(t) in (7) we use the tracking

error in the Cartesian coordinates as follows.

E(t) = Gd(t)−K(q(t)). (11)

Comparing with the tracking error in the joint variable space,

Eq(t) = K−1(Gd(t)) − q(t), the above formulation only

uses the forward kinematics K(⋅), and therefore is immune

from any singularity that may be induced by the inverse

kinematics.

In order to state the optimal trajectory problem as an end-

point problem defined on s ∈ [0, 1], we rescale the state

dynamics of the manipulator using the prediction interval ℎ,

t = ti+ℎs, and augment the physical state with an additional

component, x5,

x5(s) ≜
1

2

∫ s

0

{

we∥Ei(�)∥
2 + wu∥u(s)∥

2
}

d�. (12)

Note that we abuse notations E(⋅), xi(⋅), etc. for simplifi-

cation2. The resulting dynamics of the manipulator have the

form of

dx(s)

ds
= ℎ

⎡

⎢

⎣

q̇(s)
M−1(q(s)){u(s)− C(q(s)) − g(q(s))}

1
2

{

we∥E(s)∥2 + wu∥u(s)∥2
}

⎤

⎥

⎦

(13)

with the initial state x(0) given. We will denote the solution

of the above dynamic equation by x(s, u), with s ∈ [0, 1].
The optimal control problem we need to solve is of the

form

min
u∈U

{

x5(1, u) +
1

2
∥E(1)∥2

}

(14)

subject to

Bl(dj(s), x(s)) ≥ 0 (15)

for all s ∈ [0, 1], l = 1, 2 and j ∈ No(t), and the dynamics

(13).

Since the above optimization problem is infinite-

dimensional, we need to discretize the dynamics and convert

the problem into a finite-dimensional one. In this paper, we

follow the treatment in [14] and use Euler’s method to obtain

x̄(sk+1)− x̄(sk) = Δf(x̄(sk), ū(sk)), x̄(0) = x(0), (16)

with Δ ≜ 1/N , N ∈ ℕ (i.e. integer), sk ≜ kΔ and k ∈
{0, 1, . . . , N}. We use an over-bar to distinguish between the

exact variables and the discretized variables. We will denote

the solution of the discretized dynamics by x̄(sk, ū) ∈ X ⊂
ℝ

5, k = 0, 1, . . . , N , with

ū ≜ (ū(s0), ū(s1), . . . , ū(sN−1)). (17)

2One may introduce E′

i(s) ≜ E(ti + ℎs) and so on for more rigorous
notations.

Finally, we obtain the following discrete-time optimal control

problem:

min
ū∈Ū

{

x̄5(1, ū) +
1

2
∥Ē(1)∥2

}

(18)

subject to the discretized dynamics (16), and the discretized

collision avoidance constraints:

Bl(dj , q̄(sk)) ≥ 0, ∀k = 1, 2, . . . , N, l = 1, 2, j ∈ No.
(19)

B. Reduction of the Computational Load using the External

Active-set Strategy

The discrete-time optimal control problem we derived

above has many constraints due to the discretization. For

example, from (19), there are No×N×n = 2NNo collision

avoidance inequality constraints. Solving a discrete-time

optimal control problem with a large number of nonlinear

inequality constraints is computationally very expensive, and

it may make the proposed RHC-based collision avoidance

algorithm impractical. However, since potential collisions

are confined to relatively short segments of the manipulator

trajectories and many obstacle points are not reachable within

the prediction horizon ℎ, most of the collision avoidance

inequalities are inactive. Moreover, in the two-link manip-

ulator example, most of avoidable obstacles make conflicts

with the second link, and the collision avoidance constraints

for the first link are redundant in most cases. If those

inactive inequality constraints are cleverly excluded, then the

computation time required to solve the discrete-time optimal

control problem would be reduced and faster manipulator

motion would be possible using the proposed RHC-based

collision-free planning algorithm. One may suggest to re-

move those unreachable constraints by computing reachable

space. In this case, however, it is impossible to prove the

convergence of the optimization algorithm to a solution of

the original problem with the full set of constraints. Recently,

Chung et. al. [1] proposed an external active-set strategy,

which can exclude inactive inequality constraints from the

computation while maintaining the convergence property of

any optimization algorithm.

In each iteration, the algorithm computes a set of �-active

inequality constraints, merges it to the existing active-set, and

submits it to the optimization solver for a fixed number of

iteration. In the case of our two-link manipulator example,

the set of �-active collision avoidance constraints is

q�(u) ≜ {(l, j, k) ∈ q ∣ −Bl(dj , q̄(sk)) ≤  +(u)− �},
(20)

where

 +(u) ≜ max{0,  (u)}, (21)

and

 (u) ≜ max
(l,j,k)∈q

[−Bl(dj , q̄(sk))]. (22)

q is a set of all possible triples (l, j, k) for all l = 1, 2,

j = 1, 2, . . . , No(s), and k = 1, 2, . . . , N . Then q� is

merged with the existing active-set, i.e. qi+1 = qi ∪ q�,

and the problem submitted to the optimization solver for N�
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iterations. This procedure is repeated until the optimal solver

returns with a stationary solution, and it is feasible for the

entire constraint set q.

Since an inequality constraint Bl(dj , q̄(sk)) ≥ 0 cannot

be included in q� unless the minimal distance between the

j−th obstacle point and the l−th ellipse is less than or equal

to � ≥ 0, the collision avoidance constraints corresponding

to unreachable obstacle points are automatically excluded,

and hence the computational load is reduced by solving

the discretized FHOCP problem with smaller number of

inequalities.

In each active-set iteration, � is determined by following

adaptation:

� ≜ min{ +(ui), �max}. (23)

IV. NUMERICAL RESULTS

The proposed receding horizon trajectory generation

scheme with the external active-set strategy was implemented

in MATLAB. The numerical experiments were performed

using TOMLAB V5.7 [15] with MATLAB V7.8 running

in Windows XP on a desktop computer equipped with the

Intel i7 CPU 920 at 2.67GHz processor and 3GB of RAM.

SNOPT 6.2 [16] was used as the main optimization solver.

Figure 5 shows the initial configuration of the robot,

x0 = [�/3, − �/6, 0, 0, 0]T , and the obstacle points.

The simulation begins with four obstacle points, specified

as Set 1 in Figure 5. These obstacle points are located to

cause collisions with the manipulator whose end effector is

commanded to track the reference trajectory given by

Gd(t) =

[

Ad

Bd coswdt

]

,

[

Ad

Bd

]

= K
(

[

x10
x20

]

)

(24)

with wd = 0.02�.

We assume that a new set of obstacles, labeled as Set 2 in

Figure 5, is detected at t = 25, which also should be avoided.

Therefore No(t) = 4 for 0 ≤ t < 25, and No(t) = 8 for

25 ≤ t. Table III summarizes the parameter values used in

the simulation.

Figure 6 shows the stick representation of manipulator

motion with the bounding ellipses, which illustrates that the

algorithm successfully generates the collision-free trajectory.

As shown in Figure 7, the obstacles cause the manipulator

end effector to move away from the reference trajectory.

Meanwhile, the FHOCP made reasonable trade-off between

the trajectory tracking and the collision avoidance. The

generated trajectory in the Cartesian space is also shown in

Figure 5.

In the simulation, the number of collision avoidance

constraints is quite large. There are 512 collision avoidance

Parameter Value Parameter Value

N 64 ℎ 10 (sec)
Wu 1 We 2
ℎc 5 (sec) Wf 2

�max 0.1 N� 50

TABLE III

SIMULATION PARAMETERS

x

y

Gd(t) (Desired traj.)

dj (Obstacles pt.)

RHC traj. of end-tip

Set 1

Set 2

Fig. 5. Simulation scenario with the fixed obstacle points (Set 1) and the
spontaneous obstacle points (Set 2) that show up at t = 25 s. The red solid
line shows the actual end-tip trajectory generated by the proposed algorithm.

constraints for 0 ≤ t < 25, and 1028 for 25 ≤ t. If we run

the FHOCP problem with the full set of collision avoidance

constraints for obstacle points in Set 1, i.e., without using the

external active-set strategy, it takes normally a few thousand

seconds to compute the optimal solution using the same com-

puter. In contrast, the external active-set strategy drastically

reduced the computation time below 60 seconds as shown

in Fig. 8(a). This is because only a fraction of constraints

(less than 100) were included in the computation as shown

in Fig. 8(b). Note that, in spite of such a significant reduction

in computation time, the proposed algorithm still needs to be

improved for the practical application because the trajectory

of our choice is assumed to be updated every 5 seconds.

Clearly, we will need to use solvers other than SNOPT and

implement the code set in a dedicated realtime machine

independent from MATLAB. Currently, several options are

under our investigation to further reduce the computation

time and are explained in more detail in the Future Work.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the feasibility of the

collision-free trajectory generation using a receding horizon

strategy for robotic manipulators. The distinguished features

of the proposed method are 1) on-line optimal trajectory

generation under dynamic environment, 2) imposition of hard

constraints on state variables and control inputs, 3) being

immune to manipulator singularity issues, 4) drastic reduc-

tion in the computation time through the external active-set

strategy to exclude inactive constraints effectively.

To apply our algorithm to real-world applications, the

computation time must be further reduced. In solving nu-

merical optimal control problems, it is well known that one

can save a significant amount of computation time by using

the adaptive discretization, i.e. coarse discretizations at the

start of the computation and then refining it as the solution
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x

y dj (Obstacles pt.)

Bl (Ellipse boundary)

cl (Ellipse center)

Fig. 6. Traces of enclosing ellipses around obstacle points. The marks ‘*’
represent the center of ellipses on the links, and the marks ∙ the obstacle
points, respectively.
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Fig. 7. Tracking error in the Cartesian space
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Fig. 8. Computation saving by the external active-set strategy

is approached. A set of adaptive discretization rules can

be found in Section 3.3.3 of [14]. When the parameters

for these rules are well chosen, it is typical to achieve a

tenfold reduction in computing time, compared to using a

fine discretization throughout the entire computation. More

appropriate for the setting described in this paper may be to

utilize the optimal discretization scheme described in [17],

which does not depend on fine tuning a set of parameters.

The optimal discretization scheme sets up an optimization

problem whose solution consists of the number of discretiza-

tion stages to use and the number of discretizations in each

stage as well as the number of iterations to perform in each

stage, so as to minimize the computing time necessary to

reduce the initial error by a pre-assigned factor. This scheme

indeed depends on problem parameters, but they can be

easily estimated as explained in [17]. In the short term, we

will test our algorithm on a more powerful computer with

various algorithms including the state-of-the-art interior point

method [18].
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